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ABSTRACT The increasing penetration of renewable energy resources in the distribution network has posed
great uncertainties and challenges for the system security operation. To model various uncertain factors
like the wholesale market price and renewable energy generation in the active distribution network (ADN),
a similarity measurement method considering the amplitude, volatility and variation trend is proposed.
The Latin hypercube sampling method and Graph Pyramid clustering algorithm are adopted to obtain the
comprehensive typical scenario set. Furthermore, this study proposes a scenario-based stochastic day-ahead
optimal economic dispatch approach based on typical scenario set. The energy trading between the distribu-
tion system and the wholesale energy market, various distributed generators, network topology and power
flow model are jointly formulated in the proposed operation model. The effectiveness and scalability of the
proposed approach are verified using the IEEE 33-bus system. Numerical simulation results under different
implementation scenarios indicate that the proposed approach offers a high computational efficiency and
promotes the security and economy of the distribution system operation, which has a promising industrial
application value.

INDEX TERMS Active distribution network, renewable energy resources, stochastic optimization,
clustering algorithm, typical scenario set.

I. INTRODUCTION
With the increasing renewable energy generation in the dis-
tribution network, the structure of distribution network tends
to be complex, and its control and operation will face sig-
nificant challenges [1], [2]. Unlike the transmission network,
the line resistance of the active distribution network cannot be
ignored. To take the voltage and reactive power into account,
the calculation of optimal power flow must be based on the
AC power flow constraints [3]. Mathematically, the calcula-
tion of optimal power flow of active distribution network is a
mixed integer non-convex programming problem [4], [5].

The research on the optimal power flow of active distri-
bution network with multiple uncontrollable sources is very
limited. However, if the output of the distributed generation
is fixed, the optimal power flow of the active distribution
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networkwithmultiple uncontrollable sources is an intractable
problems. There are three kinds of common methods to solve
this problem. The first is the continuous regularization algo-
rithm, which first relaxes the discrete variables to contin-
uous variables, and then regularizes the variables in order.
In [6], a optimization method based on interior point method
and Gaussian penalty function is proposed to cope with
large-scale reactive power flow optimization. Reference [7]
proposes a two-stage dynamic reactive power optimization
algorithm based on heuristic search and variable correction.
The second category of solution adopts nonlinear primal
dual algorithm. Reference [8] proposes a reactive power
optimization algorithm with penalty function embedded in
nonlinear primal dual interior point method. Reference [8]
and [9] construct penalty functions for discrete variables and
realize the successive integration of discrete variables in the
optimization process. A new algorithm using the primal dual
interior point method with the predictor-corrector for solving
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nonlinear optimal power flow problems is also presented
in [10]. To guarantee the voltage stability, [11] integrates
branch-bound method and primal dual interior point method
to dynamic optimal power flow problem. The third cate-
gory of method are heuristic algorithms, including genetic
algorithm [12],[13], particle swarm optimization [14],[15],
etc. Moreover, the reinforcement learning and deep learning
approaches are promising techniques for model free or non-
convex stochastic optimization problems [16], [17]. Besides,
the machine learning approach is a promising technique to
improve the forecasting accuracy and reduce the system
uncertainties [18].

In recent years, the method of solving optimal power flow
based on convex relaxation has been widely applied [19].
Especially, a novel method based on second-order cone relax-
ation is provided to optimize power flow. This method is
based on the branch power flow model. By relaxing the
quadratic equality constraint to the second-order cone con-
straint, the original non-convex and nonlinear problem can be
transformed into an efficient second-order cone optimization
problem. Considering the mixed integer second-order cone
programming is also mature, it provides a feasible way to
solve the optimal power flow problem of active distribution
network with discrete variables [20]. In the power market,
there are many random factors in the distribution system
(including the electricity price, load demand, photovoltaic,
wind power and other kinds of distributed resources), which
bring challenges to the power system scheduling and con-
trol [21]. At present, the spinning reserve of conventional
generators is used to deal with the uncertainty of renewable
energy in actual operation of the power grid [22]. Robust
optimization methods [23],[24] and stochastic optimization
methods [25], [26] are commonly used methods to cope with
the uncertainty.

Robust optimization uses uncertain parameter interval to
describe the uncertainty. The optimal results can be obtained
under the condition that all uncertain variables meet all con-
straints in their feasible ranges. In [27], robust real-time
dispatch is formulated as an adjustable robust optimization
model incorporating an adjustable controlling strategy com-
patible with AGC systems. The proposedmodel can be equiv-
alently transformed to a nonlinear programming problem
with linear constraints via duality. [28] proposes a robust
stochastic optimization model to handle the uncertainty of
wind power in dynamic economic dispatch. [29] describes a
robust optimization model for wind power accommodation.
The model calculates allowable interval solutions for wind
power generation and provides optimal economic solutions
for conventional power generation to mitigate the uncertainty
inherent to wind power. The disadvantage of robust optimiza-
tion is that it focuses on describing the extreme situation
in the optimization process, and the economic efficiency of
optimization results is poor.

The stochastic optimization approach are mainly divided
into chance constraint based method [30] and scenario set
method [31]–[35]. The stochastic optimization approach

based on scenario set is not limited by the model types and
is widely used in formulating the uncertainties in the power
systems, which includes the following two steps [31], [32]:
Firstly, the typical scenario set is obtained by scenario sam-
pling and reduction, and then the model is optimized based
on multiple typical scenarios to obtain the expected optimal
value. This method can fully consider the uncertainty of
many factors at the same time, and the optimization results
are more close to the actual situation. Yi et al. [33] first
utilize the typical scenario set into the virtual power plant
management considering a large number of deferrable loads.
Reference [34] proposes an innovative probabilistic clus-
tering concept for aggregate modeling of wind farms. The
proposed technique determines the number of equivalent tur-
bines that can be used to represent large wind farms during
the year in system studies. The self-organizingmap clustering
algorithm is used in [35] to identify the fluctuation categories
of wind power.

In view of this, based on the comprehensive typical sce-
nario set, this study proposes a stochastic economic dispatch-
ing strategy for the active distribution network. The major
contributions of this study are summarized into the following
threefold:

(1). Based on the Latin hypercube sampling approach [36]
and Graph Pyramid clustering method [38], a novel typical
scenario set consisting of various uncertain factors is for-
mulated in this study. It is more suitable for application to
the actual operation with high requirement for computation
efficiency.

(2). Compared with the traditional scenario reduction
methods that mainly focus on the amplitude in [31]-[33], the
proposed scenario reduction methods can comprehensively
measure the differences among different scenarios in terms
of amplitude, volatility and variation trend, which makes the
obtained typical scenario set more reasonable.

(3). In addition to modeling the controllable units and
system security operation constraints, the interaction between
the distribution network and superior wholesale energy mar-
ket is formulated in the proposed stochastic ADN day-ahead
economic dispatching strategy, which can enable the distribu-
tion system operators (DSO) to perform as a prosumer when
participating in the wholesale market operation.

The rest of this study is organized as follows. Section II
presents the generation and reduction method of the compre-
hensive typical scenario set. Section III proposes an optimal
energy management approach based on the typical scenario
set. Section IV presents case studies on IEEE 33-bus distri-
bution system. Section V concludes this study.

II. GENERATION AND REDUCTION METHOD OF TYPICAL
SCENARIO SET
A. SCENARIO GENERATION BASED ON LATIN
HYPERCUBE SAMPLING
Under power market background, there are many uncertain
factors in the distribution network, such as the wind power
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generation forecasting, photovoltaic generation forecasting,
wholesale market price and so on. According to the prob-
ability density distribution of all kinds of random factors,
the Latin hypercube sampling method is adopted here to
sample all kinds of factors and get a large number of random
scenarios. Latin hypercube sampling has the characteristics
of high sampling efficiency. It can fully maintain the original
probability distribution of various random factors [36]. The
detailed implementation steps are as follows:

Step 1: According to the probability distribution of each
random factor, it is divided into NL intervals of equal
probability;

Step 2: For probability interval [ i−1NL ,
i
NL ], i = 1,2,. . . , NL,

select a number si from this interval randomly. The selection
method is as follows:

si =
num
NL
+
i− 1
NL

(1)

where num is a random number in [0,1].
Step3: Based on the inverse transformation of probability

density distribution, the corresponding sample parameters
can be obtained

xi = F−1 (si) (2)

where xi is the sample value, F−1 (·) is the inverse function
of probability distribution.

According to the above steps, all kinds of random factors
are sampled separately to obtain a large number of random
scenarios including the wind power, photovoltaic, wholesale
market price.

B. COMPREHENSIVE SIMILARITY MEASUREMENT
In this subsection, the similarities of the uncertain factors in
different scenarios are measured in terms of multiple scales
including the amplitude, volatility and variation trend of
random factors.

Firstly, all the random factors should be normalized.

x̃Ri (t) =
xRi (t)− min

R∈RN,i∈SN

[
xRi (t)

]
max

R∈RN,i∈SN

[
xRi (t)

]
− min

R∈RN,i∈SN

[
xRi (t)

] (3)

where xRi (t) is the value of random factor R at time t in
scenario i. x̃Ri (t) is the normalized value of random factor R
at time t in scenario i. RN is the set of random factors. SN is
the set of scenarios.

1) MEASUREMENT OF AMPLITUDE DIFFERENCE
Euclidean distance is adopted to describe the amplitude dif-
ference of random factor R in different scenarios. The greater
the Euclidean distance represents smaller similarity.

AR (i, j) =

√√√√ T∑
t=1

[
x̃Ri (t)− x̃

R
j (t)

]2
(4)

where AR (i, j) is the amplitude difference of random factor R
between scenario i and scenario j. T is the number of time
points generated by sampling.

2) MEASUREMENT OF SIMILARITY OF THE VOLATILITY
The similarity of the volatility of random factors is measured
using relative distance in different scenarios. The relative
distance between x̃Ri (t) and x̃

R
j (t) is as follows:

FR (i, j) =
1
T

T∑
t=1

∣∣∣x̃Ri (t)− x̃Rj (t)∣∣∣ (5)

where FR (i, j) is the difference matrix of fluctuation degree
between scenario i and scenario j.

3) MEASUREMENT OF VARIATION TREND
Correlation coefficient is used to represent the difference of
variation trend of random factor R in different scenarios.

CR (i, j) = 1−

T∑
t=1

[
x̃Ri (t)− x̄

R
i

]
·

[
x̃Rj (t)− x̄

R
j

]
√

T∑
t=1

[
x̃Ri (t)− x̄

R
i

]2
·

√
T∑
t=1

[
x̃Rj (t)− x̄

R
j

]2
(6)

where x̄Ri is the average value of random factorR in scenario i;
CR (i, j) is the difference matrix of of variation trend between
scenario i and scenario j.

According to the similarity measurement described above,
the comprehensive difference matrix P can be calculated by
considering the amplitude, volatility and variation trend of
random factors.

P =
RN∑
R=1

(
α · Ã

R
+ β · F̃

R
+ γ · C̃

R
)

(7)

where Ã
R
, F̃

R
, C̃

R
are normalized matrix of AR,FR,CR,

respectively. α, β,γ are weight coefficient.
Gaussian kernel function is an effective method to describe

the comprehensive difference among different scenarios. The
above multi-scale difference matrix can be transformed into
comprehensive similarity measurement matrix by applying
Gaussian kernel function.

G (i, j) = exp

{
−
[P (i, j)]2

2 · wid2

}
(8)

wherewid is the width parameter of Gaussian kernel function.
G(i, j) is the similarity between scenario i and scenario j.
G is the similarity matrix and its value of elements within
[0,1]. The larger G(i, j) is, the higher the similarity between
scenario i and scenario j. The elements on the diagonal of G
matrix are 1, whichmeans that the two scenarios are identical.
The determination of width parameter wid can refer to [37].

C. SCENARIO REDUCTION BASED ON GRAPH PYRAMID
CLUSTERING ALGORITHM
1) BUILD MINIMUM SPANNING TREE
To achieve multi-resolution based clustering, data points can
be represented as a minimum spanning tree (MST) [38]. The
information of node density and its adjacent nodes can be
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obtained fromMST. Given a dataset D with n data points and
data points can be regarded as n nodes in MST. The weight of
the edge in MST is equal to the Euclidean distance between
the corresponding two data points. The MST is a spanning
tree with the least weight sum of n-1 edges.

2) CALCULATION OF NODE PRIORITY
After MST is constructed by all data points in the dataset,
the next step is to traverse each node and merge some nodes
that are close to each other. It will result in wrong clustering
results if the nodes are traversed in order. As shown in Fig. 1,
the ideal merging scheme is to merge nodes 1 and 2, and
merge nodes 3, 4 and 5. However, if node 3 is found first
during traversal, it is very likely that neighboring nodes 2, 4,
5 will be merged with node 3, while the closer nodes 1, 2 will
not be merged.

FIGURE 1. Schematic diagram of data points.

In order to get the correct clustering results, the nodes
should be traversed based on priority. The nodes with higher
density should have higher priority, so that they can merge
the neighboring nodes. The degree of node in MST is propor-
tional to its density.

When defining the priority of a node, the following
principles should be followed:

(a) The greater the degree of the node, the higher the
priority;

(b) If some nodes have same degree, the shorter the length
of the shortest edge connected to the node, the higher the
priority of the node should be.

According to the above principles, we define the priority
prin of node n as follows:

prin = wei× dnorm (n)+ (1− wei)× emin
norm (n) . (9)

dnorm (n) =
d (n)− 1

Dmax − 1+ ε
. (10)

emin
norm (n) =

Emax − emin (n)
Emax − Emin + ε

(11)

where wei ∈ (0, 1) is the weight factor. dnorm (n) is the
normalization degree of node n. It can be calculated by
the degree d (n) of node n, the maximum degree Dmax in the
MST, and a small constant value ε. eminnorm (n) is the normalized
length of the shortest edge of node n. emin (n) represents the
shortest edge length connecting to node n. Emax/Emin are
the longest edge and the shortest edge of MST respectively.
ε is used to avoid the denominator is equal to zero in
Equation (10) and (11).

3) NODE TRAVERSAL AND MERGING
Traverse all nodes in MST in descending order of priority,
and judge whether the traversed node n has ever been merged.
If node n has participated in the merge, it is no longer allowed
to participate in the merge. Otherwise, all nodes connecting
to node n should be found in MST. Then, select the node
with the shortest edge from node n and merge them together.
Suppose that there are Nnode nodes need to be merged: v1 =
{a11, a12, . . . , a1l}, v2 = {a21, a22, . . . , a2l},. . . , vNnode ={
aNnode1, aNnode2, . . . , aNnodeL

}
. L represents the number of

node attributes. The new node after merging is represented
as v = {ā1, ā2, . . . , āl and its attributes can be calculated as
follows:

an =
Nnode∑
l=1

ml
M
aln (12)

where M is the total mass of Nnode nodes. ml represents the
mass of original node l.

The whole algorithm flow is shown in Fig. 2.

FIGURE 2. Algorithm flow chart of node traversal and merging.

Assume that the initial mass of all nodes in MST is 1.
The mass of the new node is equal to the sum of the mass
of all nodes, which is actually the total number of nodes
participating in the merge. According to (12), the greater the
mass of the nodes participating in the merger is, the greater
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the weight in the attribute value. It means that the new node
is closer to the original node. The traversal is ended when all
Nnode nodes are traversed orNnode is equal to the class number
NT. If the current total number of nodes is greater than the
category number NT, MST will be generated for the current
node, and continue to traverse all new nodes. If the current
total number of nodes is equal to the category number NT,
these NT nodes are the clustering results.

III. OPTIMAL ENERGY MANAGEMENT APPROACH
BASED ON TYPICAL SCENARIO SET
A. OBJECTIVE FUNCTION
The optimal dispatch model of distribution system opera-
tors (DSO) aims tominimize the operation cost of distribution
system. The operation cost of distribution system is equal to
the sum of the energy purchasing cost from the wholesale
market of the transmission level, the operation cost of the
internal controllable resources and the curtailment cost of
renewable energy generation in distribution network. The
output of optimal dispatch model includes the hourly energy
bidding plan provided to the wholesale market, and the dis-
patching plan used to control devices. The objective function
is as follows:

min
x

Ns∑
s=1

{ws ·
T∑
t=1

[πDN,s,t · P̂BPDN,s,t

+

NCG∑
i=1

FCG
i (P̂CGs,i,t )+

NPV∑
i=1

FPV
i (P̂PVs,i,t )

+

NWF∑
i=1

FWF
i (P̂WF

s,i,t )+
NESS∑
k=1

FESSi (P̂ESS,ins,i,t , P̂ESS,outs,i,t )]} (13)

where NS is the number of typical scenarios. ws is the weight
coefficient of each scenario.NCG,Npv,NWF ,NESS are number
of controllable units, photovoltaic systems, wind farm, and
energy storage system, respectively. πDN ,s,t is the unit cost
of purchasing power from wholesale market. P̂BPDN ,s,t is the
amount of electricity purchased from wholesale market at
time t in scenario s. FCGi (P̂CGs,i,t ) and F

ESS
i (P̂ESS,ins,i,t , P̂ESS,outs,i,t )

are cost functions of controllable generating units and energy
storage systems, respectively. FPVi (P̂PVs,i,t ) and FWFi (P̂WFs,i,t )
represents the curtailment cost of photovoltaic systems and
wind farms. P̂CGs,i,t , P̂

PV
s,i,t , P̂

WF
s,i,t , P̂

ESS,out
s,i,t are output of con-

trollable generating unit, photovoltaic system, wind farm,
and energy storage system at time t in scenario s. P̂ESS,ins,i,t is
the charging power of energy storage system i at time t in
scenario s.
The decision variables of the economic problem are sum-

marized as: x = {P̂BPDN,s,t , P̂
CG
s,i,t , P̂

PV
s,i,t , P̂

WF
s,i,t , P̂

PV
s,i,t , P̂

WF
s,i,t ,

P̂ESS,ins,i,t , P̂ESS,outs,i,t }.
The operation cost of the controllable generators and

energy storage system can be expressed as

FCG
i (P̂CGs,i,t ) = ai · (P̂CGs,i,t )

2
+ bi · P̂CGs,i,t + ci. (14)

FESSi (P̂ESS,ins,i,t ,P̂ESS,outs,i,t ) =inci · P̂
ESS,in
s,i,t +outci · P̂

ESS.out
s,i,t (15)

where ai, bi, ci are cost coefficients of unit i. inci and outci are
cost coefficients of charging and discharging power of energy
storage system i. The curtailment cost functions of RESs are
given as:

FPVi (P̂PVs,i,t ) = AbPVi ·
(
P̂PV ,fores,i,t − P̂PVs,i,t

)2
. (16)

FWFi (P̂WFs,i,t ) = AbWFi ·
(
P̂WF,fores,i,t − P̂WFs,i,t

)2
(17)

where AbPVi /AbWFi are curtailment cost coefficients of
photovoltaic system i and wind farm i, respectively.
P̂PV ,fores,i,t /P̂WF,fores,i,t are forecasted outputs of photovoltaic sys-
tem i and wind farm i at time t in scenario s, respectively.

B. SECURITY CONSTRAINTS OF CONTROLLABLE DEVICES
The security constraints of generating units, renewable
energy systems, wind farms and energy storage systems can
be summarized as follows:

−P̂CGs,i,min ≤ P̂CGs,i,t ≤ P̂
CG
s,i,max. (18)

−1P̂CGs,i ≤ P̂CGs,i,t − P̂
CG
s,i,t−1 ≤ 1P̂

CG
s,i . (19)

0 ≤ P̂PVs,i,t ≤ P̂
PV ,fore
s,i,t . (20)

0 ≤ P̂WFs,i,t ≤ P̂
WF,fore
s,i,t . (21)

ÊESSs,i,t+1 = ÊESSs,i,t +1t ·
(
P̂ESS,ins,i,t

·ηESS1 − P̂ESS,outs,i,t /ηESS2

)
. (22)

ÊESSs,i,min ≤ ÊESSs,i,t ≤ Ê
ESS
s,i,max. (23)

0 ≤ P̂ESS,ins,i,t ≤ sta
in
s,i,t · P̂

ESS,in
s,i,t . (24)

0 ≤ P̂ESS,outs,i,t ≤ staouts,i,t · P̂
ESS,out
s,i,t . (25)

0 ≤ stains,i,t + sta
out
s,i,t ≤ 1. (26)

where P̂CGs,i,min/P̂
CG
s,i,max are minimum and maximum output

of generating unit i in scenario s. 1P̂
CG
s,i is the ramp rate

limitation of generating unit i in scenario s. ÊESSs,i,t is the
energy level of energy storage system i at time t in scenario
s. ÊESSs,i,min/Ê

ESS
s,i,max are minimum and maximum energy level

of energy storage system i in scenario s. ηESS1 /ηESS2 are effi-
ciencies of charging and discharging process, respectively.
stains,i,t/sta

out
s,i,t are binary variables to represent charging and

discharging working states. Equations (18)-(19) represent the
operation constraints of generating units. Equations (20)-(21)
are operation constraints of photovoltaic systems and wind
farms. Equations (22)-(26) describes the security constraints
of energy storage systems.

When the optimal solution is obtained, P̂ESS,ins,i,t and P̂ESS,outs,i,t
cannot be positive simultaneously and the binary variables
stains,i,t/sta

out
s,i,t in (26) can be dropped [39]. Suppose that

P̄ESS,ins,i,t and P̄ESS,outs,i,t are positive and P̄ESS,ins,i,t − P̄ESS,outs,i,t =

K > 0. There always exists another solution where P̂ESS,ins,i,t =

K and P̂ESS,outs,i,t = 0. Their corresponding objective func-
tion values are f and f̂ , respectively. It is easy to show
that P̂ESS,ins,i,t and P̂ESS,outs,i,t also satisfy (22)-(26) and f > f̂ .

VOLUME 8, 2020 201151



H. Zhu et al.: Stochastic Economic Dispatching Strategy of the Active Distribution Network

Hence, P̂ESS,ins,i,t and P̂ESS,outs,i,t are the optimal solution rather
than P̄ESS,ins,i,t and P̄ESS,outs,i,t .

C. SYSTEM SECURITY CONSTRAINTS
To guarantee the security operation of distribution power
system, the following constraints should be satisfied.

NCG∑
i=1

P̂CGi,max −

NCG∑
i=1

P̂CGi,t ≥
NL∑
i=1

∣∣∣1P̂Ls,i,t ∣∣∣
+

NWF∑
i=1

∣∣∣1P̂WF
s,i,t

∣∣∣+ NPV∑
i=1

∣∣∣1P̂PVs,i,t ∣∣∣. (27)

NCG∑
i=1

P̂CGi,t −
NCG∑
i=1

P̂CGi,min ≥

NL∑
i=1

∣∣∣1P̂Ls,i,t ∣∣∣
+

NWF∑
i=1

∣∣∣1P̂WF
s,i,t

∣∣∣+ NPV∑
i=1

∣∣∣1P̂PVs,i,t ∣∣∣. (28){
Pi = P̂BPDN,s,t + P̂

CG
s,i,t + P̂

PV
s,i,t + P̂

WF
s,i,t − P̂

L
s,i,t

Qi = Q̂G
i,t − Q̂

L
i,t .

(29)

∑
i∈�i→j

(Pij −
P2ij + Q

2
ij

V 2
i

rij)+ Pj − gjV 2
j =

∑
k∈�j→k

Pjk . (30)

∑
i∈�i→j

(Qij −
P2ij + Q

2
ij

V 2
i

xij)+ Qj − bjV 2
j =

∑
k∈�j→k

Qjk . (31)

V 2
j = V 2

i − 2(rijPij + xijQij)+ (r2ij + x
2
ij)
P2ij + Q

2
ij

V 2
i

. (32)

Vi,min ≤ Vi ≤ Vi,max. (33)

Pij,min ≤ Pij ≤ Pij,max. (34)

Qij,min ≤ Qij ≤ Qij,max. (35)

−P̂BPDN,s,max ≤ P̂
BP
DN,s,t ≤ P̂

BP
DN,s,max. (36)

where P̂BPDN ,s,min/P̂
BP
DN ,s,max are the minimum and maximum

purchasing power from thewholesalemarket.1P̂
L
s,i,t ,1P̂

WF
s,i,t ,

1P̂
PV
s,i,t represent predict errors of power load, wind farm,

photovoltaic system i at time t in scenario s. P̂Ls,i,t , Q̂
G
i,t , Q̂

L
i,t

are active power load, reactive power output, and reactive
power load. rij and xij are the resistance and reactance of the
line between bus i and bus j. gi and bi are the conductance
and susceptance to the earth of bus j. Pij,min/Pij,max are the
lower and upper limit of active power flow of branch ij.
Qij,min/Qij,max are the lower and upper limit of reactive power
flow of branch ij.�i→j represent the sets of the power flowing
from bus i to bus j.

Equations (29)-(36) are Distflow power flow model com-
monly used in the distribution network [40]. As Equations
(30)-(32) are non-convex constraints, it increases the diffi-
culty of optimization. The second-order cone programming
(SOCP) is adopted to convert these complex constraints to
convex constraints. The specific relaxation and convexity
methods are described as follows [41]–[43].

Define Ṽi and Ĩij as follows:

Ṽi = V 2
i . (37)

Ĩij =
P2ij + Q

2
ij

Ṽi
. (38)

Take these two variables to Equations (30)-(33), we have∑
i∈�i→j

(Pij − rij Ĩij)+ Pj − gjṼj =
∑

k∈�j→k

Pjk . (39)

∑
i∈�i→j

(Qij − xij Ĩij)+ Qj − bjṼj =
∑

k∈�j→k

Qjk . (40)

Ṽj = Ṽi − 2(rijPij + xijQij)

+(r2ij + x
2
ij)Ĩij. (41)

V 2
i,min ≤ Ṽi ≤ V 2

i,max. (42)

Equation (38) is a non-convex constraint. Its standard for-
mat of second-order cone convex can be obtained by SOCP
relaxation. ∥∥∥∥∥∥

2Pij
2Qij
Ĩij − V̂i

∥∥∥∥∥∥
2

≤ Ĩij + Ṽi. (43)

By applying SOCP method, the non-convex optimization
problem has been transformed into a standard convex opti-
mization problem, which can be solved directly by mature
convex optimization algorithms.

Notice that, the proposed ADN dispatching strategy can
be conveniently extended to online real time horizon, as in
[44], [45]. During online organization, the forecasting infor-
mation of RES and market price should be updated before
each control cycle, and a series of rolling-horizon dispatching
commands should be issued to controllable devices timely.

IV. CASE STUDIES
A. GENERATION AND REDUCTION RESULTS OF TYPICAL
SCENARIOS
The IEEE 33-bus distribution system is adopted to test the
effectiveness and performance of the proposed strategy. The
topology of the test is presented in Fig. 3. The cost parameters
of distributed generators, energy storage system are given
in Table 1 and Table 2. The load curves of each node are
derived from the load reference value of IEEE 33 bus system
multiplying the actual load demand curve. The capacity for

FIGURE 3. IEEE 33-bus distribution system topology.
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TABLE 1. Cost parameters of the distributed generators in distribution
network.

TABLE 2. Parameters of the energy storage system in distribution
network.

each branch is set to 2 MW and the voltage security range is
set to 0.95∼1.05 p.u.

The forecasted outputs curves of renewable energy
resources (RES) are derived from the mean historical curve
of Laibin city of China on August, 2019, as in Fig. 4 (a).
The wholesale energy market price curve is from the his-
torical clearing locational marginal data issued by PJM on
May 6, 2020, as in Fig. 4 (b). The detailed cost and capacity
parameters of DGs and ESS are presented in Table 1 and
Table 2 respectively. The wind power (WP), Photovoltaic
(PV), ESS, DG1 and DG2 are allocated at Bus#19, 13, 9, 15,
21, as in Fig. 3. The uncertainties of RES andmarket price are
assumed to obey the Gaussian distribution. The installation
capacities and forecasting error uncertainties parameters of
RESs are presented in Table 3.

FIGURE 4. Hourly forecasting curve of renewable energy resources and
wholesale market energy price.

TABLE 3. Uncertainties parameters of RES and market price.

Considering the uncertainties of RESs and market
price, 1000 scenarios are generated randomly using Latin
hypercube sampling approach, which are named as the orig-
inal scenario set. After that, the comprehensive similarity
measurement method is adopted to compute the similar-
ity between different scenarios. The typical scenario set is

FIGURE 5. The renewable energy generation curve and wholesale market
price curve of the original scenario set and typical scenario set.

TABLE 4. Probabilities of different scenarios in the typical scenario set.

obtained using the proposed graph pyramid based clustering
algorithm, as presented in Fig. 5. The probabilities of the
scenarios in the typical scenario set are presented in Table 4.

B. OPTIMAL DISPATCH RESULTS OF ADN
According to the typical scenario set obtained by the the pro-
posed clustering algorithm, the ADN optimal dispatch model
can provide the day-ahead bidding plans and the optimized
operation plans of controllable units. The result comparisons
between the original scenario set and typical scenario set
are given in Table 5, which indicate that the proposed ADN
optimization model with typical scenario set offer a high
computational efficiency with a lower operation cost.

The day-ahead bidding plan sent to the superior wholesale
energy market is shown in Fig. 6. When the wholesale market
price is high, the distribution system operator hopes to sell the
energy to the power market. Hence, the generation outputs
of distributed generators are adjusted to a relatively high
value. Conversely, the VPP prefers to increase energy pur-
chases from the wholesale market and reduce the generation
output of generator to save operation cost. The dispatching

VOLUME 8, 2020 201153



H. Zhu et al.: Stochastic Economic Dispatching Strategy of the Active Distribution Network

TABLE 5. Comparisons of the results obtained using the original scenario
set and typical scenario set.

FIGURE 6. The energy bidding plans of the distribution system operator
send to the wholesale energy market.

FIGURE 7. Dispatching trajectories of the distribution system operator
send to the distributed generators.

trajectories for the distributed generators are presented
in Fig. 7. Fig. 8 shows that ESS stores energy when market
energy price is low (t = 2-5, 17) and releases its energy when
market energy price is high (t = 8-14, 21). It shows that the
energy storage system is controlled in an economic manner.

The time-varying voltage variation curves of different
nodes are presented in Fig. 9. It shows that the proposed
dispatching strategy can ensure the node voltages within
the security range (0.95∼1.05). Moreover, the system volt-
ages are greatly influenced by the renewable energy genera-
tion since the peak period of voltage and renewable energy
resources are highly coincident.

C. PERFORMANCE COMPARISON OF THE PROPOSED
STRATEGY
To varify the superiority, the proposed approach is compared
with other three methods in terms of economic performance

FIGURE 8. Dispatching trajectories of the distribution system operator
send to the energy storage system.

FIGURE 9. Time-varying voltage curves for different nodes in the
distribution system.

and computation efficiency. The tests were carried out based
on a computer with an Intel i5- 750S CPU. Since the scenario
generation process inherents certain randomness, simulations
are conducted 50 times and the average computation results
in terms of objective function values and computational times
are presented Fig. 10 and Fig. 11, respectively. The model
features of four different cases are illustrated as follows.

FIGURE 10. Computation results comparisons in terms of objective value.

Case#1: ADN dispatching strategy based on the proposed
comprehensive typical scenario set, i.e., the comprehensive
typical scenario set is obtained by the proposed scenario
generation and reduction method presented in section II.

Case#2: The typical scenario set is only generated by
the Latin hypercube sampling method without using the
proposed clustering based scenario reduction method.
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FIGURE 11. Computation results comparisons in terms of computational
time.

Case#3: ADN dispatching strategy based on the typical
scenarion set generation method proposed in [32]: The sce-
narios are generated by the Monte Carlo sampling method
first, and then reduced by the fast-forward scenario reduction
approach based on the Kontorwish distance.

Benchmark: Scenario is generated by the Latin hypercube
sampling method and the number of scenario is set to a very
large number (1000 in this simulation), which can be regarded
as the benchmark to represent the most realistic operational
conditions. Table 5 shows the benchmark computation results
including the computational time and final objective value
calculated under this condition.

Compared with the original scene set, the typical scenario
set can save a lot of computing time, as shown in Table 5.
However, the overall computational times of the three cases
(Case#1-3) using difference scenario generation method are
very close, since the computational time is mainly spent on
solving the ADN dispatching problem and it takes less time
to compute the typical scene set.

Furthermore, it can be indicated from the simulation results
that as the number of scenarios increases, the objective func-
tion values of Case#1-3 also increase and finally reach to
the benchmark value. Therefore, with the increasing of the
number of scenarios, stochastic optimization results will tend
to be close to the real situation. Moreover, compared with
Case#2 and Case#3, the proposed strategy (Case#1) can
acheve a more realistic simulation result with comparable
computation efficiency.

D. RESULTS ANALYSES UNDER DIFFERENT SYSTEM
PARAMETERS
In order to further analyze the influence of different factors
on the system economic performance. The proposed ADN
dispaching strategy are conducted under different scenarios
and the system operation cost are presented in Fig. 12 and
Fig. 13. The base values for branch capacity, wholesale mar-
ket price, RES generation and ESS installation capacity are
chosen from subsection 4.1. The simulation parameters of the
branch capacity, wholesale market price, RES generation and
ESS installation capacity are changed on the basis of the base
values. The following conclusions can be drawn according to
the simulation results:

FIGURE 12. System operation cost under different branch capacities and
wholesale market prices.

FIGURE 13. System operation cost under different installation capacities
of the renewable energy generations and energy storage system.

i). As the wholesale market price increases, the distribution
system operator performs as a producer intuitively and gains
more profits by selling the energy to the superior energy
market.

ii).With the increasing of the branch capacity, the proposed
strategy can improve the system operation profit since the
congestion limitation is relaxed and the operation flexibil-
ity is enlarged. Moreover, the proposed approach can gain
more benefit by arbitrage from the power market when the
wholesale market price is relatively high. Thus, the ADN
dispatching strategy can offers better application effect in the
power system with large remaining branch capacity.

iii). The system operation cost can be reduced by pro-
moting the RES penetration level and the ESS capacity,
since the system overall flexibility is enhanced by increasing
these parameters. Nevertheless, subjected to branch conges-
tions and voltage limitation, the system operation cost will
decrease to a limit value eventually.

V. CONCLUSION
This study proposes a comprehensive typical scenario set
based stochastic economic dispatching strategy for the active
distribution network. The proposed method can provide the
day-ahead bidding plan to the wholesale market and the
dispatching plan to the controllable units, which can the DSO
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perform as prosumers when participating in the wholesale
market operation. Compared with typical scenario formula-
tion methods as in [31]–[32], the proposed comprehensive
typical scenario set consider multiple similarity measurement
indexes, which can model the uncertainties more reasonably
and improve the computational efficiency effectively. The
effectiveness and scalability of proposed approach is veri-
fied under different implementation scenarios based on the
IEEE 33-bus distribution system, which illustrates that the
proposed approach owns high computational efficiency and
promotes the security and economy of the distribution system
operation.

Furthermore, as the penetration of distributed energy
resources increases, the flexibility of ADN will be improved
considerably in the future and can be used to provide the
ancillary services. Therefore, the operation strategy of ADN
providingmultiple services for the powermarket under uncer-
tain environments is a promising research direction in future
works.
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