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ABSTRACT The evaluation on clustering results is an important component of clustering analysis, which
can be conducted by the cluster validity index. However, the performances of most existing indices depend
on not only the specific clustering algorithms but also the measurements of within- and between- cluster
distances and data structures, resulting in limited applications in practice. In this paper, a new within-cluster
distance under a general assumption is defined first. After adjusting within-cluster distances of each point
according to the adjustment rule, a novel cluster validity index is proposed. Moreover, the notion of chain is
introduced to eliminate the effects of sizes, densities, and shapes of clusters. This index does not need any
prior information about clustering algorithms and is independent of data structures. Two groups of synthetic
datasets with various characteristics and real-world datasets are used to validate this proposed validity index.
Experimental results demonstrate that the evaluation accuracy of this index is higher than that of the existing
typical indices and performs well on datasets with irregular-shaped clusters.

INDEX TERMS Cluster validity index, within-cluster distance (WD), between-cluster distance (BD).

I. INTRODUCTION
Clustering analysis [1]–[3] is one of the most used machine
learning algorithms, which can reveal the hidden structures
in a dataset and plays an important role in many domains
such as image segmentation [4], [5], data analysis [6], and
business applications [7]. There are two significant aspects of
clustering analysis: clustering algorithm [8] and cluster valid-
ity index [9]–[11]. The number of clusters (c) is an essential
parameter of a dataset, and most clustering algorithms must
be initially provided with this parameter. The incorrect choice
of this parameter can lead to very incorrect clustering results.
Thus, it is vital to determine the correct number of clusters in
any dataset, and this can be implemented by a cluster validity
index. Generally, a cluster validity index is a function that
takes various c as its variable, and the maximum or minimum
values of this index can assess the correct number of clusters.
In the past decades, a great number of cluster validity indices
have been designed, such as Calinski-Harabasz (CH) [12]
index, Davies-Bouldin (DB) measure [13], Xie-Beni’s (XB)
separation measure [14], Tibshirani Gap statistics (GS) [15],
and Pakhira and Bandyopadhyay’ (PB) index [16]. The above
validity indices have their applicable ranges and have been
widely used in practice.
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With the fast development of information techniques in
recent years, some challenging problems have been encoun-
tered in the process of designing an effective validity index.
Firstly, most validity indices are designed by various simi-
larity norms of within-cluster distance (WD) and between-
cluster distance (BD), but different norms formeasuringWDs
and BDs may lead to very inconsistent evaluation results.
This greatly decreases their robustness in practice. Recently,
Yang et al. [17] proposed a novel validity index by optimiz-
ing the morphology similarity distance, which can enhance
the consistency between WDs and BDs. But the parameters
existed in this index play an important role in the evaluation
process, and incorrect selection of parameter values may
result in incorrect evaluation results. Besides, these parame-
ters increase the processing burden and lead to low efficiency.
Recently, Yue et al. [18] introduced the notion of dual center
to evaluate clustering results. This new measure is effective
in some cases, but it is based on the specified clustering algo-
rithms to compute WDs and BDs. If the clustering algorithm
chosen for the dataset is not suitable, the evaluation result is
not guaranteed.

On the other hand, widespread big data all over the world
have caused a great number of new clustering evaluation
problems, such as density-different and shape-irregular clus-
ters. Most validity indices only apply to datasets containing
regular clusters (such as, spherical clusters). In reference
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[19], Wang et al. proposed an effective cluster validity index
of minimizing the seri-overlap(c) (MSO) by estimating the
separation of WDs and BDs. This index is independent of
clustering algorithms and initialization. Nevertheless, this
index only assesses datasets containing spherical clusters.
If the tested dataset contains arbitrary-shaped clusters, MSO
may fail to suggest the correct cluster number. Besides, MSO
assumes that the numbers of points of all clusters approxi-
mately satisfy an arithmetic series with a common difference.
If the difference is very large or the total number of points
is very small, the accuracy of MSO may not be guaranteed.
In addition, Lee et al. [20] measured the compactness of
clusters in the kernel space and proposed a new validity
index based on support vector data description (SVDD). This
index is suitable for datasets with irregular-shaped clusters.
However, SVDD index cannot evaluate datasets with com-
plex data structure and the parameter in the kernel function
is hard to determine. Zhou and Xu [21] used the notions
of cluster center and the nearest neighbor cluster to design
a new internal cluster validity index, which can reflect the
geometric distribution of objects. This index can suggest an
optimal number of clusters for datasets with various features,
but its evaluation results rely on the performance of the
clustering algorithm used in the evaluation process. Wani and
Riyaz [22] proposed a novel validity index by introducing a
new compactness measure based on standard deviation and
a penalty function for measuring separation among clusters.
This index can evaluate datasets with complex structures, but
there lacks a general criterion for selecting its parameter for
any dataset.

In this paper, efforts have been made to solve the above
problems. A novel validity index is proposed to generalize the
measurement of WDs and BDs in a tested dataset. Owing to
an adjustment rule and chain-based strategy, the new index
can effectively evaluate datasets with density-different and
shape-irregular clusters.

II. RELATED WORK
Let X = {x1, x2, . . . , xn} be a dataset containing n points
in a d-dimensional space, and xi ∈ Rd . S1, S2, . . . , Sc are c
disjoint subsets of X . Let U be a binary membership func-
tion to describe the relationship between points and subsets,
satisfying,

uij =

{
1, xj ∈ Si
0, xj /∈ Si,

i = 1, 2, . . . , c; j = 1, 2, . . . , n (1)

Eq. (1) indicates that if point xj belongs to ith subset Si,
uij = 1; otherwise, uij = 0. If each point only belongs to
one subset, the partition of X is called a hard partition [23],
satisfying,

X=S1∪S2∪...∪Sc, Si∩Sj=φ, i 6= j; i, j=1, 2, ..., c.

(2)

On the contrary, a fuzzy partition [24] of X means that each
point belongs to all subsets with its individual membership

degrees, satisfying,

uij ∈ [0, 1], s.t.,
∑c

i=1
uij = 1,

i = 1, 2, . . . , c; j = 1, 2, . . . , n. (3)

In general, a validity index is a function f (c) that takes c
as its variable, and finds the correct number of clusters by
optimizing the following objective function,

min z = f (c) or max z = f (c). (4)

Most validity indices take the trial-and-error way to solve
the optimum of Eq. (4) [25], [26]. Firstly, the possible range
of c can be set among [cmin, cmax]. Generally, cmin = 2 and
cmax <

√
n [27] where n is the number of points in X . Then,

the datasetX is partitioned into c clusters by using a clustering
algorithm. Finally, computing the corresponding value of
Eq. (4) at each value of c, and the maximum or minimum
of Eq. (4) indicates the correct number of clusters.

Five typical cluster validity indices (PB, DB, CH, GS, and
XB) are illustrated as follows. Besides, each index is accom-
panied by an upward (↑) or downward (↓) arrow. The upward
arrow represents that the maximum of this index refers to the
optimal partition, and the corresponding c denotes the optimal
number of clusters. Inversely, the downward arrow represents
the opposite meaning.

1) PAKHIRA AND BANDYOPADHYAY’S INDEX (PB ↑) [16]
The PB index is used for evaluating clustering results from
both hard and fuzzy clustering algorithms. For a dataset X
containing n points, PB can be defined as

PB(c) = (
1
c
×
E1
J
×

∑c

i,j=1
|zi − zj|)2,

s.t.,

E1 =
∑n

j=1
|xj − z|

J =
∑c

i=1

∑n

j=1
|xj − zi|

(5)

hereafter zi and z denote the centroid of cluster i and the global
centroid of X , respectively.

2) DAVIES-BOULDIN INDEX (DB ↓) [13]
Let1i be the compactness of cluster i; δij denotes the separa-
tion between clusters i and j. The DB index can be formulated
as

DB(c) =
∑c

i=1
Ri/c,

s.t.,

Ri = maxj,j6=i(1i +1j)/|zi − zj|

1i =
∑

x∈Si
|xi − zi|/|Si|

(6)

where |Si| is the number of points in cluster i.

3) CALINSKI-HARABASZ (CH ↑) INDEX [12]
In the CH index, the compactness of ith cluster is computed
by the distances between each point and zi, i = 1, 2, . . . , c,

VOLUME 8, 2020 202873



Q. Li et al.: New Cluster Validity Index Based on the Adjustment of Within-Cluster Distance

and the separation among clusters is measured in terms of the
distances from all centroids to the global centroid z.

CH(c) =
n− c
c− 1

·

∑c
i=1 ni|zi − z|

2∑c
i=1

∑ni
k=1 |xk − zi|

2
(7)

where ni denotes the number of points of cluster i.

4) TIBSHIRANI’S GAP STATISTIC (GS ↑) INDEX [15]
The GS index can be expressed as,

Gap(c) = E ∗
[
log(W (c))

]
− log(W (c)),

s.t.,

W (c) =
∑c

i=1
Di/(2|Si|)

Di = 2|Si|
∑

j∈Si
|xj −

∑|Si|

i=1
xi/|Si||

(8)

where E∗ denotes the expectation under a null reference
distribution.

5) XIE–BENI’S SEPARATION INDEX (XB ↓) [14]
The XB index is proposed for fuzzy clustering algorithms,
which is the ratio of compactness to separation of a dataset.

XB(c) = (
∑c

i=1

∑n

j=1
umij |xj − zi|

2)/(n ·min
i6=j
|zj − zi|2)

(9)

where m refers to the fuzzy exponential.

6) MSO INDEX (MSO ↓) [19]
TheMSO index can find the real number of clusters in a tested
dataset without any prior information (such as clustering
algorithm and initialization process). This index assumes the
numbers of points of all clusters in X , |S1|, |S2|, . . . , |Sc|,
approximately satisfy an arithmetic series with common dif-
ference d . Denote dwithin(c) be the number of WDs, satisfy-
ing,

dwithin(c) = (n2/2c− n/2)

+ [(c− 1)c(2c− 1)/12− (c− 1)2c/8]d2 (10)

Denote the distance from any point to its k-nearest neigh-
bors be k-NN distances, where k is taken as (1/c)(n-1). Thus,
the k-NN distances of any point in X are defined as WDs,
whereas the other ((n-1)-k) distances of the point are denoted
as BDs. The distribution of all distances in X can be repre-
sented by a statistical histogram.

Fig. 1 shows a dataset and the distribution of distances
in the form of statistical histogram under c = 3. Firstly,
we compute the minimum and maximum of all distances:
0.0004 and 1.18. And then, the interval [0.0004, 1.18] is
equally divided into 100 subintervals. Finally, all WDs and
BDs are assigned into the above 100 subintervals according
to their values, respectively. Each subinterval composes a bar.
All bars compose the statistical histogram (see Fig. 1 (b)). The
y-axis of Fig. 1 (b) denotes the number of distances in each
bar. These bars composed of WDs and BDs are in blue and
green, respectively. Bars that contain both WDs and BDs are
regarded as set-overlap ones, framed up by a red line.

FIGURE 1. Dataset and its statistical histogram.

Denote | within (c, q)| and | between (c, q)| as the numbers
of WDs and BDs in the qth bar in set-overlap(c), respectively,
q = 1, 2, . . . ,Q, where seri-overlap(c) is the area in which
WDs and BDs overlap seriously, satisfying,

1/3< |withinin(c, q)|/(|within(c, q)|+|between(c, q)|)<2/3

(11)

Let | seri-within(c, p)| and | seri-between(c, p)| be the
numbers of WDs and BDs in the pth bar in seri-overlap(c),
respectively, p = 1,2,. . .P. MSO index is formulated as

MSO(c)

=

∑P
p=1min{|seri−within(c, p)|, |seri−between(c, p)|}

dwithin(c)
(12)

In sum, each index above is based on the clustering result
from a specific algorithm (such as C-means and Fuzzy
C-means). If the clustering algorithm selected for the dataset
is not suitable, the evaluation results will not be guaranteed.
Moreover, the above indices cannot give a criterion to choose
the correct similarity norm. Therefore, a general and efficient
method is necessary. Various combinations of WDs and BDs
have constructed most existing validity indices [28], resulting
in different evaluation results. This is very undesired in prac-
tice. In this paper, our proposed validity index is independent
of clustering algorithms and data distributions, illustrating a
novel solution to overcome the above problems.

III. NOVEL VALIDITY INDEX
In this section, the initial WDs of each point is defined.
And then the adjustment operation is proposed to correct
the deviation caused by various sizes of clusters. Finally,
the notion of chain is introduced to eliminate the effects of
densities and shapes of clusters.

A. THE FUNDAMENTAL OF NEW VALIDITY INDEX
Let X = {x1, x2, . . . , xn} be a dataset consisting of n points
belonging to c clusters in a d-dimensional space, and xk ∈ Rd .
For any point xk ∈ X , its m nearest neighbors are denoted
as xk,1, xk,2, . . . , xk,m, with distances dis(xk , xk,1), dis(xk ,
xk,2), . . . , dis(xk , xk,m), m = 1, 2, . . . , n − 1. Formally, all
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FIGURE 2. WDs in datasets with evenly distributed clusters. Note: the arrow beginning form each point denotes WD of this point.

FIGURE 3. WDs in datasets with unevenly distributed clusters. Note: the arrow beginning form each point denotes WD of this point.

distances in X can be partitioned into two groups: WDs and
BDs, as illustrated in Definition 1.
Definition 1:WD and BD. If two points in X are assigned

to the same cluster by any clustering algorithm, their distance
is called WD; otherwise is called BD.

Considering an extreme case that all clusters in X have the
same number of points [n/c], where and hereafter [•] stands
for a rounding operator, taking the integer part of the number
in a bracket. For any point xk ∈ X , the sum of all WDs from
xk can be formulated as

WCD(xk ) =
∑

xm∈KNN (xk )
dis(xk , xm) , k = 1, 2, . . . , n

(13)

where KNN(xk ) is the set of [(n/c)-1] nearest neighbors of xk .
Then, the sum of all WDs in X can be computed as

WCD(X ) =
∑n

k=1

∑dis(xk ,xm)

xm∈KNN (xk )
(14)

In reference [19], it has been proven that in the statistical
sense WD of X satisfies the following properties:
Property 1: Assume that all points in X are partitioned to c

clusters. The number of WDs attains the low bound c · C2
[n/c]

if any cluster evenly contains [n/c] points.
The numbers of points in various clusters in X are usually

different, and thus according toProperty 1 the total number of
WDs is larger than c·C2

[n/c]. Only if the initialWDs computed
by Eq. (13) are all real WDs, Eq. (14) reaches the minimum.
Inversely, if the initial WDs computed by Eq. (13) contain
BDs, the value of Eq. (14) will increase.
Property 2:Assume thatX contains c clusters, the maximal

number of WDs is C2
n−(c−1).

Property 2 refers to an extreme case that there are (c-1)
points in which each individually constructs a cluster and
other {n-(c-1)} points forms one cluster. Hence, the number
of WDs ranges in [c · C2

[n/c], C
2
n−(c−1)]. As various cluster

sizes, densities, and shapes cause uneven distributions of
points among clusters, the number of WDs tends the value
of C2

n−(c−1), as explained below.

If the sizes of clusters in a dataset are different, the number
of WDs of a point in a large-sized cluster is much larger than
that in a small-sized cluster. Hence, the initial [n/c-1]WDs of
a point in a small-sized cluster contain BDs (see Figs. 3 (b)).
Assume points in Figs. 2 and 3 are distributed into 2 clus-

ters, i.e., c = 2 in Eq. (13). Fig. 2 (a) shows a dataset that
contains 6 points in two clusters, and each cluster evenly
has 3 points. Figs. 2 (b) and (c) show the two actual and
initial WDs of each point, respectively. Specially, each point
has two nearest neighbors along with their relative WDs.
Consequently, the sum of total WDs computed by Eq. (14)
is minimum since the initial WDs are all the real WDs.
Alternatively, the two clusters in Fig. 3 (a) contain different
numbers of points, with four and two points, respectively.
Fig. 3 (b) shows the distribution of initial WDs of points by
using Eq. (13), i.e., two distances of each point to its nearest
neighbors when all points evenly have two initial WDs. But
the sum of these distances is not minimum since some BDs
(l2, and k2 in Fig. 3 (b)) are incorrectly regarded as WDs.
Thus, these long BDs should be removed, and those short
WDs (g3, h3, i3, and j3) that are incorrectly regarded as initial
BDs should be added. In this case, the sum ofWDs decreases.
And thereby those added distances are more consistent with
actual WDs, as shown in Fig. 3 (c).
Under the properties above, when clusters have different

sizes in a dataset, not all initial WDs of any point refer to
actual WDs. To solve this problem, the notion of adjustment
is introduced as follows.
Let the points with the largest and smallest values of

WCD(x) in X be xmax and xmin, respectively. The value of
WCD(X ) can be minimized to attain its minimum by the
following adjustment process. Let the final WCD(X ) with the
minimum value under one certain c be WCD∗(c).
When the clusters in any dataset have different numbers

of clusters, the adjustment algorithm can help to find the real
WDs, and replace BDs with real WDs, minimizing Eq. (13).
It can minimize the value of WCD(X ) to attain its minimum.
The above adjustment rule can correct the deviation caused
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Algorithm 1 Adjustment Process

Input: A dataset X ∈ Rd containing n points.
Output:WCD∗(c).
Steps:
1. Compute WCD(X ) by using Eq. (14) and denote it as

WCDt (X ), t = 1;
2. Select points with the largest and smallest values of

WCD(x) be xmax and xmin;
2. Remove the longest WD of xmax fromWCD(xmax), and

add the closest BD of xmin to WCD(xmin);
3. Compute the current WCD(X ) and denote it as

WCDt+1(X );
4. If WCDt+1(X ) < WCDt (X ), WCDt (X ) =

WCDt+1(X ), t = t + 1, and turn to step 2; or else, turn
to step 5;

5. Stop and obtain WCD∗(c) =WCDt (X ).

FIGURE 4. Statistical histograms before and after adjustment.

by the assumption through removing BDs and adding WDs,
changing the value of KNN of each point.

Fig. 4 shows the statistical histograms before and after
adjustment of dataset in Fig. 1 (a), and c is fixed at 3. Fig. 4 (a)
shows that many BDs are regarded as initial WDs, whereas
WDs are identified as initial BDs. Fig. 4 (b) shows that more
shorter distances are regarded as WDs after the adjustment
process, and the longer ones are identified as BDs, illustrating
that BDs are effectively replaced with WDs by using the
adjustment process. Thus, the sum of WDs can be decreased
by the adjustment process.

WCD∗(c) is the smallest value under one certain c and can
be used to suggest the correct c.

Figs. 5 and 6 show the distributions of WDs before and
after the adjustment operation, respectively. Fig. 5 shows
initial WDs of a dataset containing 12 points belonging to
3 clusters at c are smaller, equal to, and larger than 3, respec-
tively. When c = 2, the number of initial WDs computed by
Eq. (14) is [(n/c)-1] · n = [(12/2)− 1]× 12 = 60, and the
distributions of these distances are illustrated in Fig. 5 (a).
The numbers of initial WDs are 36 (see Fig. 5 (b)) and 24
(see Fig. 5 (c)) when c = 3 and 4, respectively, and the actual
number of WDs is 5× 4+ 3× 2+ 4× 3 = 38. In Fig. 6 (a),
the adjustment operation is executed by removing distances
of points f , g, j, k , and l, and adding the distances of points
a, b, c, d , and e. However, distances after adjustment still

contain BDs because the computed number (60) by Eq. (14)
is greater than the actual number of WDs (38). When c = 3,
BDs can be removed and WDs can be added by using the
adjustment operation (removing distances of points j, k , and
l, and adding distances of points c, d , and e). When c = 4,
the distances before and after adjustment are all WDs. It can
be concluded that when c is smaller than the real number
of clusters, the final distances after adjustment contain both
WDs and BDs when c is equal to or great than the real cluster
number, the final distances contain only WDs.

Reference [19] illustrates that for any dataset, the number
ofWDs attains the low bound c·C2

[n/c] when all points inX are
evenly partitioned into c clusters compared with the situation
where points are unevenly partitioned. In this case, the initial
number of WDs under one certain number of c is the smallest
compared with other distributions.

1)Case 1. Larger number of clusters. If the given c is equal
to or greater than the real number of clusters, the number
of initial WDs is no greater than the real number. If points
are distributed unevenly, the initial WDs contain both real
WDs and BDs (see Fig. 5 (b)). The adjustment process can
replace all BDs by WDs. Finally, the final distances contain
only WDs (see Fig. 6(b)).

2) Case 2. Smaller number of clusters. If the given c is
smaller than the real number of clusters, the number of initial
WDs will larger than the real one. Although some BDs can
be replaced by the corresponding WDs, some BDs cannot be
replaced due to the rule of keeping the total number of WDs
unchanged. Finally, the final distances contain both WDs and
BDs (see Fig. 6 (a)).

Figs. 7 (a) and (b) show a dataset containing 400 points
belonging to four clusters, and the curve ofWCD∗(c), respec-
tively. Fig. 7 (b) illustrates that the values of WCD∗(c)
decrease fast when c < 4 but nearly unchanged when c > 4.
When c is smaller than the actual one 3, the number of initial
WDs by Eq. (14) is [((n/c)-1)] · n = [((400/3)-1)] × 400 =
52933, which is greater than that computed at c = 4(39600).
Thus, when c < 4, distances after adjustment operation still
contain BDs. Distances after the adjustment operation only
contain WDs when c4. Thus, the values of WCD∗(c) at c <
4 are much larger than that at c ≥ 4 . And there is little
difference between these values of WCD∗(c) at c ≥ 4 . Con-
sequently, there is an elbow point on the curve of WCD∗(c),
indicating the correct number of clusters.

Considering the variances of WCD∗(c) can be calculated
by curvature radius mathematically, we define a novel valid-
ity index based on the adjustment of WDs as follows.

F (c) = |1(c)|2/(1+ (∇(c))2)3/2,

s.t.,

{
1(c)=WCD ∗ (c+1)+WCD∗(c−1)−WCD ∗ (c)
∇(c)=WCD ∗ (c+1)−WCD ∗ (c−1)

(15)

where the symboldenotes a second-order derivative operator,
aiming to locate the elbow point on the curve of WCD∗(c).
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FIGURE 5. (a)-(c) show the distributions of WDs under the assumption above when c = 2, 3, and 4, respectively. Note: the arrow beginning
form each point denotes WD of this point.

FIGURE 6. (a)-(c) show the distributions of WDs after adjustment operation when c = 2, 3, and 4, respectively. Note: the arrow beginning
form each point denotes WD of this point.

FIGURE 7. The curve of WCD∗(c).

The optimal number of clusters c∗ is computed as,

c∗ = argmaxc F(c) (16)

B. ELIMINATION OF EFFECTS CAUSED BY SIZES,
DENSITIES, AND SHAPES OF CLUSTERS
WCD∗ can easily be affected by the distribution of clusters
(such as density, size, and shape). When the tested dataset
contains clusters of different densities and sizes, the initial
WD of a point in a sparse and large-sized cluster may be
much greater than that in a dense and small-sized cluster
(see Fig. 8 (a)). In this case, the adjustment process may
incorrectly remove the larger WD from the former and incor-
rectly add the smaller BD to the latter. When the tested
dataset contains irregular-shaped clusters (see Fig. 8 (b)),
distances computed by Eq. (14) may contain BDs, affecting
the accuracy of adjustment operation and leading to incorrect
evaluation result.

In Fig. 8 (a), cluster A has a relatively larger size
containing 12 points compared with cluster B containing
4 points. The number of initial WDs for each point is 7
([((12+ 4)/2)− 1]). Fig. 8 (a) shows that the sum of initial
WD of points in cluster A is much larger than that in cluster B,

FIGURE 8. The distributions of initial WDs computed by Eq. (13) for
datasets containing clusters of different sizes and densities, and
irregular-shaped clusters. Note: The red and blue lines denote initial WDs
of points a, b, c , and d by using Eq. (13), respectively.

i.e., WCD(a) > WCD(b). According to the adjustment rule
above, the longest initial WD of point a should be removed
fromWCD(a) whereas the closest initial BD of point b should
be added to WCD(b). However, the distribution in Fig. 8 (a)
indicates that distances of point b contain BDs, which should
be removed, and distances of point a are all WDs, which
should not be removed. The dataset in Fig. 8 (b) has irregular-
shaped clusters, containing 12 and 6 points, respectively.
Fig. 8 (b) illustrates that both WCD(c) and WCD(d) contain
WDs and BDs, which cannot be corrected by the above
adjustment rule and result in incorrect evaluation results.

To solve this problem, the notion of chain is introduced,
based on which the clusters of different sizes and densities,
and irregular-shaped clusters can be transformed into spheri-
cal clusters. And the deviation caused by size and density can
be eliminated.
Definition 2 (Density): The density of point xk can be

represented by its m nearest neighbors, satisfying,

ρk = {
∑m

j=1
dis(xk , xk,j)}−1, k = 1, 2, . . . , n (17)

where m is generally fixed at 2d (see Fig. 9).
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FIGURE 9. The relationship between hypervolume and neighbors in
different spaces.

Acluster consists of a group of points that occupies the spa-
tial position; thus, it has the corresponding volume or hyper-
volume measure. Fig. 9 shows the hypervolume occupied
by points in the one-/two-/three- dimensional space, respec-
tively. In one-dimensional space, the occupied hypervolume
of a point can be measured by its two nearest neighbors (see
Fig. 9 (a)). Similarly, in the two-/three- dimensional space,
the occupied hypervolume of any point can be computed
by its 4/6 nearest neighbors (see Figs. 9 (b) and (c)). Thus,
the occupied hypervolume of a point in a d-dimensional space
can be measured by its 2d nearest neighbors, which considers
all directions of this space.

Different from the existing density notions [29], [30],
the proposed density does not need any prior information, and
thus it is nonparametric, which can reduce the uncertainties
in clustering process.
Definition 3 (Nearest Density-Based Neighbor): For any

point xk ∈ X , let the minimum distance from xk to other
points with a higher density than xk be the nearest density-
based distance σk , and the corresponding point is denoted as
the nearest density-based neighbor ϕk [31].

σk = min
j:ρk<ρj

dis(xk , xj) (18)

ϕk = arg min
j:ρk<ρj

dis(xk , xj) (19)

Definition 4 (Key Points): Points with higher values of KP,
defined as Eq. (20), are regarded as key points.

KPk = ρk · σk (20)

If there is no prior knowledge, c in any dataset is less than
|
√
n| [18].

FIGURE 10. Datasets containing clusters with different characteristics.

FIGURE 11. Distributions of chains in the two datasets in Fig. 10. Note:
the green triangles and the red lines with arrows denote the key points
and the directions of chains, respectively.

Definition 5 (Chain): For any point xk , the next point xj is
the nearest density-based neighbor of xk , i.e., ϕk . A chain is
a group of points in X , i.e., xi1, ϕi1, . . . , xip, ϕip, which starts
with xi1 and stops at a key point ϕip.

Definition 3 illustrates that for any point xk inX , the nearest
density-based neighbor ϕk is unique; and thus, according to
Definition 5, the chain starting from this point is unique.

The adjacent points in X can be connected to form a chain
following the connecting rule. And the direction of each
arrow is from low to high density points in a chain. The above
steps are repeated until each point is visited in X .

Let Ti be the length of chain xi1, ϕi1, . . . , xip, ϕip,satisfying,

Ti =
∑p

p=1
dis(xip, xip+1) (21)

where dis(xip, xip+1) is the distance between adjacent points
xip and xip+1 on the ith chain, i = 1, 2, . . . ,

√
n.

Dataset in Fig. 10 (a) contains 90 points belonging to three
clusters of different sizes and densities, and dataset in Fig.
10 (b) contains irregular-shaped clusters with 105 points in
total. In general, the two datasets can be divided into 9 and
10 chains, i.e.,

√
90 and

√
105, respectively (see Fig. 11).

Fig. 11 shows that different chains contain different numbers
of points due to the sizes, densities, and shapes of clusters,
leading to the result that different chains have different values
of length.

To normalize the size and density of each cluster and make
its shape regular, the mth line segment dis(xim, xim+1) on the
ith chain is transformed into a new one, satisfying,

dis∗(xim, xim+1)=dis(xim, xim+1)/Ti, i=1, 2, . . . ,
√
n

(22)
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FIGURE 12. Distribution of points before and after transformation.

FIGURE 13. Datasets before and after transformation. Note: Different
colors denote different clusters and the occupied area of each cluster is
circled by a corresponding curve. The original and the corresponding
transformed cluster are connected by a dotted line.

Eq. (22) can shorten the lengths of long chains and enlarge
those of the short chains. Consequently, centralizing at any
key point, the points on a long chain move to the key points,
and those on a short chain move far from the key points.

Fig. 12 shows a detailed transformation process, with the
cluster in green in Fig. 10 (b) as an example. In Fig. 12
(a), the length of chain (16-15-14-13) is smaller than that
of chain (1-2-6-9-10-11-13). Fig. 12 (b) shows that Eq. (22)
can shorten the length of the first chain, whereas enlarge that
of the second chain, making the lengths of the two chains
similar. Fig. 12 illustrates that the shape of the cluster can
be normalized after transformation.

Fig. 13 shows the transformation results of datasets in Fig.
10. Fig. 13 illustrates that the clusters after transformation are
all spherical clusters. And the sparse and large-sized cluster is
transformed into a dense and large-sized cluster, whereas the
dense and small-sized cluster is transformed into a sparse and
small-sized cluster. And the initial WDs in the transformed
dense and large-sized cluster are much smaller than that in
a sparse and small-sized cluster, which is consistent with the
adjustment operation above.

Hereafter, the proposed validity index based on the adjust-
ment of WDs is called AWCD (Adjustment of within-cluster
distance) index. The evaluation process of AWCD index is
listed in Algorithm 2.

Algorithm 2 Evaluation Process of AWCD Index

Input: A dataset X ∈ Rd containing n points.
Output: c.
Steps:
1. Normalize clusters in X based on chain;
2. Compute the initial WCD for each point in X according

to Eq. (13);
3. Adjust WDs following the adjustment rule;
4. Compute the value of WCD∗(c) at c = 1, 2, . . . ., cmax ;
5. Solve the optimal value of Eq. (15);
6. Suggest optimal c∗;
7. Stop.

Compared with the existing indices, AWCD index has the
following characteristics:

1) The entire evaluation process of AWCD index does not
need any prior information. In contrast, most of the existing
cluster validity indices depend on clustering algorithms and
can only perform well on spherical clusters.

2) AWCD index can reveal the hidden structure by using
the transformation process regardless of the sizes, densities,
and shapes of clusters.

For any tested dataset containing n points, the computation
complexity of AWCD index mainly consists of two parts: 1)
normalizing all distances in any chain, and 2) adjusting the
WDs according to the adjustment rule. The runtime of the
first part mainly results from the computation of all distances
in X , and thus the computational cost of this part is O(n2);
the computational complexity of the second part is O(tn2),
where t is the number of executions of adjustment process.
Thus, the computation complexity of AWCD index isO(tn2).

IV. EXPERIMENTAL RESULTS
To validate AWCD index, experiments are conducted on two
groups of typical datasets (i.e., synthetic and real datasets).
Four most used hard validity indices (i.e., PB [16], DB [13],
CH [12], and GS [15]), one fuzzy validity index XB [14],
as well as MSO [19] index are used to make a comparison.
Reference [27] has proven that the maximum c in a dataset
is
√
n. Thus, considering the time complexity, if there is no

prior knowledge, cmin is often taken as 2, and cmax ≤
√
n.

For datasets with small number of clusters (Sets 1-16), cmax
is set at the maximal

√
n (i.e., 30). For Sets 18 and 20,

which has large number of points distributed in small number
of clusters, we simply choose 30 as the maximal cluster
number to decrease the time complexity. For datasets with
large cluster number and relatively smaller number of points
(Sets 17 and 19), we experientially fixed [cmin, cmax] at [30,
60] and [90, 120]. For the four hard indices, C-means is used
as the clustering algorithm; for XB index, fuzzy C-means is
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used to cluster data points. And the fuzzy exponent in fuzzy
C-means is set as 2.0. All experiments are carried out by a
computer with MATLAB R2017, 2.80 GHz CPU, 8.00 GB
RAM in Windows 10. The runtime is computed by functions
of ‘‘tic’’ and ‘‘toc’’ in MATLAB toolbox.

A. TESTS ON SYNTHETIC DATASETS
Fig. 14 shows five groups of synthetic datasets with various
characteristics generated by the Matlab R©toolbox. Different
colors denote different clusters. The original and transforma-
tion results of datasets indicate that the transformation rule
can transform irregular clusters into spherical clusters and
eliminate the effects of size and density. The characteristics
of these datasets are described as follows:

• Datasets in Group 1 contain clusters of different densi-
ties. Clusters in each dataset are all spherical;

• Datasets in Group 2 contain spherical clusters of differ-
ent sizes and densities;

• Group 3 contains datasets with irregular-shaped clusters;
• Group 4 contains datasets with overlapped clusters;
• Group 5 contains datasets with mid and large size
clusters. Dataset in Set 17 contains 31 spherical clus-
ters of total 3100 points, with each cluster containing
100 points. Dataset in Set 18 contains 15 arbitrary-
shaped clusters of total 5000 points. Dataset in Set
19 contains 10000 points that are evenly distributed
in 100 clusters. Dataset in Set 20 has 28000 points in
total. Different clusters in this dataset have different
sizes and densities. The diameter of the largest cluster
is twice as large as that of the smallest cluster.

The detailed descriptions of these datasets are illustrated
in Table 1. The first column of Table 1 shows the names of
datasets; the second and third columns denote the number of
clusters and dimension of each dataset; the fifth and fourth
columns represent the number of points in each cluster and
the whole dataset, respectively.

Table 2 shows the accuracy and processing time of
seven different indices on five groups of synthetic datasets
in Fig. 14. Firstly, we computed the value of each cluster
validity index under [cmin, cmax]. The suggested c∗ occurs
when the value of this index obtains its maximum or mini-
mum. Then, we select this value of c as the evaluation result
of this index. The evaluation results are analyzed as follows.

1) For datasets containing clusters of different densities
(Group 1), PB cannot find the real numbers of clusters; the
suggested cluster numbers by CH are smaller than the real
ones except Set 4; DB, GS, XB, and MSO indices have the
similar performance on these four datasets; AWCD can find
the correct numbers of clusters for all datasets in Group 1.

2) For datasets containing clusters of different sizes and
densities (Group 2), the numbers of clusters suggested by
PB and GS are larger than the real numbers; in contrast,
the computed cluster numbers by XB and CH are smaller than
the real ones, which is nearest to the real numbers compared
with the indices above; MSO index can suggest the correct

TABLE 1. Characteristics of 16 Datasets in Fig. 14.

cluster numbers for Sets 5 and 7, but it fails on Sets 6 and 8,
which is smaller than the real ones; both DB and AWCD can
suggest the correct numbers of clusters for these four datasets.

3) For datasets containing irregular-shaped clusters (Group
3), the evaluation results of the other six indices are all
incorrect; AWCD index can reveal the structures of these
datasets and suggest the correct cluster numbers.

4) For datasets containing overlapped clusters (Group 4),
the cluster numbers computed by PB and GS are larger than
the real numbers; whereas the evaluation results by CH and
XB are smaller than the real ones; MSO is capable of finding
the correct numbers of clusters except Set 14; AWCD can
suggest the more accurate numbers of clusters for datasets
with overlapped clusters.

5) For Set 17, the suggested cluster numbers by GS and
PB are much larger than the real one; XB computes a smaller
number; the evaluation results suggested by DB, CH, and
MSO are nearest to the real one compared with GS and PB;
AWCD can find the correct cluster number for Set 17. For Set
18, the numbers of clusters suggested by the other six indices
are all inaccurate due to the irregular-shaped clusters; the
evaluation results suggested byDB, XB, andMSO are nearest
to the real number; AWCD can find the hidden structure in
this dataset and suggest the correct cluster number. For Set
19, PB and GS suggest larger numbers, whereas the cluster
numbers suggested by CH and DB are relatively small; the
numbers of clusters computed by XB, MSO, and AWCD are
close to the real one. For Set 20, the result computed by CH
is much smaller than the real number; whereas GS computes
a much larger one; the suggested numbers of clusters by PB,
DB are nearest to the real number; XB,MSO, and AWCD can
find the correct number of clusters.

202880 VOLUME 8, 2020



Q. Li et al.: New Cluster Validity Index Based on the Adjustment of Within-Cluster Distance

FIGURE 14. Five groups of synthetic datasets.
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TABLE 2. Evaluation results of four groups of synthetic datasets.

TABLE 3. Characteristics of ten real-world datasets from UCI.

For the 20 synthetic datasets, PB index cannot suggest the
real number of clusters for any tested dataset; DB, CH, GS,
and XB indices can only obtain 8, 3, 4, and 6 correct results,
respectively; MSO and the other five indices are not capable
of computing datasets containing arbitrary-shaped clusters;
our proposed AWCD method can find the correct cluster
numbers for 19 datasets, outperforming the other six indices.
Fig. 15 shows the error ratio between the proposed method
and the other six indices based on the real numbers of clusters,
illustrating the validity of AWCD.

In sum, the evaluation results of the other six indices can
be easily affected by the distributions of objects, such as
the densities, sizes, shapes of clusters; in contract, the pro-

FIGURE 15. Error ratio between AWCD and the other six indices on
synthetic datasets.

posed validity index AWCD is effective for dealing with
such a problem and shows better performance. From the
processing time (PT) in Table 2, we can conclude that the
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TABLE 4. Evaluation results of seven indices for ten UCI datasets.

time consumption depends on not only the size, but also the
characteristic of the tested dataset, such as density and shape.
The processing time of XB andGS is much longer than that of
PB, DB, CH, and AWCD. Among the seven indices, the time
consumed by GS is the longest. The runtime of MSO index
is much shorter than that of the other indices since there is no
need to execute clustering algorithm repeatedly.

B. TESTS ON REAL DATASETS
The UCI Machine Learning Repository contains various
kinds of benchmark datasets, which is usually used for
evaluating machine learning algorithms. The UCI datasets,
collected from the real-world, cover a wide range of repre-
sentative domains. And the characteristics of these datasets
are described in detail, so that they are capable of providing
a baseline for comparison.

In this paper, thirteen UCI datasets containing clusters
of various sizes (Parkinsons, and GFE), density (Whole-
sale), shapes (Satimage), and overlapped clusters (Seeds,
Segmentation, Banknote, Iris, Cancer, Pima, Wine, Letter,
and pendigits) are selected for validating our proposed index
AWCD. The detailed characteristics of these datasets are
listed in Table 3. The first column denotes the names of
datasets; the second and third columns represent the number
of clusters and dimension of each dataset, respectively; the
fifth and fourth columns denote the number of points in each
cluster and the whole dataset, respectively.

Table 4 shows the accuracy and processing time of the
seven indices on the thirteen UCI datasets. The numbers of
clusters suggested by PB and GS are all incorrect, which
is larger than the real ones; in contract, CH gives relatively
smaller numbers; compared with PB and GS, the evaluation
results of DB and XB are nearest to the real cluster num-
bers; MSO index can find the correct cluster numbers on
3 datasets, and the evaluation results are nearest to the real
cluster numbers compared with the other five indices; AWCD

FIGURE 16. Error ratio between AWCD and the other six indices on UCI
datasets.

index is capable of finding the correct numbers of clusters for
ten datasets except Pima, Segmentation, and Letter whereas
the evaluation results for the three datasets are also closest
to the real ones compared with the other six indices. The
comparison of error ratio is illustrated in Fig. 16.

Table 4 shows that the time consumed by PB, DB, CH, and
AWCD indices is similar, which is shorter than that consumed
byGS andXB indices. The processing time of GS index is the
longest among the seven indices. The runtime of MSO index
is the shortest among the seven indices.

V. CONCLUSION
The number of clusters in any dataset is an essential parame-
ter, and the correct clustering evaluation results from the cor-
rect identification of cluster numbers. In this paper, we pro-
pose a novel cluster validity index based on the adjustment of
within-cluster distances. This index is independent of clus-
tering algorithms and data distributions. Thus, it does not
need the users to provide prior information, which reduces the
uncertainty in the evaluation process. And it performs well on
datasets with density-different and shape-irregular clusters.

The effectiveness of the proposed method results from the
adjustment of clusters.We believe that the adjustment process
can perfectly be used to clustering process itself rather than
only to the clustering evaluation process. In this direction,
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the clustering accuracy by typical clustering algorithms may
be improved.

There are two possible opportunities for the future
research. Firstly, the path finding algorithm is an important
notion in clustering analysis and performs well in optimiza-
tion problems. Our future work is to introduce path finding
algorithm into the adjustment process to reduce the compu-
tational complexity of the proposed index. Secondly, how to
identify the points in the overlapped area is still a problem
in clustering analysis. The proposed transformation process
maymisclassify some points in the overlapped area and result
in deviation. Therefore, how to correct the deviation caused
by the overlapped area remains as one of our research focuses
in the future.
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