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ABSTRACT Understanding, modeling, and predicting student performance in higher education poses
significant challenges concerning the design of accurate and robust diagnostic models. While numerous
studies attempted to develop intelligent classifiers for anticipating student achievement, they overlooked
the importance of identifying the key factors that lead to the achieved performance. Such identification
is essential to empower program leaders to recognize the strengths and weaknesses of their academic
programs, and thereby take the necessary corrective interventions to ameliorate student achievements. To this
end, our paper contributes, firstly, a hybrid regression model that optimizes the prediction accuracy of
student academic performance, measured as future grades in different courses, and, secondly, an optimized
multi-label classifier that predicts the qualitative values for the influence of various factors associated with
the obtained student performance. The prediction of student performance is produced by combining three
dynamically weighted techniques, namely collaborative filtering, fuzzy set rules, and Lasso linear regression.
However, the multi-label prediction of the influential factors is generated using an optimized self-organizing
map. We empirically investigate and demonstrate the effectiveness of our entire approach on seven publicly
available and varying datasets. The experimental results show considerable improvements compared to single
baseline models (e.g. linear regression, matrix factorization), demonstrating the practicality of the proposed
approach in pinpointing multiple factors impacting student performance. As future works, this research
emphasizes the need to predict the student attainment of learning outcomes.

INDEX TERMS Student performance, influential factors, hybrid approach, collaborative filtering, matrix
factorization, fuzzy set theory, Lasso linear regression, self organizing map, neural networks, multi-label
classification, machine learning.

I. INTRODUCTION
Despite the recent paradigm shift in higher education
(e.g., outcome-based education [1], [2]), many colleges and
universities worldwide still suffer from poor student perfor-
mance [3]. For example, only around 40% of first-time col-
lege students enrolled in a 4-year bachelor’s degree graduate
within four years in the US [4], while the college dropout
rate reached a whopping 40% in 2018 [5]. To overcome the
repercussions of this phenomenon, various research studies
attempted to develop automatic models that predict future
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student academic performance in higher education [6]–[8].
The timely prediction of student performance offers a myr-
iad of benefits, including the early identification of stu-
dents struggling to pass their modules and those at risk
of dropping out, course selection pathways, as well as the
attributes that influence student retention rates and behav-
iors. Such intelligent insights empower educational leaders
to devise and implement corrective interventions to support
academic advising, guide curriculum changes and improve-
ments, and determine the pitfalls of the programs [9]. How-
ever, selecting an appropriate machine learning model to
estimate student performance accurately remains a complex
endeavor [10].
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Findings have shown that student academic achievements
are typically influenced by a myriad of factors, ranging
from academic and non-academic attributes [10]. The vari-
ability of these factors necessitates the development of a
complex predictive model. Ensemble (i.e., hybrid) learning
models are already proven to outperform individual learn-
ing models concerning the prediction accuracy of student
academic performance [11], [12]. Moreover, a recent survey
revealed that around 50% of the studies employ supervised
learning algorithms, while only 5% of the studies use unsu-
pervised approaches [8]. Indeed, supervised machine learn-
ing provides acceptable prediction accuracy [10]; however,
we believe that augmenting a supervised model with unsuper-
vised learning will produce even more accurate predictions,
with fewer generalization errors. As such, our suggested
model integrates the powers of supervised and unsupervised
learning.

The available models and algorithms focus mainly on
improving the prediction accuracy of future student perfor-
mance [8], [13]. They fall short of generating an explanatory
analysis of the exact factors (i.e., variables) that cause the
observed student performance. Additionally, relying on a
single model, whether this model is linear or non-linear, may
be insufficient due to the difficulty of capturing a variety
of factors in one predictor model. Factors affecting student
performance often differ significantly among students and
between academic semesters for the same students. To avoid
ambiguity, single linear models would generally suffer from
underfitting the data on which they were trained (i.e., con-
sisting of many overlapping student behaviors), leading to
high rates of false predictions. Likewise, false predictions
would also be high with non-linear models as they are prone
to overfitting just parts of the data on which they trained
(i.e., the model would only remember some aspects of student
behaviors).

Moreover, existing ensemble machine learning solutions
do not accommodate for a dynamic weighted contribution of
the participating models in predicting student performance.
Further limitations concern the disuse of a training set or the
use of a single dataset to validate the model, such as [13].
Moreover, somemodels focus on predicting the achievements
of first-year students only (e.g., [14]). More than 50% of the
surveyed studies used SVM and ANN techniques to predict
student performance [8]. Moreover, most related approaches
that we are aware of are confined to predicting future course
grades only without associating them with the key factors
that lead to the obtained student performance [8], [13]. In our
view, understanding the impact of those enabling and inhibit-
ing factors is quite essential to devise corrective plans to
improve student achievements and reduce the risk of dropout.
Our approach is distinguished by its clustering feature that
helps in understanding the associated factors leading to the
predicted future course grades.

To address the aforementioned limitations, we contribute
a hybrid regression approach along with a semi-supervised

learning technique for identifying the enabling factors and
inhibitors of student performance in educational programs.
The proposed approach seeks to optimize the prediction
accuracy of student academic performance based on course
grades, and then identify the possible factors that might have
caused the observed student achievements. We assume that
program strengths and weaknesses are instigated by a set
of factors and circumstances, which are believed to have
direct or latent effects on student academic results. More
precisely, the main contributions offered by this research
include:
• Combining the powers of three distinct techniques,
namely (1) collaborative filtering technique (i.e., imple-
mented based on matrix factorization), (2) fuzzy rules,
and (3) Lasso linear regression, to obtain robust predic-
tions of future student performance. The novelty here
lies in (1) the inference of approximately 106 fuzzy
rules for estimating students’ grades in each course,
and more importantly, in (2) the integration of these
three distinct techniques through the use of our pro-
posed weighted sum model. This model allows one to
determine and adjust the importance weights for the
three techniques dynamically according to each student
circumstances.

• Optimizing the use of Self Organizing Map (i.e., which
is an unsupervised learning method through neural
networks) as a multi-label classifier by introducing a
weighted mean scheme. The multi-label self-organizing
map anticipates multiple factors that might lead to a
particular student academic performance. Here, one of
the advantages of our proposed weighted mean scheme
is that it can significantly reduce the sensitivity of the
self-organizing map model to the neighborhood radius
when treating it as a multi-label classifier.

• Implementing a proof of concept of the entire approach,
which can be applied to similar educational programs
with minimal customization.

We conducted extensive performance evaluation (i.e., mea-
sured using root mean square error - RSME) of our prototype
against primary student performance prediction techniques
using seven representatives benchmark datasets. Our empiri-
cal results demonstrate the performance efficiency and prac-
tical benefits of our predictive models (i.e., the hybrid and the
multi-label classifier).

The remainder of this paper is divided into six sec-
tions. The next two sections (II and III) review the related
works by highlighting the research gaps and shedding
light on the factors deemed to influence student per-
formance and learning outcomes. Section IV details the
steps of our approach, while section V presents the anal-
ysis and results of our evaluation. Section VI discusses
the results and draws attention to the shortcomings of
the proposed approach. Lastly, section VII concludes the
key findings and suggests two promising future research
directions.
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II. REVIEW OF RELATED WORKS
Since our research focuses on computer-supported predictive
analytics, we reviewed the related works from two main
perspectives. The first part introduces the foundational con-
cepts of student academic performance, and the second part
explores the modern approaches used for predicting and
explaining student performance.

A. STUDENT ACADEMIC PERFORMANCE
Typically, data analytics of educational data involve two
main strands, namely predictive analytics and learning analyt-
ics [15]. Predictive analytics seeks to predict student learning
and performance, identify student failure rates, and recom-
mend future courses that yield the best results [16]. How-
ever, learning analytics seeks to collect and analyze student
learning data and their environment to improve the attainment
of student learning outcomes [17]. Moreover, data mining
techniques have been applied to student data to unravel the
link between factors and student learning [18]. For exam-
ple, ethnicity was found not to impact students’ cumulative
grade point scores [19]. Similarly, [20] revealed that cog-
nitive university admission requirements did not accurately
explain student performance, suggesting that non-academic
factors may play a vital role in student learning. Our research
attempts to improve the prediction of student performance
and explain the obtained predictions, thus applying both pre-
dictive and explanatory modeling of student performance.

Previous works define student performance as a mea-
sure of student proficiency and achievements in the
upcoming courses [21]. Indeed, assessing student academic
performance has been for long a significant goal in higher
education to overcome persisting issues, including low aca-
demic grades, increased student failure and dropouts, and
prolonged graduation time, among others [13]. The predic-
tions of student achievements are calculated mainly using
previous semesters’ grades and current coursework assess-
ments, such as assignments, midterms, and projects, and
final exams [13]. However, subsequent works explored the
influence of non-academic traits, such as student demo-
graphics and socioeconomic status, on student achieve-
ments [22]–[24]. Despite their significance, the assessment of
learning outcomes has been used less frequently to measure
student performance [13], [25]. Past findings indicate that
several intertwined factors impact student performance, and
their precise prediction requires the development of sophisti-
cated models.

The prediction of student performance in higher edu-
cation is a worthwhile activity for it accomplishes strate-
gic benefits, such as the development of early warning
and course path recommendation systems, the detection of
adverse student behaviors, and the automation of course
assessment [13], [16], [26]. However, the accurate prediction
of student academic achievements is a complicated research
endeavor, requiring an in-depth understanding of all aspects
and circumstances surrounding the students and their learning

environment [9]. Moreover, predicting student performance
involves discovering student behaviors and preferences and
considering various influential academic and non-academic
factors [15]. However, the current findings are still unsatisfy-
ing given that (1) the prediction accuracy of single learning
models remains low, e.g., [27], [28], and (2) the factors lead-
ing to the observed academic performance are overlooked or
diagnosed inadequately, e.g., [29], [30]. Our research aims to
bridge these major gaps.

Some research works, e.g. [31], went beyond predict-
ing course grades to identifying at-risk students. However,
accurate predictive modeling in education remains challeng-
ing due to data sparsity and exponentiality problems with
powerful classification models, such as the Support Vector
Machine (SVM) [9]. To tackle, as an example, the latter
challenge for the SVM, [32] applied a multivariate normal
approach and vector transformations to reduce the training
time of the model. Although the training time was reduced
by approximately 59%, the optimized algorithm still achieved
a promising accuracy of 93% in recognizing the most vul-
nerable students for failure. In subsequent work, [33] devel-
oped a generative adversarial network-based deep support
vector machine (denoted as ICGAN-DSVM) model, which
handles small training datasets and produces high accuracy
predictions of student performance. The results showed that
family tutoring, combinedwith school tutoring, improves stu-
dent performance. Although combining existing approaches
(e.g., CGAN) improved the predictions by up to 29%, small
validation datasets were used to verify the model perfor-
mance. Other researchers showed that learning discriminant
analysis and support vector machine yielded the best classifi-
cation results of project grades when training small datasets,
as in the case of postgraduate programs [29]. However, these
works focus primarily on predicting students who might not
pass future courses and do not provide a comprehensive
explanation of the factors leading to their failure.

In [34], the authors suggested a multi-view approach
that uses genetic programming classification rules to iden-
tify the underperforming students who particularly suffer
from socio-economic disadvantages. This approach com-
bines several sources of student data to solidify the feedback
recommended to decision-makers. However, their proposed
architecture does not identify the factors leading to the
predicted performance. In a similar fashion, [35] proposed
a genetic algorithm, as part of an early warning system,
to detect early students’ dropout from courses. Again, this
warning system does not justify the motives behind the pos-
sible dropout of students.

B. APPROACHES TO PREDICTING STUDENT
PERFORMANCE
The abundance of educational data [36] coupled with the
emergence of predictive modelling [9], [37] empower the cre-
ation of effective learning analytics models that inform edu-
cational institutions about the future academic performance
of students to assist them enhance the learning processes.
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Learning analytics explore student data to investigate their
activities and behaviors and provide relevant recommenda-
tions [38]. High-level categories of learning analytics models
range from statistical techniques, educational data mining
methods to advanced machine learning models [6], [7], [13].
Specific examples of prominent algorithms predicting future
academic achievement of students include regression mod-
els [39], decision trees [17], collaborative filtering [40], sup-
port vector machine [29], and artificial neural networks [8].
However, most of these techniques have been used separately
(i.e., as single models), focusing mainly on supervised learn-
ing to predict student performance [13], [29]. In this research,
we endeavor to combine supervised and unsupervised learn-
ing to anticipate student performance more accurately.

When it comes to predicting student performance, previous
studies showed that supervised learning techniques have been
the more popular and preferred choice [10]. For instance, [8]
revealed that the SVM is the most used method for predicting
student academic performance, while the artificial neural net-
work was the least favored technique. However, [13] showed
that statistical linear modeling techniques are used more than
other methods to calculate and predict student success. For
example, [20] demonstrated that linear and quadratic regres-
sion models could be used to predict the final cumulative
grade point average to an acceptable level based on the grade
point average of the first three years. Reference [17] devel-
oped a decision tree model of entropy and information gain
values of formative assessments to predict the risk of failing in
the summative assessments. The tree helps course instructors
identify students who require learning support to pass the
final exam. In contrast to those proposals, fewer studies have
attempted to use unsupervised learning to predict and explain
student performance [8], [13], [26].

Matrix factorization approaches have been explored
recently by decomposing the student-course matrix into two
low-dimensional matrices (e.g., a student matrix and a course
matrix) such that student performance can be estimated
by calculating the product of these two low-dimensional
matrices [42]. Such matrices can explain the variability of
student grades [44]. References [27], [44] suggested that
analyzing course-specific data yielded more accurate grade
predictions than traditional approaches, such as regression
models and student-based collaborative filtering. In their
approach, low-rank matrix factorization methods and linear
regression models were applied to historical course grades.
However, grade predictions were less plausible when a
student-course-specific approach was applied. Other works
incorporated additive latent effect models (i.e., ALE) within
matrix factorizationmethods to calculate future course grades
for the next terms [41]. The proposed ALE models incor-
porate four factors related to instructors, student academic
level, student interest, and knowledge to predict future grades.
Unlike the works of [27], [44], our work extends collaborative
filtering with a regression model and a fuzzy rule-based
model to predict student grades and explain the predic-
tions through multiple factors, using a self-organizing map.

This is in line with the recommendation that ensemble clas-
sifiers produce more accurate predictions [45].

There is substantiated evidence in recent literature claim-
ing that combining multiple machine learning classifiers
would improve the prediction results, with prediction accu-
racy improvements ranging from 25% to 30% [16], [46], [47].
For instance, [48] integrated several classification algorithms
to predict student performance through a voting mechanism.
The hybrid classifier achieved an accuracy percentage of
92.59%, an increase of at least 4% compared to other indi-
vidual approaches such as decision trees, K-nearest neigh-
bor, and multilayer perception. Similarly, [49] showed that
a hybrid model that combines support vector machines and
K-means clustering could predict the number of attempts
before passing a course and course grades based on past stu-
dent performance. Linear discriminant analysis was applied
subsequently to specify the most relevant factors that yield
particular student achievements. Moreover, ensembles of the
decision tree, support vector machine, and artificial neural
network were applied on multiple student data sources to
identify students at risk and predict student grades [47].
Results showed that a stacked hybrid model is more effi-
cient and accurate (about 81%) and introduces fewer pre-
diction errors than single classifiers (i.e., SVM, ANN,
and decision trees). Moreover, the rotation forest ensemble
gave the highest prediction accuracy of student performance
(i.e., 76%) [11]. Meanwhile, the RMSE ranged from 0.41
to 0.44. Although these hybrid models fared better than the
single models, the prediction accuracy levels are still low,
while the prediction error remains relatively high. Further-
more, the existing hybrid models focus mainly on predicting
future student grades or dropout rates without making infer-
ences to the causes. Therefore, it is imperative to explore
other combinations of predictive methods that anticipate
student performance accurately and highlight the enabling
factors of a successful academic program. Our work is one
step towards this vision. Table 1 highlights the most promi-
nent models predicting student performance, along with their
strengths and weaknesses.

C. THE RESEARCH GAPS
Predicting student achievements accurately is a complex task,
necessitating new intelligent approaches that consider the
evolving factors and circumstances, which influence student
academic performance. The impact of these factors and cir-
cumstances may differ from one batch of students to another
and from one program to another. Our extensive review of
the related works revealed gaps pertaining to the following
areas:
• Lack of hybrid approaches, which combine the advan-
tages of supervised and unsupervised learning to auto-
mate and optimize the prediction accuracy of student
academic performance.

• The inflexibility of existing models to analyze mul-
tiple academic and non-academic factors that are
deemed to influence the quality of student learning.
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TABLE 1. A Summary of Existing Works (i.e., [27]–[31], [41]–[43]) Predicting Student Performance.
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TABLE 2. A Review of Related Studies (i.e., [11], [27], [41], [43], [45], [50], [51]) and their Research Gaps (denoted as RG).

Some approaches predict student achievements without
associating them with the enabling factors or possible
weaknesses, while others consider only a small subset
of potential factors.

• Models composing hybrid approaches do not adjust their
contribution dynamically in estimating the predictions
according to student circumstances.

• Many student prediction models are validated using a
single dataset, which is considered as a threat to the
validity of the model.

Table 2 summarizes the most related works predicting stu-
dent achievements and indicates their weaknesses by linking
them to four research gaps that we attempt to address in this
research.

III. FACTORS IMPACTING STUDENT ACADEMIC
PERFORMANCE
Before delving into the factors and circumstances that might
drive student performance, we first need to define the concept
of academic success. Although many researchers refer to
academic success merely by academic achievement in differ-
ent courses, broader views emphasise a multifaceted interac-
tion of components including the successful engagement and
completion academic activities, as well as the attainment of
the intended learning outcomes by students to prepare them
for the job market [52]. [53] highlights six main measures
to determine academic success, namely academic achieve-
ment (e.g. in the form of course grades and GPA), attain-
ment level of learning outcomes (e.g. course evaluation),
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perceived satisfaction (e.g. surveys), acquisition of skills and
competencies, career success, and persistence (e.g. gradu-
ation rates).Reference [52] reports that previous academic
achievements of students and their demographics were the
most important factors that can be used to predict academic
success in university settings. Previous academic achieve-
ment refers to student grades obtained both pre-university
(e.g. high school) and during university. Student demograph-
ics resulted in performance differences, particularly with
respect to gender, age and ethnicity. Other influential factors
include student psychological traits, learning environment,
and e-learning activity.

The accurate prediction of student academic performance
necessitates a deep understanding of the factors and features
that impact student results and the attainment of student
outcomes. To this end, [13] surveyed 357 relevant papers in
the area of student performance detailing the impact of 29 fea-
tures. These features were mainly related to course and
pre-course performance, student engagement, student demo-
graphics such as gender, high school performance, and psy-
chomotor skills, such as self-regulation. However, the degree
dropout rate was mainly influenced by student motivation,
habits, social and financial issues, lack of progress, and career
transition.

Another important survey by [8], exploring 71 papers,
indicated that 70% of the studies aimed at predicting student
performance and 21% of the studies targeted the prediction of
student dropout probability. The predications are calculated
based on past student grades, demographics and character-
istics. Again, this survey shows lack of efforts to predict
the enabling and inhibiting factors against student success.
Moreover, most of the previous research attempts used a small
number of factors to predict student performance. It is worthy
of note that summative performance metrics, such as the GPA
score or range, have been used less frequently (less than
13% of the studies) in the prediction of student performance
despite its importance [13].

In this research, we go beyond the mere goal of modelling
and predicting student performance using student-course fea-
tures to examining and determining the key factors leading to
the obtained student performance at the program level using
unsupervised learning. Hence, one of our aims is to predict
qualitative values for the influential factors after predicting
student performance. In a broader sense, capturing a deeper
understanding of the factors might assist us in revealing the
key strengths and weaknesses behind the attainment of the
student learning outcomes.

IV. METHODOLOGY
The hybridization of intelligent models is conceptually vital
for addressing complex real-world problems, where the par-
ticipating models can combine their relative strengths while
overcoming any potential weaknesses. In accordance with
its significant advantages, we propose a hybrid predictive
model that combines a fuzzy rule-based technique along with
two machine learning techniques, as illustrated in Figure 1.

Initially, given a specific dataset that describes student-course
features, the hybrid regression model attempts to predict
future student performance. This is followed by the appli-
cation of an unsupervised neural network model to predict
the main qualitative factors that justify the obtained stu-
dent achievements. In the follow-up stage, rolling up such
predicted information (i.e., from student level to program
level) would intelligently assist us in providing and justifying
insights into the main reasons behind the attained outcomes
for an educational program.

We begin by formalizing our research problem and
then delve into the proposed solution. At the top part of
Figure 1(A), the dataset structure is abstracted and described
in terms of the requisite type of features and labelled classes.
Such dataset might be extracted from an educational infor-
mation system that stores student records in chronological
sequence, typically by annually academic semesters. In this
approach, we assume splitting dataset into two parts based
on time-series such that student records from the past and
the currently running semesters are used for training the
models, while the scheduled data for the upcoming semesters
are used for prediction. Under Figure 1 (A), the input X k×l

describes student-course features, where k is the number
of input instances, and l is the number of features, such
that {k, l} ∈ N. The desired outputs consist of (1) student
performance, represented as the total assessment grade Gk ,
i.e., gi = [0, 100], and (2) a set of factors GV k×o, such that
GVk,j =

{
gvk,j : j ∈ 1, 2, · · · , o

}
, o ∈ N, and every target

gvk,j must be typed over a quantitative value. We distinguish
between student and course features by Ẋ and Ẍ , respectively.

Given an educational dataset, as described in Figure 1 (A),
the main challenge in this paper is to predict values for G and
GV that approximate the best mapping betweenX ,G, andGV
in the hypothesis space H , such that all the inner predictors
belong to H , typically for input-instances that belong to the
current and/or upcoming semesters. We address this problem
in two sequential steps, illustrated in (B) and (C) of Figure 1.
Firstly, we approximate precise values for G using a hybrid
regression model (HRM). Then, we re-consider G as a fea-
ture besides the input-instances in X for training (MLSOM)
an unsupervised neural network model (i.e., represented as
self-organizing map) for approximating the fittest values for
GV . To further clarify the illustrative steps (A), (B), and
(C) in Figure 1, we abstractly describe the main top-level
steps of our approach in algorithm 1. The underlying proce-
dures and formulas implementing these steps are explained in
detail in the following subsections.

A. THE HYBRID REGRESSION MODEL (HRM)
Multiple circumstances often influence student performance
during their educational journey, some of which are strictly
related to (e.g., types of courses and student’s abilities, etc.).
It is, therefore, challenging to rely on a single learning model
to predict student grades G. Students usually have different
characteristics and historical behaviors, and the use of a single
model may lead to inferring imprecise predictions, which
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FIGURE 1. Overview of the proposed hybrid regression (HRM) and multi-label self-organizing map (MLSOM) models.

Algorithm 1: High-level steps for training and predict-
ing student performance (G) and their associated factors
(GV ) using the proposed HRM and MLSOM models.
input : DS: a clean educational dataset, as described

in Figure 1 (A)
output: G and GV : student grades and their associated

factors

DS train,DSpred ← Split(DS)
splitting DS into DS train and DSpred depends on
time-series, such that the training data are extracted
from the past and the currently running semesters, while
the scheduled data for the upcoming semesters are used
for prediction.
HRM.train(DS train)
G← HRM.predict(DSpred)
MLSOM.train(DS train)
DSpred .update(G)
GV←MLSOM.predict(DSpred).

could be a result of some obvious issues, e.g., cold-start and
overfitting problems. Hence, to improve the accuracy of our
predictor, we train not a single model but a hybrid model that
allows one to combine different logical anticipations. The
postulated hybrid regression is a combination of collabora-
tive filtering model (denoted as m1), fuzzy rule-based model

(m2) and Lasso linear regression model (m3), as depicted
in Figure 1 (B). Here each model has a specific weight θ to
determine its influence according to student circumstances,
such that the final decision by the hybrid prediction is
expressed as:

HRM (xi) =
3∑

n=1

mn(xi)θn (1)

where xi is the input instance. We assume a weighted sum
model to determine, firstly, the values for θ1 and θ2 for
combining m1 and m2, respectively. Let ẋϕi and ẍϕi denote
the ratio of the completed courses by the student ẋi and the
ratio of teaching the course ẍi (i.e., the number of times the
ẍi appears in X divided by k), respectively. We then calculate
the first two weights for θ1 and θ2 as follows:

θ1 =
ẍϕi (1− θ3)

(ẋϕi + ẍ
ϕ
i )
, θ2 = (1− θ1 − θ3) (2)

For m3, we consider its weight θ3 as an important prede-
fined parameter that has to be configured prior to the testing
or the practical prediction stage.

1) COLLABORATIVE FILTERING MODEL
The principle behind our collaborative filtering model m1

is to predict student performance by discovering the hidden
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patterns in the historical student-course relations in a
neighbourhood-based. Collaborative filtering, in general, is a
paramount approach for recommender systems [54], [55],
particularly in e-commerce systems. It mainly aims to fil-
ter out user-item preferences based on the past ratings of
comparable items and users. Therefore, the adoption of a
collaborative filtering concept boosts m1 to contribute bet-
ter predictions for first-year students who are in their early
academic stages (e.g., in the case when the model has
insufficient information about specific students in X as its
focus would be on discovering the behavior of the same
courses, studied in the previous semesters) as the predic-
tion here depends principally on the overall past relation-
ships between, e.g., graduated students and their studied
courses.

The most conventional collaborative filtering tech-
niques are Nearest Neighbor [56] and Matrix Factori-
zation [57], [58]. A series of methods have optimized both
techniques, but we focus on the latter as it has demonstrated
its efficiency in tackling some open problems, such as scal-
ability, performance, and inaccurate predictions [59]. To be
more precise, we train our collaborative filtering model m1

based on implicit data using a promising non-negative matrix
factorization technique (NFM) [60], [61] for regression pre-
dictions. Here, the implicit data means that each instance xi,
used for training, must have a valid value for gi that links both
student s and course c.

To clarify more, let GM denotes our student-course grad-
ing matrix, such that GM ∈ R|S|×|C|, where |S| and |C| are
the numbers of students and courses in X respectively. Then,
the implicit data in GM are defined as:

GMsc =

{
g if s has completed c and g is observed
0 otherwise

(3)

In other words, each entry (GMsc : = 0) means that a
student s has not completed a course c yet (i.e., potentially
because c is allocated in the upcoming academic semesters
for s), denoted as GM sc. This means that ∀GMsc 6= 0, both s
and c can be represented by partially observed vectors from
the dataset X , such that Ẋ=̂(GM1c, · · · ,GMkc) ∈ R|S| and
Ẍ=̂(GMs1, · · · ,GMsk ) ∈ R|C|. Given a grading matrix GM ,
the matrix factorization technique aims to factorize GM into
two non-negative matrices S and C , such that GM ≈ SC .
Here, S andC represent the latent factor vectors for a student s
and a course c respectively, such that S=̂{Ẋ1:k} andC=̂{Ẍ1:k}.
The {.} is used as an expression for excluding the duplicated,
e.g., student/course IDs. By learning S and C , one can
estimate the unavailable values in GM sc by using their inner
product as follows:

GM ij = f (Ẋ , Ẍ | Si,Cj) = STi Cj (4)

The objective function for training S and C is based on
optimising the distance d between GM and their matrix
product SC , expressed by squared Frobenius norm1 as

1The squared Frobenius norm is an extension of the Euclidean norm
function https://scikit-learn.org/stable/modules/decomposition.html#nmf

follows:

d(GM , SC) =
1
2
||GM − SC||2 =

1
2

∑
i,j

(GMij − SC ij)2

(5)

2) FUZZY RULE-BASED MODEL
A fuzzy expert rule-based model, in its simple form, is an
expert system but with more rules and fuzzy membership
operations that go beyond the classical Boolean logic [62].
It fundamentally consists of two main components: a knowl-
edge base, represented as IF · · · THEN rules, and an infer-
ence methodology for reasoning. Unlike the collaborative
filtering model m1, the logical rule-based model m2 focuses
on predicting student grades by analysing their past studied
courses individually.

As discussed in section III, we have surveyed the most
recent studies on student performance to identify the factors
that influence student achievement and success of program
learning outcomes. Through the factors gathered, we were
able to build a sensible knowledge base, while considering
a forward-chaining method (i.e., data-driven reasoning) in
the inference engine. After determining the fuzzy sets of
the distinct relevant factors (or attributes) that would have
a direct impact on student’s final grades in each course and
then asking two education experts to estimate the output
grade, we have constructed approximately 106 fuzzy rules.
Regardless that the experts agree with their rules only, com-
bining all of their rules made them imprecise. Consequently,
we have used SkFuzzy2 to determine better estimations of
the fuzzy relationship between input and output variables
of these rules. The generated base set of these computable
rules is represented in Figure 2 as a cube matrix.3 It takes
three inputs, namely student Grade Point Average (GPA),
selected set of courses, and GPA change within the last two
semesters, to infer the type of grade for gi as a defuzzified
result.

For instance, if a student s has a high GPA and that
GPA has slightly improved, and the selected range of his/her
courses is determined to include all the completed courses,
the predictor m2 in this case will return (TG), i.e., the highest
overall grade obtained by s. Such rules can be defined as
follows:
• R1 : if course-difficulty-level is medium ∈ [0.4, 0.7]
and GPA ∈ (4.49, 5]
then the selected range of courses is All

• R2 : if the selected range of courses = All
and GPA change = SI
and GPA ∈ (4.49, 5]
then the type of grade is TG

2SciKit (skfuzzy 0.2) is a fuzzy logic toolbox written in Python
https://pythonhosted.org/scikit-fuzzy/index.html

3This cube representation is known as a fuzzy associative memory
(FAM) [63]
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FIGURE 2. Self-explanatory figure representing sliced cube matrix for our fuzzy rules.

3) LASSO REGRESSION MODEL
In m3, we consider Lasso4 regression model, an optimised
type of linear regression [64]. Apart from the fact that our
dataset X is entirely normalized, it describes continuous fea-
tures only and does not contain any missing values. However,
the probability of having useless features or data outliers
subsists. Therefore, the use of Lasso model can enhance the
overall accuracy ofm3 in twoways; (1) it simplifies themodel
by performing a feature selection latently, which neglects
the useless features that have no significant influence; (2) it
estimates sparse coefficients whilst adding a penalty as a
regularizer, which prevents the model from being overfitted.
More precisely, the goal of Lasso is to minimize [61]:

argmin
w
{
1
2k
||Xw− g||22 + λ||w||1} (6)

where w is the coefficient vector, ||.||2 is `2-norm, and λ is a
constant that is normally set to 0.1. Once the best coefficient
vector w is found, we can calculate the prediction for a given
input Xi using a simple linear regression model described as:

m3(xi) = w0 +

j∑
n=1

wm(xi,n) (7)

where w0 is the intercept.

B. MULTI-LABEL CLASSIFICATION FOR PREDICTING KEY
FACTORS
Once the prediction of student performance (i.e., determined
in G) is completed by the hybrid regression model, then
the model examines the reasons why such performances
took place. To a reasonable extent, this examination would

4LASSO stands for Least Absolute Shrinkage and Selection Operator

reveal the key strengths and weaknesses behind the attain-
ment of student learning outcomes by predicting values for
each factor in GV k×o, see (C) of Figure 1. Unlike the usual
single-label classification problem, where the goal is to create
a predictor that classifies each input instance to a single class
output (i.e., defined in a label containing a set of disjoint
classes) at a time, our problem is probably more compli-
cated as each input instance has to be classified into more
than one class (i.e., factor) concurrently. More explicitly,
our multi-label classification problem can be formulated as
follows:

fit...
X→gv

F(
...
X ) = (f1(

...
X ), f2(

...
X ), · · · , fo(

...
X )) (8)

where o > 1 is the number of factors in GV . Here, at this
stage, we treat G as an input feature in addition to X ,
expressed as

...
X , i.e.,

...
X ∈ X ∪ G. While the objective is to

approximate the most fitted values for gvi that map precisely
f :

...
xi → gvi.
There has been an expanded body of research on using

supervised learning techniques to address multi-label prob-
lems. Much of these works are Binary-Relevance based [65]
on which the labelled classes are tackled independently.
Towards a more dependable generalization, however, one
should rely on Label-Powerset (defined in [50]) and take
the correlation between labeled classes into consideration.
In our research, it is of great importance to recognize
the relationship between gvi, which principally can be
reached by clustering related sets of labels. To this end,
we apply a Self-Organizing Map (SOM) [66], an effective
Label-Powerset based method, through the use of neural net-
works in an unsupervised learning manner. SOM, in general,
is a neighborhood-preserving approach based on competitive
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learning [66]. It attempts to maintain the topological asso-
ciations of a high-dimensional input space by mapping it
to a low-dimensional space (the so-called Kohonen layer).
We refer to the second part of our model as Multi-Label Self
Organizing Map model (MLSOM).

Given a two-dimensional Kohonen network, consisting of
some neurons, where each neuron n is associated with a
weight vector wn and a prototype vector pvn (i.e., used for
the output prediction). The dimensions of these two vectors
(i.e., wn and pvn) must be identical to the input xi and the out-
put gvi vectors, respectively. The underlying training process
of SOM can be concisely described as follows:

1) initialise the weight wn for all neurons randomly;
2) find a neuron nwin that precisely fits the given input

pattern xi, so-called winner neuron;
3) determine all the neighborhood neurons around the

nwin, denoted as nexcited ;
4) update the weight of all wn associated with nexcited ; and
5) iterate the steps 2-4 multiple (epoch) times with differ-

ent inputs.
The prediction process (by giving.e.g. testing instances)
begins by also (1) determining the best mapping to the
nwin as well as the surrounded nexcited , and then (2) aver-
aging the labels associated with the training input instances
(i.e., mapped to nwin and nexcited after the training) onto pvn.
The closely related works, in terms of using SOM for

multi-label prediction, are [50], [51]. We are mostly in line
with [51] in (1) determining the nwin for a test input instance

...
xi

by minimising the Euclidean distance, see (9) as well as mea-
suring the lateral distance between nwin and all its neighboring
neurons nexcited using the Gaussian function, see (10). Never-
theless, we differ with them in that our prototype vector pvn

is non-binary, and more importantly, we assume a weighted
average method when calculating the values for pvn. In other
words, we are not treating all the associated training instances
with both nwin and nexcited evenly, but rather some training
instances are more important than the others.

Let us be more explicit about training our neural network.
Given an input

...
xi at a certain epoch iteration, we compute

its distance to all neuron weights wn, such that the minimum
distance determines the nwin, expressed by the Euclidean
function as follows:

dn(
...
x ij,wn) = argmin

d
||
...
x ij − wn|| =

√√√√ j+1∑
t=1

(
...
x it − wnt )

2

(9)

where d(., .) returns the index of nwin. Then, its lateral dis-
tance with the neighboring neurons nexcited are determined by
the Gaussian function as follows:

hnwin,nexcited = exp

[
−

d2nwin,nexcited

2σ 2

]
(10)

where the σ parameter defines the range of neighbourhood
excited neurons. Next, each participated excited neuron in the

learning process will get updated as:

1wnewnexcited = woldnexcited + ηhnwin,nexcited
[...
x i − wn

]
(11)

where the η parameter defines the learning rate. The basic
algorithms and fundamental steps of training an SOM with
making a prediction are discussed in [50].

Saini et al. [51] has demonstrated the influence of includ-
ing the mapped training instances with both nwin and nexcited

when averaging their classes’ values onto pvn. We apply their
effective procedure and extend it by introducing a weighted
mean formula for a more accurate prediction. Let gvtraining

be the mapped training instances with nwin and nexcited that
are determined by an input test instance x testi , such that
gvtraining ∈ gv. Here, as each output gvtrainingi is determined
by a neuron (i.e., either nwin or nexcited ), we assume its level of
importance by the lateral distance (i.e., defined in (10)), such
that the smaller the distance determined, the higher the weight
is assigned. The overall weighted average after completing
the training process besides computing the prediction values
for pvn are explicitly introduced in Algorithm 2.

Algorithm 2:Weighted average for computing pvnt
input : X train and GV train: input instances and

multi-label part from the training dataset
x t : an input test instance

output: pvnt : the prediction vector for the input x t

nwint ← findWinner(x t)
nexcitedt ← getNeighbor(nwint )
factors[]← ∅
nDistances[]← ∅
for i← 1 to |X train| do

if (x traini ← isMapped(nwint ||n
excited
t )) then

factors.append(gvtraini )
nDistances.append(hnwint ,nexcitedt

)

see (10) for computing the distance between nwint
and nexcitedt

̂nDistances = normalise(nDistances)
weightedFactor = ̂nDistances× factors
pvnt = getColumnWiseSum(weightedFactor)

V. EXPERIMENTAL RESULTS AND ANALYSIS
To investigate the applicability of our approach, we con-
duct several experiments intending to address the following
questions:
• What is the computational efficiency of the proposed
hybrid regression method in its ability to predict student
performance at different academic levels of study?

• How does the hybrid regression parameter θn affects the
accuracy of predicting student performance?

• Does our proposed optimization for multi-label predic-
tion helps to outperform the state of-the-art implicit
self-organizing map methods?
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As proof of concept, we implemented the hybrid regres-
sion and multi-label prediction (MLSOM) models presented
in IV using Python. Codes and materials for replicating our
experiments are available from the accompanying website for
this paper.5

A. EXPERIMENTAL SETUP
1) SOURCE OF DATASETS
We experimented with seven publicly available datasets. The
numerical descriptions of these datasets are presented in
Table 3. The first two (UD6 and OULAD7) are academic
datasets, which are used for assessing the whole approach,
i.e., includes both the hybrid regression andMLSOMmodels.

TABLE 3. Numerical descriptions of the evaluation datasets.

TABLE 4. The number of students and courses used in training and
validating our models based on UD and OULAD datasets.

Specifically, the UD provides the main features of
3820 students and 56 courses with their actual final grades,
studied in an academic program that has eight levels of study,
where each level consists of 7 courses (i.e., 7 × 8 = 56).
The average number of courses taken by each student is 6 per
semester, see the numerical details of students and courses,
broken down into the eight academic levels, in Table 4.
Here, student levels are ordered chronologically by annually

5https://github.com/IU-Distinction-Project/
6University Dataset (UD):

https://www.kaggle.com/ananta/student-performance-dataset
7Open University Learning Analytics Dataset (OULAD):

https://www.kaggle.com/rocki37/open-university-learning-analytics-dataset

academic semesters, and all data defined as current semester,
including courses completed by graduated students, are used
for training our models. While the scheduled data for the next
semester that is specified as upcoming semester are used for
validation. Besides classifying all the 56 courses into eight
levels of study, they are also categorized into three types
(i.e., mandatory at the faculty/department levels and elective).
We preprocessed and combinedUDwith OULAD to generate
random multi-label factors as each gvi,j = [0, 5], based on
different types of assessments for each student and courses.

We implemented a data-processing tool to clean, normalise
and simulates the calculation of student’s GPA after complet-
ing each semester. Consider (A) of Figure 1, the split of the
generated dataset into training and testing parts is carried out
according to the chronological order of student levels. This
means all input instances belonging to students at the final
level (8) will always be part of the training set. With UD and
OULAD datasets, our focus is on predicting student’s grades
and factors for only the next upcoming semester.

The rest of the datasets (Cal500, Birds, Emotions, Flags,
Scene, and Yeast) utilized in our experiments are associated
with non-academic domains, including music, audio, images,
biology, but used as a benchmark for evaluating the perfor-
mance of our MLSOM. As mentioned, the required academic
datasets for this approach are often hard to find in publicly
available sources. Besides, all the related studies that we are
aware of, conducted at the university level, did not offer their
datasets for experimental replication, probably due to data
privacy restrictions.

The statistical characteristics of the used non-academic
datasets can be found in [50], [67]. The types of these
datasets are valid according to our declared dataset, described
in Figure 1 (A). In particular, these benchmarked datasets
contain numerical multi-label outputs that are abstractly rep-
resentative of different rates of influential factors. Conse-
quently, they can be utilized for performance evaluation in
general terms. Moreover, these datasets seem appropriate
as they offer various important characteristics, such as data
density, cardinality, and distinct [50].

2) BASELINES AND PARAMETER SETTINGS
Although our hybrid regression model depends on both
LASSO regression [64] and non-negativematrix factorization
technique (NFM) [60], [61], they can also be utilized as a
baseline for evaluating the overall accuracy. For MLSOM,
we consider the main relevant competitor approaches:
SOM-MLL [50] and ML-SOM [51] as a baseline for
evaluation.

For making the experimental results comparable on all
datasets, configured as approximately 81% training and 19%
validation settings, we set the random number generator in
Python using, e.g., NumPy.random.seed(0). This is to ensure
generating the most similar random weights for each run.
Furthermore, the reported figures and results are averaged
over ten runs as each run begins with a random seed value.
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TABLE 5. General settings of the main parameters. For θ3, we have
estimated its sensitivity with the performance of our hybrid model and
found its best setting value is ranged between (0.35,0.45). Since no
formal rule for setting the k-fold parameter, we have trained the LASSO
model on 5-fold, which is a reasonable choice with small to medium
dataset (i.e., it allows the size of each splitting group of data to be
statistically representative for minimizing the potential bias of the LASSO
model). Further, no formal rule for configuring the SOM topology, but
within the context of our approach, 36 neurons is a reasonable size for
clustering all our student-course instances. To start with a good point on
training our MLSOM, we set η = 0.1 (i.e., the traditional default value)
and configured σ to begin with covering 75% of all neighbor neurons.

The applied configurations and settings of the main parame-
ters are presented in Table 5.

3) EVALUATION METRIC
We used the root mean squared error (RMSE) to precisely
assess the closeness of model predictions (i.e., student per-
formances and factor ratings) as compared to the actual output
values. In this paper, the well-known RMSE is a reasonable
choice since the hybrid regression model is itself a competitor
to m1, m3, and m2, besides that distinguishing the slight
variations between the predicted values by these models are
statistically significant. The RMSE is defined as

RMSE =

√√√√(
1
|V |

)
|V |∑
i=1

(gi − mni )
2 (12)

where V denotes the validation set. The same metric is
also used for measuring the accuracy of the predicted
values in gvi.

B. EFFICIENCY OF THE PROPOSED HYBRID REGRESSION
METHOD (HRM)
The performance (RMSE) comparison of m1, m2, m3, and
HRM are illustrated in Figure 3 and Figure 4. The overall
prediction accuracy of these four predictors looks resem-
bling based on UD and OULAD datasets. However, our
proposed HRM method clearly outperforms the competitors
over almost all the academic levels, as depicted in Figure 3.
Here, we can observe that m2 has begun with a poor perfor-
mance (Note: its predictions starts from the second academic
level), but it has maintained to improve as the levels get
progressed until around level seven. This is relatively rea-
sonable because m2 depends principally on examining each
student’s performance at their previous levels individually.
Meanwhile, m1 has fluctuated over all levels and became the
worst in the last four levels. Interestingly, the performance
of HRM demonstrates its stability in predicting values for G

FIGURE 3. RMSE comparison of m1, m2, m3, and HRM w.r.t the eight
academic levels on UD and OULAD datasets (A lower RMSE value
indicates better performance.)

FIGURE 4. RMSE comparison of m1, m2, m3, and HRM w.r.t student’s
performance on UD and OULAD datasets.

effectively despite the fluctuated changes in the performance
of m1 and m2. This stability is due to the proposed idea,
in (2), for adjusting the values of the weights (i.e., θ1 and θ2)
dynamically according to the student and course features.

Figure 4 illustrates the RMSE differences between the
competitors, including ours, with respect to the students per-
formance in each course (i.e., the testing data are grouped by
the actual G values into five grading scales). It demonstrates
the effectiveness of each predictor in accordance with the
standard grading scales (i.e., Fail, Pass, Good, Very good, and
Excellent). While also the performance disparity between the
competitors appears relatively insignificant, it concludes that
none of these predictors can output the best values forG in all
cases. Despite this, the results indicate the suitability of our
proposed HRM as it would, at least, give the second to the
best performance (if not the first) in most cases.
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FIGURE 5. Impact of parameter θ3 on the performance of hybrid
regression model (HRM).

To give insight into how our HRM behaves in combining
m1, m2, and m3, we have conducted a sensitivity analysis on
the parameter η3. We measured the performance of HRM
after setting η3 with different weights between [0, 1]. Here,
If η3 = 0, the HRM will combine the predicted G from only
m1 and m2. In contrast, If η3 = 1, it means that HRM will
neglect m1 and m2, and therefore its prediction will be iden-
tical to the prediction given by Lasso regression model (m3).
The result is reported in Figure 5, which shows global con-
vexity behaviors around the interval of (0.35, 0.34), depicting
the range of the best values for the parameter η3.

C. EFFECT OF OPTIMIZING OUR MULTI-LABEL
PREDICTION USING A WEIGHTED AVERAGE
Here, we have performed two experiments to explore the
productivemodel capacity of ourMLSOMbesides evaluating
its performance (RMSE) in comparison with SOM-MLL [50]
andML-SOM [51]. As mentioned earlier, the essential differ-
ence between these two baselines is that SOM-MLL focuses
on producing a prototype vector pvn for each input instance
...
xi by averaging label vectors of training instances that are
mapped with the winning neuron (i.e., nwin) only. Whereas,
ML-SOM expands the scope of label vectors by taking
also the mapped training instances with neighboring neurons
(i.e., nexcited ) into consideration. In MLSOM, we consider
the latter method but without treating all the mapped training
instances evenly as we assume a weighted mean method for
computing the prototype vector pvn.
Since one of the prime parameters in determining the

efficiency of ML-SOM and MLSOM is associated with the
neighbourhood radius around nwin, we have conducted a sen-
sitivity analysis on the parameter σ using UD and OULAD
datasets. The result is reported in Figure 6, which shows the
advantage of MLSOM over both SOM-MLL and ML-SOM.
Here, we shed light on that the best mapping units (i.e., nwin)
by the three competitors are identical for all input tests, and
that σ has no impact on SOM-MLL as it neglects the neigh-
boring neurons. Meanwhile, the performance of ML-SOM
and MLSOM are very sensitive to σ .

With expanding the neighborhood (i.e., leads to computing
pvn from more training instances), ML-SOM appears to give
an excellent performance up to approximately σ = 3/10,
and becomes significantly worse after expanding this lim-
ited radius. In contrast, the highly effective performance of
MLSOM starts to drop at a larger radius (i.e., at approxi-
mately σ = 6/10), and more importantly, it did not pro-
duce worse performance than SOM-MLL in all radius. This
observation can conclude that the inclusion of neighboring
neuron informationwould either (1) improve the performance
of MLSOM or (2) at least have insignificant negative import
on the performance as compared to SOM-MLL. The reason
behind this is due to the idea of using the weighted mean as
the larger the neighboring neuron deviates from the winning
neuron, the less important it becomes when computing pvn.

FIGURE 6. RMSE comparison of SOM-MLL [50], ML-SOM [51], and our
MLSOM w.r.t different neighbourhood radius (σ ) on UD and OULAD
datasets.

TABLE 6. RMSE comparison of SOM-MLL [50], ML-SOM [51], and our
MLSOM on the non-academic datasets. The validation was performed
based on σ = 1.5 .

In the second experiment, besides the performance com-
parison, we were interested in exploring under which datasets
characteristic the competitors can produce satisfactory per-
formance. Table 6 presents the RMSE of SOM-MLL,
ML-SOM and MLSOM on the six datasets, described
in Table 3 and based on the configuration shown in Table 5.
Regardless of the apparently insignificant differences in the
overall performance of the three classifiers, the result demon-
strates that none of these classifiers, including ours, does
output the best values for the factors GV in all cases.
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FIGURE 7. Comparison of SOM-MLL [50], ML-SOM [51], and our MLSOM
w.r.t different characteristics of the datasets.

We try out to understand the reason for such optioned
performance discrepancies through reviewing the character-
istics of the datasets. Here, we found that the label density/
cardinality, as well as the number of distinct labels, play
a significant role in influencing the overall performance
of these classifiers. We arrive at a conclusion, described
in Figure 7, as SOM-MLL is apparently suitable with a
low level of label cardinality. While, with a high level of
label distinct, both ML-SOM and MLSOM would produce
better performance than SOM-MLL. It also appears that our
MLSOMwould be a better choice with a low level of density.

TABLE 7. Statistical T-test results based on the RMSE measured
in Figure 3 and Figure 6.

VI. DISCUSSION
A. STATISTICAL HYPOTHESIS TEST CONSIDERATION
In order to test whether the measured performances (RMSE)
of the proposed HRM and MLSOM are significant or subject
to random error, we have conducted statistical hypothesis
t-tests, based on two independent means. The test (t-value)
and the probability (p-value) are reported in Table 7, which
show that our results are statistically significant. These values
were calculated using an online tool,8 a significance level
of 5%, and a one-tailed hypothesis (i.e., there is a rational
expectation that the proposed HRM andMLSOMwould give
a poor performance, compared to their competitors).

Assuming the null hypothesis H0 that "there is no
difference between the performance (RMSE) achieved by

8https://www.socscistatistics.com/tests/studentttest/default2.aspx

HRM/MLSOM and their baseline competitors" is true, which
will be rejected if p < .05. Here, due to random error,
H0 indicates that there are .000521, .008732, .080467, and
.012115 probabilities of achieving the same performance by
HRM and MLSOM as compared with m1,m3, SOM-MLL,
and ML-SOM, in respectively. The null hypothesis is thus
rejected, and indeed our proposedHRMandMLSOMmodels
can provide extremely competitive performance as compared
with the other approaches.

B. PRACTICAL IMPLICATIONS
Our research shows that it is possible to go beyond the
simple task of predicting student performance that does not
reveal the reasons behind particular student achievements.
The majority of existing research studies [13] attempted to
create predictive models of student performance only. While
this might help program leaders understand the overall suc-
cess of their educational programs and identify students who
are at risk of failing or dropping out, it certainly does not
highlight the possible causes and issues that inhibit effi-
cient student learning and attainment of student learning
outcomes.

Our detailed methodology combines various predictive
techniques, e.g. regression based models and unsupervised
learning models, to improve the accuracy of student perfor-
mance predictions. More importantly, the proposed hybrid
model takes an extra step of explaining the given outcomes,
i.e., explanatory modelling in terms of factor predictions,
based on the available inputs. The implementation and test-
ing datasets are made available for other researchers to
explore and investigate. Our flexible model has the capacity
to account for several types of factors, as input, at the same
time, ranging from student demographics, psychomotor char-
acteristics, socio-economic status, course grades, and grade
point averages, · · · , etc. Other factors may be easily included
in our proposed model.

Today’s higher education institutions store a wealth of
student data with regard to student historical (e.g., pre-
university) and current performance as well as their circum-
stances, yet this is not exploited correctly. Our model is
one motif for the higher education sector to move towards
learning analytics to enhance the quality of their offerings and
prepare graduates who meet the job market demands.

C. THREATS TO VALIDITY AND RESEARCH LIMITATIONS
Concerning the feasibility of utilizing the proposed
hybrid/multi-label classifier models and the soundness of
the conducted experiments, we discuss the main threats that
might potentially affect the internal and external validity of
our approach. In internal validity (i.e., pertains to the issues
that may affect the achieved results), the threats might include
the biases in setting up the experiments. Whereas, a potential
threat to external validity (i.e., focusing on investigating the
range of generality) is represented by carrying out experi-
ments on non-real datasets.

VOLUME 8, 2020 203841



A. Alshanqiti, A. Namoun: Predicting Student Performance and Its Influential Factors

For unintended biases issue that might be introduced when
we configured our experiments, we have reduced this threat
by reporting on the results that are averaged over ten similar
configured runs. Since each run may result in different mea-
surements due to the randomization when initializing weight
coefficients, we also address this issue by setting the Random
Number Generator in Python (usingNumPy.random.seed(0))
to ensure generating the most similar random weights for
each run (particularly when we measured the sensitivity of
θ1 and σ ).
Regarding the generality of our approach, a significant

challenge to undertake predictive modelling in the domain
of teaching and learning is finding appropriate and compre-
hensive datasets that cover student achievements through-
out many years and for different degrees. We used the
best open datasets that we could find from public datasets
(i.e., Kaggle), which introduces a sampling bias. Obviously,
such limited datasets do not include all possible factors
that may impact student achievements. For example, student
engagement is unavailable and not accounted for despite its
undeniable importance. The datasets represent the perfor-
mance of specific majors, which may differ from the perfor-
mance of students pursuing other degrees, e.g., Psychology.
Moreover, we have validated our model on non-academic
datasets, which may portray patterns that differ from real
educational datasets.

Furthermore, the predicted student success is measured
using GPA, which is calculated using final course grades.
Nonetheless, academic success has been shown to contain
several measurements [52]. In other words, student academic
success is a multi-concept construct that can be viewed from
different angles. It is unclear whether themodel will be able to
predict, with a similar accuracy, other indicators of academic
success, for example standardised test scores and percentage
of student outcome attainment, especially whenmultiple indi-
cators are used together to infer student success. Indeed, this
is a research task to explore in the future. Moreover, we have
not carried out additional testing with different datasets to
confirm the reliability of models.

Therefore, we could not claim our approach’s generality,
but it may be necessary to tune the hybrid/multi-label classier
models to fit other educational settings and datasets. Future
work will explore the mentioned limitations in more inclusive
detail using real academic datasets.

VII. CONCLUSION AND FUTURE WORKS
We proposed and validated an intelligent hybrid approach
for predicting student academic grades while determining
the dominant factors that led to the predicted performance.
This approach will help program leaders in identifying the
main strengths and weaknesses behind the academic achieve-
ments of their students. Such understanding is essential for
implementing the necessary interventions to improve student
performance. We have demonstrated that integrating differ-
ent predictive modeling techniques leads to high accuracy
predictions compared to using a single approach. We have

also detailed our methodology to achieve this integration so
that other researchers can replicate and test our model with
their educational datasets. The proposed approach is flexible
and extendable to include any types of factors judged to
be relevant to the program at hand. Below we suggest two
research directions that we believe are worth pursuing in the
future.
• Hybrid Approach Optimization: our empirical inves-
tigation on seven different datasets demonstrated that
the proposed hybrid approach has the capacity to pro-
duce competitive performance when compared with
related methods. In particular, we showed the stability
of the hybrid regression model (HRM) in predicting
student performance and the low sensitivity of MLSOM
to the neighborhood radius when predicting influen-
tial multi-label factors. However, conducting a series
of follow-up experiments based on comprehensive real
datasets and user studies are still required.We encourage
future research to define the best thresholds for distin-
guishing the high/low label density and cardinality in
the datasets under study to apply the best multi-label
classifier according to its characteristics.

• Prediction of the Attainment of Program Learning Out-
comes: our review of past works showed an overarching
necessity to predict student attainment of learning out-
comes since they may represent a better indicator of pro-
gram success, as well as the acquired student knowledge
and skills than mere course grades or GPAs. Assessment
of educational programs measures student performance
and collects evidence about the student learning expe-
riences, which are later used, as feedback, to improve
the quality of programs purposefully. However, program
assessment is no simple endeavor [68]. The majority
of program assessment systems are neither computer-
ized nor can predict student attainment of student learn-
ing outcomes. Program assessment tools rarely embed
machine learning or mining techniques in the function-
alities and reports they produce [69], which restrains
program leaders from discovering the factors that lead
to high or low levels of student performance [68]. In our
judgment, anticipating program weaknesses would help
to recommend improvement actions promptly.
Program assessment goes beyond student scores to give
an overall judgment of how well the graduates attain
the knowledge, skills, and competencies needed by the
job market. However, it does not pinpoint the enabling
factors or inhibitors that could impact student learn-
ing [68]. The literature stipulates that a range of factors
influence student academic performance and satisfac-
tion. These factors range from instrumental characteris-
tics, such as time management [22], high school grade,
and class attendance [24], to psychological character-
istics [23], such as test anxiety, motivation, and self-
esteem. However, the impact of such factors on student
outcomes varies from one program to another, even
within the same university. Developing an intelligent

203842 VOLUME 8, 2020



A. Alshanqiti, A. Namoun: Predicting Student Performance and Its Influential Factors

learning model that predicts the attainment of program
outcomes, given the variability of programs and student
circumstances, is a promising and useful future research
agenda for higher education.
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