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ABSTRACT Financial risk management avoids losses and maximizes profits, and hence is vital to most
businesses. As the task relies heavily on information-driven decision making, machine learning is a
promising source for new methods and technologies. In recent years, we have seen increasing adoption of
machine learning methods for various risk management tasks. Machine-learning researchers, however, often
struggle to navigate the vast and complex domain knowledge and the fast-evolving literature. This paper fills
this gap, by providing a systematic survey of the rapidly growing literature of machine learning research
for financial risk management. The contributions of the paper are four-folds: First, we present a taxonomy
of financial-risk-management tasks and connect them with relevant machine learning methods. Secondly,
we highlight significant publications in the past decade. Thirdly, we identify major challenges being faced
by researchers in this area. And finally, we point out emerging trends and promising research directions.

INDEX TERMS Machine learning, deep learning, financial risk management, financial risk management

taxonomy, risk analysis, artificial intelligence in finance.

I. INTRODUCTION

Machine learning is making breakthroughs in Natural Lan-
guage Processing, Computer Vision, and Robotics. These
remarkable applications of machine learning have sparked
a lot of interest in its application to other diverse areas
where data is plenty. Financial Risk Management (FRM) is of
course, not an exception. FRM tasks are generally challeng-
ing, with continuously evolving yet sparse and complex data.
Quantifying and managing risk plays an important role in any
organization. As businesses, especially, financial institutions,
grow larger and more complex, the need for sophisticated
statistical models to correctly quantify and mitigate risk has
become more important than ever before. For big companies
with very large portfolios and sophisticated financial prod-
ucts, accurately evaluating the exposure of the portfolio to the
dynamic financial market is becoming increasingly difficult
with previously implemented statistical or simulation meth-
ods. To address this shortcoming, there is a lot of work that is
going on that deals with the application of advanced machine
learning methods to datasets for FRM.
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Driven by the industrial demand for intelligent risk
management systems and academic goals for developing
highly-applicable machine learning algorithms, a grow-
ing number of researchers are exploring sophisticated ML
approaches (e.g. Transfer Learning, Deep Reinforcement
Learning) for tasks related to managing and mitigating finan-
cial risk. The depth of literature in solving specific FRM
task is evolving rapidly. However, there seems to be limited
work in providing an organized taxonomy to connect the
explored machine learning methods within the overall FRM
framework.

Although several surveys already cover the application of
machine learning on specific FRM tasks [1]-[6], our survey
provides a unifying view of the literature encompasses all
major FRM tasks. For example, financial market movement
prediction is covered by [1], whereas hedging market risks is
covered in [2]. Many do not cover other significant exposures
for the company, such as risks related to credit obligations
or risks related to excessive claims. In contrast, we aim to
unify the machine learning literature across different FRM
tasks and identify the common challenges and research direc-
tions prevalent across the whole risk spectrum. Our work
presents a holistic view of the ML literature from a single
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FRM taxonomy that encapsulates all major financial expo-
sure points for a company. To build the taxonomy, We follow
the risk classification in which “Insurance and Demographic
Risk™ is included as the fourth risk type in addition to the
traditionally recognized three financial risks (Market, Credit,
and Operational) [7]. This helps us to encompass the chal-
lenges faced by financial institutions that also offer insurance
as products.
The contributions of our survey paper are as follows:

« We present a comprehensive taxonomy of major FRM
tasks and establish their connection with relevant
machine learning problems. This taxonomy would help
machine learning researchers navigate the complex
domain of financial risks.

« We systematically survey a large corpus of existing liter-
ature on applying machine learning in risk management
and reveal the best practices and common pitfalls in
applying machine learning to each risk management
task.

o We summarise the progress and highlight the com-
mon challenges present in the current implementation
of machine learning in FRM. This provides insights to
improve the existing models and make it more adaptable
for practitioners and regulators.

o We propose future directions on tackling the common
challenges identified by the literature survey. We hope
these directions will benefit interested researchers and
practitioners in developing more acceptable ML tech-
niques in managing financial risk.

A. SURVEY ORGANIZATION

This survey is organised as follows: Section II provides a
general background on FRM. This is followed by the catego-
rization of the risk management tasks into different machine
learning methods in section III. Section IV first introduces the
FRM taxonomy, based on which we systematically review
the ML applications for each major FRM task. Section V
and VI identify major challenges and future research direc-
tions, respectively.

Il. A BRIEF INTRODUCTION TO FINANCIAL RISK
MANAGEMENT

Machine learning has been widely used in solving traditional
quantitative finance problems, including return forecasting,
risk modelling and optimal portfolio construction [8]. In this
paper, we focus specifically on its use cases for financial risk
management, which includes both risk modelling (the task
of quantifying and predicting risk) and risk mitigation (the
task of minimizing risk via optimal portfolio construction or
hedging).

In [9], Horcher defines risk to be the probability of loss
and exposure as the possibility of loss. Exposure to risk is
often necessary for a business to prosper. Identifying risk
and exposure form the basis of FRM. As risk and exposure
are realized differently across different domains, they are
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measured differently. These measures are further discussed
in Section IV. Interested readers can find more about the
theory of financial risk and basic concepts related to FRM
in [10]-[12].

A. THE RISK TAXONOMY

Different types of events can adversely impact a company’s
financial performance [7]. These events can include adverse
financial market movements, loan defaults, unexpected insur-
ance claims, fraudulent activities, loss of customers.

Based on the source of risk factors, it is conventional
(see for example, [7]) to classify risk into four high-level
categories: (i) market risk, (ii) credit risk, (iii) insurance and
demographic risk, and finally, (iv) operating risk.

o Market risk refers to the uncertainties in the value of the
company’s underlying assets, liabilities, or income due
to exposure to a highly dynamic financial market [7],
[13]. Market risk includes risks such as interest rate risk,
exchange rate risk, commodity price risk.

o Credit risk refers to the uncertainty involving its credi-
tors’ ability to perform their contractual obligation (loan
defaults or bankruptcy) [14]. This is applicable for both
retail lenders (lenders who provide loans to individuals
or retail customers) and corporate lenders (lenders who
provide loans to businesses).

o Insurance and Demographic risk, which is more spe-
cific to the insurance industry, refers to the variance in
insurance claim experience due to unpredictable events
(e.g. catastrophes, car accidents) as well as uncertain-
ties involved with the demographic profile of its pol-
icyholders (e.g. mortality). This risk can be further
broken down to Mortality Risk, Catastrophe Risk, and
Non-Catastrophe Risk [7].

o And finally, operational risk refers to the risk of loss
due to the unpredictability of business operation or loss
of performance due to faulty or fraudulent business
practices. Operational Risk can be further broken down
into business risk and event risk. Business risk indi-
cates the uncertainty related to business performance
(e.g. uncertainty in earnings, demand volatility, cus-
tomer churn, faulty business operations) and event risk
includes uncertainty in events that have an adverse effect
in business operations (e.g. fraudulent activities, change
in regulations) [15].

The financial risk spectrum arising from different sources

brings about the complex task of measuring and mitigating
risk using various risk management strategies.

B. RISK MANAGEMENT STRATEGIES
Broadly, financial institutions apply two types of risk man-
agement strategies:
e Risk decomposition identifies each risk and handles it
separately.
o Risk aggregation diversifies the risk exposure to mini-
mize the overall risk exposure.
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TABLE 1. Machine learning techniques with FRM applications.

Fraud Detection [19]

Classification

Portfolio optimization [20]

Credit Scoring & Bankruptcy prediction [21]

Supervised learning

Volatility forecasting [2]

Sensitivity analysis [22]

Regression

Claims modelling [23]

Loss reserving [24]

Mortality modelling [25]

Insurance pricing [23]

Clustering

Unsupervised learning
Anomaly detection

Sensitivity analysis [26]
Credit scoring & Bankruptcy prediction [27]
Fraud detection [28]

Insurance underwriting [29]

Dimensionality reduction

Mortality modelling [30]

Reinforcement Learning

Semi-supervised learning

Interested readers can find more in a standard textbook
(e.g., [16]).

Ill. MACHINE LEARNING TECHNIQUES IN FINANCIAL
RISK MANAGEMENT

Machine Learning is a computational method that uses past
information to improve performance in a specific task(s)
or make accurate predictions [17], [18]. These methods are
generally reliant on optimizing a loss or reward function.
Table 1 outlines the major types of machine learning methods
and tasks, including their typical applications in FRM. The
learning methods are briefly discussed below.

A. SUPERVISED LEARNING

This set of algorithms use labelled examples for training. The
trained model can be used to make predictions for unlabelled
examples. The supervised learning task is mainly associated
with classification, regression, and ranking problems.

A major multi-class classification task in FRM is the task
of credit scoring or bankruptcy prediction [33]. An exam-
ple regression task is claim-frequency prediction [34], [35],
where insurers try to predict the number of claims that will be
made from a portfolio. Another highly cited regression task
in FRM domain is volatility forecasting. This can also be seen
as a supervised sequence learning problem [36], [37].

B. UNSUPERVISED LEARNING

Unsupervised learning refers to the task of detecting patterns
from unlabelled data. In this setting, no labelled data is avail-
able. The unsupervised learning algorithms are built to solve
specific problems (e.g. clustering, outlier detection, dimen-
sionality reduction, anomaly detection) from unlabelled data.
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Portfolio optimization [31]

Sensitivity analysis [32]

Several models used for default or bankruptcy prediction in
credit risk management rely on clustering the credit applicant
profiles [27]. Clustering is also used to identify a representa-
tive set of policies from a large portfolio of annuity contracts
[32]. Another unsupervised learning task, anomaly detection,
is highly relevant for fraud detection tasks [28], [38]. Tech-
niques for dimensionality reduction is implemented in the
task of mortality modelling [30] and insurance underwrit-
ing [29].

C. REINFORCEMENT LEARNING

In reinforcement learning settings, the learner has the ability
to actively interact with the environment. The objective of
the learner is to maximise the reward over its set of interac-
tions with the environment [39]. Due to its ability to consis-
tently explore the environment to select the optimal strategy,
researchers and practitioners have used reinforcement learn-
ing algorithms for risk-optimised dynamic portfolio alloca-
tion [31], [40].

D. SEMI-SUPERVISED LEARNING
Semi-supervised learning problems are common in settings
where accessing labels is possible but expensive. These algo-
rithms learn from both labelled and unlabelled data and make
predictions on the unlabelled data [41]. Due to the complexity
of acquiring labels in many real-life problems (e.g. finance,
healthcare), the topic is highly relevant for applied machine
learning research [42].

A strong application domain for semi-supervised learn-
ing algorithms in FRM is the task of approximating nested
Monte Carlo simulation. Monte Carlo simulations are widely
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used in financial risk engineering (for example, VaR calcu-
lation, insurance pricing) but are computationally expensive
for large portfolios. Therefore, several ML-based meth-
ods are used to approximate the result of full portfolio
simulation based on simulation results of a much smaller
subset [32], [43].

E. DEEP LEARNING

Deep learning is a form of machine learning that extracts
multi-layered representations of the features, approximating
a non-linear composite function that forms a hierarchical
transformation of features into labels. This learning method
is highly suitable for understanding patterns from complex
non-linear interactions in the data [44].

Since its inception, deep learning methods have seen
steady growth in the literature, along with some major waves
of advancements. During the first wave of its advancement
in the 1940s-1960s, it was known as cybernetics. During
the second wave of advancement in the 1980s-1990s, it was
termed connectionism and finally, it took on the current name
deep Learning since the beginning of 2006 [45].

Convolutional networks [46], one of the most notable inno-
vations in neural networks, has achieved tremendous success
in practical applications, especially in computer vision. These
networks utilise a special linear operation called ‘“‘convo-
lution” to extract local translation-invariant features from
images and time-series data. Another property of convolu-
tional networks is that they can learn spatial hierarchies,
which is highly relevant for data with complex hierarchical
patterns (such as images or videos). Interested readers can
find a comprehensive review of Convolutional networks and
their application in computer vision in [47]. One dimensional
convolutional networks can be used for sequence processing
as well. This makes it applicable for financial time-series
forecasting. Within FRM domain, convolutional networks
can be used for volatility forecasting [48], fraud detection
[49], or credit default prediction tasks [50].

Recurrent networks [51] are another major innovation in
neural networks. Whereas convolutional networks specialise
in processing grid structured data, recurrent networks are
specialised for processing sequences of values [45]. Some
notable variants of recurrent networks include basic Recur-
rent Neural Networks (RNN) [51], Long Short-Term Memory
(LSTM) [52] and Gated Recurrent Unit (GRU) [53]. These
networks are highly applicable to natural language problems
where the data is generally sequential. Due to its specialty in
sequence modelling, recurrent networks are also widely used
in financial time series forecasting problems, e.g. volatility
forecasting [36], [37] or loss reserving [54].

Deep reinforcement learning [55] is a recent innovation
in deep learning that merges the principles of deep learning
and reinforcement learning to create algorithms that can effi-
ciently learn to interact with the external environment. It is
highly applicable for areas where agents need to make deci-
sions in a dynamic environment (such as financial markets).
An example is financial portfolio optimization problems
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where agents need to dynamically redistribute portfolios
within volatile financial markets to minimise risk and/or max-
imise return [40]. Interested readers can find a comprehen-
sive overview of deep reinforcement learning and its recent
advancements in [56].

Graph neural networks [57]-[62] are a special type of
neural network that can be used for modelling data with
complex graph structures. In finance, such data can come
in the form of a knowledge graph, for example, built on the
Financial Industry Business Ontology (FIBO) [63]. Graph
neural networks have been applied in financial fraud detec-
tion tasks [64], [65].

IV. MACHINE LEARNING APPLICATIONS IN FINANCIAL
RISK MANAGEMENT

FRM tasks can be organised into a taxonomy as shown
in Figure 1. The taxonomy provides a framework for con-
necting relevant machine learning tasks with the previously
mentioned risk categories. The following sections will detail
each of the categories in the taxonomy.

A. MANAGING MARKET RISK

One of the key measures related to market risk is volatility,
which is the standard deviation of the (log) return of an asset
[66]. Such risk is often managed via options, financial deriva-
tives that are used either as leverage (to maximise potential
return) or insurance (to minimise potential loss). From the
market price of an option, we can infer the market’s expec-
tation of the volatility, which is called the implied volatility
[67]. Section IV-A1 will review some machine learning mod-
els for volatility.

Hedging is a common risk management strategy that uses
a portfolio of options (or other contracts) to reduce risk
exposure. Different Hedging strategies are adopted based
on the sensitivity of the portfolio of assets with regards to
various market factors (for example, future change of the
volatility). Such sensitivity measures are called Greeks and
are critical for hedging market risks of the portfolio [68].
Section IV-A2 will review machine-learning methods for
sensitivity analysis.

To minimise these market risks and maximise business
return simultaneously, businesses may also adapt dynamic
asset allocation systems. This is also known as portfolio opti-
mization [69]. Models for portfolio optimization are covered
in Section IV-A3.

1) VOLATILITY MEASUREMENT AND FORECASTING

Volatility is a statistical measure to describe the dispersion
of return of a financial asset or portfolio. It reflects the uncer-
tainty of future asset prices in the financial market. Generally,
higher volatility indicates higher market risk. It is the most
important factor in determining the option prices. Generally,
higher expected volatility leads to higher option prices. On
the other hand, future market volatility cannot be measured
exactly. Therefore volatility estimate is a central problem for
market risk management.
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A. Mashrur et al.: Machine Learning for FRM: A Survey

IEEE Access

Financial Risk
[ ]

Insurance and Operational
Market Risk Credit Risk
ar e recitiis Demographic Risk Risk
*‘ |
Portfolio Sensitivity Volatility . . e Claims . Mortality Insurance Fraud
T . . Credit Scoring Bankruptecy ) Loss Reserving ) - |
Optimization Analysis Forecasting Prediction Modeling Forecasting underwriting Detection

Temporal
Sequence
Learning

Multi-class
classification

Clustering

Supervised
leaming

Online learning

Text mining

Reinforcement
learning

Multi-class
classification

Clustering

Temporal
Sequence
Learning

Temporal
Sequence
Learning

Supervised
leaming

Anomaly
Detection

Binary
classification

Binary
Classification

Clustering

Clustering

Text mining

FIGURE 1. Machine learning for FRM: task taxonomy.

Volatility measurement: The primary variable on which
volatility is calculated is the asset price. Firstly, the daily asset
log-return, r; is calculated from the asset price as In (%),
where P; denotes the asset price at time-step ¢ [10]. Volatility
of the log-returns measured over the period of length T is

defined as

ey

1 I

- — )2

T — 1 Z (r[ :u’) )
=1

where p is the mean of 7, over the period T .

a: TRADITIONAL METHODS

In this section, we discuss some traditional forecasting meth-
ods used for volatility modelling. These methods can vary
based on their assumption on the stochastic nature of volatil-
ity. Deterministic volatility models follow the assumption
that volatility is deterministic in nature. Some of these are
discussed below:

o Exponentially weighted moving average (EWMA) mod-
els are exponential smoothing models that place higher
weights on recent log-returns for forecasting volatility.
The exponentially weighted moving average (EWMA)
model can be expressed as:

0,2 =(1-— )L)rtz_1 + )Loz_l,

where A is the exponential decay factor. The EWMA
model is simple to calculate and also gives a more
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realistic estimate of the current volatility present in the
market compared to the simpler moving average mod-
els. However, the EWMA does not account for some
other realistic challenges present in financial time series.
These are:

1) Conditional Heteroskedasticity refers to the

time-varying volatility of financial assets. Het-
eroskedasticity is an important challenge for statis-
tical modelling. It occurs when the standard error,
€ of a regression model is non-constant over a spe-
cific period. The heteroskedasticity also depends
on the past realization of the time series [70].
Volatility clustering occurs when periods of high
volatility are interspersed with periods of low
volatility [71].
Autoregressive Conditional Heteroskedasticity (ARCH)
was introduced to specifically address these challenges
[70]. ARCH explicitly models the volatility as a function
of the lagged residual errors. ARCH models the variance
as follows:

2)

p
Utz =w+ Zairtz_i, 2)
i=1
where p is the lag amount and @ is a constant.
A generalised version of ARCH, also called Gen-
eralised Autoregressive Conditional Heteroskedasticity
(GARCH) model [72] is widely used by practitioners
for modelling time-variant volatility of financial time
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series. The GARCH model extends the ARCH model
to incorporate the lagged variance as well as the lagged
residual errors from the mean process. The standard
GARCH(p,q) model can be expressed as in Eq. 3.
Interested readers can read about different variants of
GARCH models in [73]-[75]. Importantly, the condi-
tional variance, o/ is a deterministic function that is
completely dependent on the return and variance in the
previous time step.

14 q
of =w+ Y airt i+ Y Bl 3)
i=1 j=1

Stochastic Volatility models, in contrast, assume that the
volatility itself follows a stochastic path [76]. For example,
a popular Stochastic Volatility model used for modelling
volatility is Heston model [77]. The model assumes that the
square of asset volatility (the variance of the log-return series)
follows the Feller process [78]. In this model, the instanta-
neous volatility dv; can be modelled by:

dv; = k(0 — v)dt + & /v dW,, )

where 0 is the long-run variance, to which v, approaches
towards at rate k. W,” represents a Weiner process and £ is
the variance of the v;.

Limitation of traditional methods Despite having high
practicability in modelling volatility [79], limitations exist
in both of these approaches. Firstly, there is an asymmetri-
cal correlation of volatility to past return innovations [80].
Negative unexpected returns generally have a stronger effect
on future volatility compared to positive unexpected returns.
This asymmetric property of the series is not captured by the
previously mentioned approaches. Secondly, these models
are more suitable for univariate time series analysis, and does
not take into consideration that volatility can be conditioned
with other variables as well (e.g. financial news) [81]. This
necessitates the need for a more robust data-driven approach
of modelling volatility.

b: MACHINE LEARNING METHODS

Using Machine learning algorithms to improve traditional
methods: Hybrid machine learning techniques can be imple-
mented to improve the performance of the traditional
GARCH-based and stochastic methods [80], [82], [83]. Arti-
ficial Neural Networks can be stacked with both GARCH
and Stochastic Volatility models to produce more accu-
rate volatility forecasting. Using the GARCH model out-
put as one of the inputs for a Multi-Layered Perceptron
model can not only make the prediction more accurate but
also, the stacked model is more robust and consistent for
different window sizes [82]. Integrating recurrent neural
networks with stochastic volatility models can also signifi-
cantly improve forecast performance [79]. Interestingly, there
is also evidence to suggest that machine learning models
(Support Vector Regression, Gaussian Process Regression
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and Neural Networks) can replace the parametric models
altogether [2], [84].

Using neural network-based sequence learning methods
for volatility forecasting: Long Short Term Memory (LSTM),
is a popular variant of Recurrent Neural Networks that is used
for sequential analysis [85]. LSTMs have been used for the
task of volatility forecasting as well. Experiments suggest
that LSTMs can outperform the traditional GARCH models
and also provide more robust forecasts [86]. However, there
are two challenges with implementing LSTMs for volatility
modelling: firstly, long training time needed for convergence
of these networks and secondly, the need for a high amount of
data to get better performance. These challenges are widely
prevalent on other application domains for LSTMs as well.

Using textual data as predictors for volatility forecasting:
None of the aforementioned methods makes use of unstruc-
tured textual data (e.g. financial news, political news, pan-
demic news) in the prediction of volatility. Historically, only
structured data (e.g. share volumes and prices) had been used
to predict portfolio volatility with Machine Learning, but
textual data can also be a significant predictor for market
volatility [87]. There can be different sources of these text
data related to the financial market. One source is the public
discussion boards that reflect the public opinion about asset
movements. Naive Bayes algorithm has been used to accu-
rately predict trading volume and volatility based on message
postings on these public discussion board [88]. News implied
volatility, the uncertainty that arises from disaster news (e.g.
war, market crash) can also be strong predictors of return
volatility. Support Vector Regressors can be used for such pre-
dictions [81]. It is also observed that news articles (e.g. news
regarding a company) can be good indicators for short-term
prediction of underlying asset volatility [89]. Another inter-
esting text source for these text-mining forecasting tools is
social media data (for example, micro-blogging data present
on twitter) [90]. Also, Google trends can be useful indicators
for stock market volatility forecasts [91]. Evidently, there is
a diverse set of data (both structured and unstructured) and
machine learning algorithms that have been implemented for
volatility modelling.

Natural language processing (NLP) techniques are increas-
ingly being used to improve financial forecasting perfor-
mances, as unstructured text data such as news articles and
tweets may contain important information for financial deci-
sion making [92], [93]. A comprehensive survey on using
text mining techniques on financial forecasting can be found
in [94].

2) SENSITIVITY ANALYSIS

Financial sensitivities, also called Greeks, are the partial
derivative of a financial asset’s value with regards to different
attributes of its underlying asset. Some of the commonly used
Greeks are Delta, Vega, Theta and Rho. These are briefly
described in Table 2. Using these Greeks, actuaries can obtain
a portfolio that is risk-neutral against different risk factors.
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TABLE 2. Greeks for financial risk management.

Delta A g—g, first-order partial deriva-  Delta neutral
tive of an asset price V, with  hedging
respect to its underlying asset
price S.

Vega V ‘g—‘;, first-order partial deriva-  Option pricing,
tive of an asset price V, with  hedging against
respect to the volatility of its  implied volatility
underlying asset price, o

Theta 6 — 8—‘:, also known as time de-  Option pricing
cay, is the first-order partial
derivative of the asset’s price
with regards to time to matu-
rity, T

Rho p %—‘7{, first-order partial deriva-  Option pricing,
tive of the asset’s price with  Delta-Rho
regards to the risk-free interest ~ hedging
rate, r

Gamma I" B—Z, second-order partial  Delta neutral

2
(?S. q 5
erivative of an asset price V/,
with respect to its underlying
asset price S.

hedging

Role of Monte Carlo simulation in calculating Greeks:
Calculating these Greeks for complex financial products is
difficult when there is no closed-form solution for pric-
ing these products. This necessitates the use of simulation
models to estimate these risk measures. Monte Carlo Sim-
ulation is a widely used method for measurement of risk
exposures (e.g. Greeks, VaR) when no closed-form solu-
tions are available [95], [96]. A major application domain
for this task is in large insurance companies offering prod-
ucts with financial market-linked benefits which are unpre-
dictable (e.g.variable annuities products). Variable Annuities
are life insurance products that provide various financial
market-related guarantees to the policyholder. These products
have an added challenge of valuation because the financial
guarantees offered with the product are complex and there is
no closed-form solution for modelling the fair market value
or Greeks of such product. Therefore, insurers have to resort
to techniques such as Monte Carlo Simulation. However,
directly implementing Monte Carlo Simulation is not feasible
to a large portfolio of these complex assets due to extremely
high computation costs [43], [97].

Approaches for reducing Monte Carlo simulation time:
These computational challenges can be addressed with two
different classes of approaches: Hardware approaches and
software approaches. Hardware-based approaches include
accelerating the simulation process via the use of parallel
processors. Multiple graphics processing units (GPUs) can
be implemented for such a task for accelerating the process.
However, the number of GPUs needed for full simulation of
a large portfolio can still be very high. By contrast, software
approaches can be much less expensive. These approaches
accelerate the valuation process by utilizing statistical mod-
els/algorithms. In general, the runtime of the Monte Carlo
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simulation can be reduced by two algorithmic approaches.
These techniques are mentioned in Table 3. The table enlists
some relevant research work related to these algorithmic
approaches for simulation time reduction.

TABLE 3. Techniques for reducing Monte-Carlo simulation time.

Reduce the number of scenario  Scenario Ranking [98]
Representative Scenarios [99]
Curve Fitting [100]
Random Sampling

Cluster modelling [26]
Replicating Liabilities [101]
Replicated Stratified Sampling [102]

Reduce the number of policies

Using meta-learning methods to approximate Monte Carlo
simulation: A new family of machine learning-based meta-
learning algorithms has been proposed to approximate the
expensive Monte Carlo simulations more accurately and
in a significantly reduced time span [101]. This family of
approaches is called Meta-modelling. A typical metamod-
elling approach involves the following four steps:

1) Identify a small subset of representative policies from
a large set of contracts.

2) Implement a Monte Carlo Simulation to calculate the
market value or Greeks of the representative contracts
only.

3) Build a regression model (the meta-learner) based on
the representative contracts and their simulated market
value/greeks.

4) Use the meta-learner to extrapolate the fair market
value or greeks for the full portfolio.

Typically, the metamodels consist of two important com-
ponents:

o Experimental Design Method: The learning component
of the model that identifies the subset of the variable
annuity policies.

o Predictive Model: The regression model to extrapolate
the final result of Monte Carlo simulation for full port-
folio.

Table 4 enumerates the commonly used techniques for each
of these meta-model components.

TABLE 4. Metamodelling techniques.

Experimental Design Method =~ Random Sampling
Latin Hypercube Sampling (LHS)
[103]
Cluster modelling [26]

Kriging [32]

GB2 Regression [22]

Linear models with interaction [104]
Regression Trees [105]

Neural Networks [43]

Metamodel
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Neural network-based approaches are increasingly gaining
traction for meta-modelling due to their high robustness and
accuracy [43], [106], [107].

Using neural networks for hedging with or without Greeks
Interestingly, Neural-Networks can also be used to com-
pletely replace the meta-modelling approach for hedging
VA portfolios. There are two ways that neural networks can
be used for hedging:

o Hedging via classical Hedging Principles: In this
approach, Neural Networks can be used to approximate
the Greeks via metamodelling. Then, these Greeks are
inserted into classical hedging formulas for determining
asset ratios for hedging.

e Direct Hedging via Neural Networks: With this
approach, neural networks are used to directly output
asset ratios (e.g. stocks or bonds) required for hedging.
The objective of the neural networks is to minimise the
percentage change in the net position of the VA portfo-
lio [108].

Datasets available for metamodelling research: Interested
researchers can access synthetic datasets related to Metamod-
elling for sensitivity analysis in [109], [110]. These datasets
include Monte Carlo simulation results and calculated Greeks
for large synthetic variable portfolios.

3) PORTFOLIO OPTIMIZATION

Portfolio optimization refers to the process of allocating a
set of financial contracts with specific weight distribution,
to maximise the expected return and/or to minimise financial
risk. We can define a portfolio by a set of real numbers
{w1, wa, w3, ...} that corresponds to the weight of each asset
in the portfolio, and their return by {rq, 2, r3, .. .}. The clas-
sical Markowitz mean-variance model [69] formulates the
return and risk for an N-assets portfolio as:

N
Return = Zwi”i

i=1

N N
Risk = Z Z wioijwj,

i=1 j=1

where o;; denotes the covariance between the i-th and j-th
asset in the portfolio. The weights in the portfolio are also
subjected to constraints:

N
Zw,:landogw,»g 1.
=1

The optimal portfolio is considered as the portfolio weight
vector that minimizes Risk and maximizes Return.

Techniques for portfolio optimization: Optimizing portfo-
lios over many assets is a difficult task due to the complex
interdependencies present within different assets in a portfo-
lio. Many analytical techniques can help to build a portfolio
with minimum volatility.
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a: TRADITIONAL METHODS

Mean-Variance optimization was the first analytical method
to calculate the optimal portfolio with minimum expected
volatility given a target return [69]. There are many variants
of this method that consider more realistic constraints of
the market. For example, [111] established that the transac-
tion cost shall also be a significant constraint for portfolio
allocation.

Multi-objective evolutionary algorithms (MOEA) have
also received growing attention in portfolio optimization.
There is a comprehensive survey on the implementation of
different MOEA algorithms for solving portfolio optimiza-
tion problems in [112].

b: MACHINE LEARNING METHODS

Supervised learning algorithms can be implemented for port-
folio optimization problems. Support vector machines can
appropriately identify the non-linear relationships among the
market variables [20]. Performance of such supervised learn-
ing models were further improved by using novel regulariza-
tion or cross-validation techniques [113]. Neural Networks
can also outperform traditional models for portfolio selec-
tion [114].

Online Learning is also used for this task. An online portfo-
lio selection strategy with the assumption of mean reversion
relation of financial markets was implemented to find optimal
portfolio weights [115]. A comprehensive literature on using
different online learning approaches (e.g. Follow-the-Winner,
Follow-the-Loser, Meta-Learning) for portfolio selection can
be found in [116].

Reinforcement Learning methods are gaining traction in
research related to portfolio optimization. CNN, RNN, and
LSTM can be implemented to find optimal policies for the
reinforcement learning task [40], [117]. Recurrent reinforce-
ment learning method (RRL) has also been applied to simul-
taneously generate market activity signals (buy or sell) and
the optimal asset allocation weights based on a downside
risk-adjusted objective function [118].

B. MANAGING CREDIT RISK

Credit risk is the uncertainty involving borrower’s capability
to fulfil obligations. This may involve individual borrowers
defaulting on a loan or corporations going bankrupt.

The two most active research topics for credit risk man-
agement are bankruptcy/default prediction and credit scor-
ing [14]. Credit scoring generally refers to the risk classifi-
cation of retail borrowers (which includes personal loans or
mortgages) whereas bankruptcy prediction generally refers to
the prediction of bankruptcy of an institutional borrower (for
example, a small business). Generally, from a statistical mod-
elling point of view, both the bankruptcy prediction task and
credit scoring task can be regarded as binary classification
problems [33]. However, the predictors used for these mod-
elling tasks are generally different. The predictors used for
bankruptcy predictions are key financial ratios derived from
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the company’s financial statements such as balance sheets
or income statements [119]. In contrast, predictors used for
retail credit scoring models are various financial and demo-
graphic information of the loan applicant (for example, credit
history, account balance, employment status, age) [120].

a: TRADITIONAL METHODS

Initially, credit admission decisions were undertaken with a
subjective evaluation which was highly dependent on the per-
sonal experience of the decision-maker. Statistical methods
have gradually replaced subjective credit admission decisions
in recent years. Historically, the most widely used tradi-
tional statistical methods for credit scoring has been Linear
discriminant analysis (LDA). A comprehensive review of
statistical techniques used for credit scoring can be found
in [121].

b: MACHINE LEARNING METHODS

There is a large number of applied machine learning studies
for predicting default by individuals or enterprises. The group
of classifiers used for credit risk evaluation can be categorised
into two families:

Supervised Learning Methods: Many studies have shown
that single classifiers can effectively be used for predict-
ing bankruptcy or for credit-scoring. Two mostly used sin-
gle classifiers for this task are Support Vector Machines
(SVM) [122]-[124] and Neural Networks [120], [125]-[127].
A multi-class SVM was proposed by [128]. Besides
SVM, other classifiers were used, including CART model
[129], Gaussian Process-based Classifiers [130], and Deep
belief networks (DBN) [131]. The performance of these
models can be improved with new feature selection
techniques [132], [133].

Ensemble learning and hybrid models have also been
extensively explored within this domain [134]-[136]. A com-
parative survey of different ensemble learning approaches
(bagging, boosting, and stacking) used for this task can be
found in [21], [137]. The high effectiveness of Support Vec-
tor Machines as a single classifier has inspired researchers
to improve prediction performance further by using SVM
as the base learner of their ensemble models [138]. There
is evidence to suggest that Random Forest algorithms
can outperform other single or hybrid classifiers for this
task [139], [140].

Unsupervised Learning Methods: Clustering methods can
also be used to identify the risk of bankruptcy or credit
default. These methods can help to identify groups of
loan applicants/ enterprises with similar characteristics.
A cluster-based dynamic scoring model can achieve bet-
ter scoring accuracy by implementing different classifiers
for different clusters [141]. A comparative survey of dif-
ferent clustering methods used for this task can be found
in [27].

Interested readers can find the list of credit risk related
datasets in [14].
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C. MANAGING INSURANCE AND DEMOGRAPHIC RISK
Financial institutions that offer insurance services for var-
ious types of risk bears a significant amount of financial
risks themselves. It is critical for these companies to accu-
rately quantify the exposure and take proper steps to miti-
gate these risks. Financial risk for insurance can arise from
many sources, each requires accurate prediction modelling.
For example, before providing a car insurance product to an
individual, the insurer needs to accurately predict the number
of claims the driver might make in the future. Error in the
prediction would result in under-pricing of the insurance
product, which would result in a financial loss for the insurer
in the future. Also, life-insurers need to have an accurate
estimate of the expected lifespan of demography before pro-
viding life-insurance products to the individuals belonging to
the demography.

Some major tasks related to insurance and demographic
risk include Claim Modelling, Loss Reserving, Mortality
Forecasting [142], [143].

1) CLAIMS MODELLING

Claims modelling refers to the prediction of all future costs
associated with insurance claims made by the policyholders.
The two measures that determine this future cost is the claim
counts (also called claim frequency) and the claim amount
(also called claim severity) [34].

a: TRADITIONAL METHODS

Traditional statistical models for claims modelling mainly
involve generalised linear models (GLM) [34]. Via these gen-
eralised linear models, the frequency and severity of claims
are expressed as linear combinations of different rating vari-
ables that include policyholders’ demographic attributes (e.g.
age and gender), as well as behavioural attributes (e.g. driving
behaviour, previous claims history). One common drawback
with classical claims models is their unrealistic assumption
that claim frequency and severity are independent [144].
Bi-variate regression models can be used to model the depen-
dency between the frequency and severity of claims [145].
Bayesian learning methods are also shown to predict claim
frequency with high accuracy [146].

b: MACHINE LEARNING METHODS
Supervised learning methods: Ensemble models (boosted
trees) can outperform GLMs in predicting claim frequency
and severity [147]. Also, neural networks can predict
policy-level claim characteristics with high accuracy [23].
Telematics data for claims modelling: When car sensor
data (telematics data) is available, it can reveal drivers’
behavioural traits. Such data has been used to improve the
accuracy of claim prediction [148]-[150] or improve related
clustering tasks (e.g. clustering drivers with similar risk pat-
terns) [23].
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Interested readers can find a comprehensive survey of all
machine learning methods and reference to related datasets
used for this task in [23].

2) LOSS RESERVING

Loss reserving refers to the estimation of total reserves
required to cover all future claims arising from insurance
policies. This is an important task for different stakeholders
in the insurance industry. Firstly, it benefits insurers in their
underwriting or pricing decisions. Secondly, for investors,
loss reserving is an important component of the income
statement and balance sheet of the insurer. And finally, for
regulators, the amount of loss reserves helps to address the
financial soundness of the insurer [54].

a: TRADITIONAL METHODS

The most widely used traditional method for loss reserving is
the chain-ladder method [151]. Some notable historical stud-
ies about this topic are mentioned in [143]. A comprehensive
survey of the traditional methods for modelling stochastic
claims reserves can be found in [152].

b: MACHINE LEARNING METHODS

Recently, several neural network-based methods have been
proposed to replace or augment the traditional methods for
loss reserving. Classical actuarial models can be embed-
ded in neural networks to get more accurate predictive
performance [153]. Even shallow neural networks can
outperform the traditional Chain-ladder method in this task
[24]. Sequence learning models based on gated recurrent
units (GRU) [54] were applied to forecast aggregated loss
reserves and it outperforms traditional models.

3) MORTALITY MODELLING
Mortality risk is a critical component to financial institutions
offering products whose benefits are linked to the longevity
of their customers’ lives (e.g. life insurance products). An
important measure for quantifying this is the mortality rate.
Mortality rate is a fundamental component for calcula-
tions involving the valuation of life insurance products. It
is generally expressed as the expected number of deaths for
every 1000 individuals in a specific population subgroup. The
aim of this modelling task is to forecast mortality rate m;')t
for age-group x, during calendar year ¢ for the population
subgroup i. Accurate mortality rate forecasting is a crucial
task in minimizing the risk of contract longevity.

a: TRADITIONAL METHODS

The existing literature for mortality risk modelling can be
categorised into two families. Firstly, discrete-time based
models (for example, Lee-carter model [154], Cairns-Blake-
Dowd model [155]) describe the evolution of mortality rates
at the yearly interval. Secondly, continuous-time stochastic
models ( [156], [157]) describe an instantaneous force of
mortality [158].
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The most widely used traditional method for mortality
rate forecasting is Lee-Carter Model [154]. An autoregressive
moving average (ARIMA) model is fitted by [154] for mod-
elling mortality index for a single population. The parameters
of the Lee-Carter model is estimated with singular value
decomposition (SVD) [159]. Also, a comprehensive survey
on fitting generalised linear models (GLM) for mortality
modelling can be found in [160].

b: MACHINE LEARNING METHODS

Recently, several ML techniques have been implemented
for mortality modelling. Neural networks have been exten-
sively used to augment the traditional methods for fore-
casting multi-population mortality. Neural networks can be
used to extend the Lee-Carter model to predict multiple
population mortality simultaneously [161]. Neural networks
can also be used for the task of dimensionality reduction in
multi-population mortality forecasting [30]. However, the use
of temporal sequence-learning neural networks (for example,
recurrent neural networks) to completely replace the tradi-
tional methods is still limited [25], [162].

4) INSURANCE UNDERWRITING

Insurance underwriting is a critical task for life insurers. It
is the task of evaluating financial risk related to providing
insurance coverage to a potential insurance applicant. This
risk measure helps life insurers to decide on an insurance
application and charge appropriate insurance price if it is
accepted.

Exclusion prediction is an important objective for under-
writing. This determines whether the insurance applicant
should be excluded from making a specific type of insurance
claim based on their historical records. Statistically, this can
be seen as a supervised classification problem [163].

Supervised learning methods: Both logistic regression and
gradient boosted trees have been shown to provide good
predictive performance for this problem [163]. However,
gradient boosted trees generally require fewer features than
logistic regression to generate similar predictive performance
for this task. This is important for downstream tasks, such as
questionnaire optimization (only including questions related
to important features). Some other notable algorithms include
support vector machines [164] and neural networks [29].

Unsupervised learning methods: A semi-supervised learn-
ing framework has recently been implemented for insurance
underwriting task which includes a soft k-means clustering
method to identify clustered responses to the underwriting
questionnaire [165].

Dimensionality reduction techniques, such as PCA have
also been used for this task to get better predictive perfor-
mance from the supervised learning models [29].

D. MANAGING OPERATIONAL RISK

Fraudulent Activities is one of the major sources of
operational risk for companies, particularly those in the
finance sector. It can take on many forms: for example,
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bank-activities related fraud (fraudulent credit card trans-
actions [19], [166], money laundering activities [167]),
insurance-related fraud (fraudulent insurance claims [28]),
securities and commodities fraud or other frauds such as
mass-marketing fraud or corporate fraud [168]. Financial
fraud can be economically devastating for a business [169].
Therefore, financial fraud detection systems are becom-
ing increasingly important for effective and timely fraud
prevention [170].

Financial fraud detection systems use machine learn-
ing algorithms to distinguish fraudulent financial data from
very large quantities of data [171]. These machine learn-
ing algorithms can be either supervised or unsupervised.
Both of these different family of methods are discussed
below:

Supervised learning methods: Many studies in the litera-
ture address fraud detection as a binary classification prob-
lem. Binary classifiers such as logistic regression [19], [168],
neural networks [168], k-nearest neighbor [19], decision trees
and support vector machines are widely used in this section of
the literature [19], [168], [172]. Feature engineering methods
can significantly improve the predictive performance of fraud
detection models [173].

Researchers have also used several ensemble learning
algorithms for fraud detection. Several meta-learning algo-
rithms can be used for detecting fraud [174]. Bagging ensem-
ble methods have also been used to address this problem
[175]. Many text-mining based algorithms have also been
proposed for detecting fraudulent activities [176]-[178].

It is important in fraud classification models to account
for miss-classification costs since the cost of false-positive
detection is not usually the same as the cost for detecting
false-negatives [179].

Unsupervised learning methods: A significant number of
works in literature addresses fraud detection as an anomaly
detection problem [28]. A theoretical framework for similar
anomaly detection tasks is provided in [180]. Deep learning
models can also be used for anomaly detection task [181].
Generative networks, such as GANs have been used to simu-
late and detect fraudulent activities [182].

Recently, semi-supervised graph-based networks have
been implemented to address the problem of few labelled
examples in fraud detection datasets [183].

Application of NLP in fraud detection: NLP techniques
have been widely used by researchers to mine text docu-
ments related to fraud detection. A major use case for NLP
in financial risk management is the task of analysing lin-
guistic features of annual reports. Ranking linguistic indica-
tors (such as words) using decision tree-based approaches
and then applying traditional classifiers, such as Sup-
port Vector Machines on the ranked words can signifi-
cantly improve the accuracy of identifying fraudulent reports
[184]. Numerous studies applied NLP to learn lessons from
the Enron Scandal [185]-[187]. Review of NLP applica-
tions in financial statement fraud detection can be found
in [188], [189].
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V. CURRENT CHALLENGES

In this section, we identify some major challenges in applying
machine learning for FRM. These challenges come from
three areas: data, algorithm, and models. An illustration of
these challenges in different FRM applications is given in
figure 2. The figure indicates the relevant challenges for each
FRM task mentioned in the previous section.

A. DATA

Most machine-learning methods, particularly deep-learning
methods, are data-hungry. The success of machine learning
depends heavily on the availability of high-quality training
data.

1) DATA AVAILABILITY

Lack of public datasets: Data privacy and sensitivity is a
major concern for the financial sector. Financial Institutions
store a large volume of private and sensitive information
which is generally highly regulated [190]. These data can not
be shared across different organizations, therefore, the mod-
els need to be trained in silos. Also, for tasks such as insurance
pricing or credit scoring, profiling of individual applicants
is required, for which specific variables of consumers may
have relatively high predictive power towards the model.
However, if these variables are deemed to be sensitive or
private, using these for predictions may have adverse regula-
tory consequences. It is highly challenging to build predictive
models excluding sensitive information without damaging
the predictive performance [191]. Some benchmark public
datasets relevant for research in this domain are enumerated
in Table 5.

Expensive data simulation techniques: Several FRM tasks
rely on simulation methods like Monte Carlo simulation
which is very flexible, yet extremely computationally expen-
sive when it comes to large portfolios. This simulation step
can significantly increase the time needed for calculating the
greeks of a large portfolio [32]. For example, for a portfolio
containing 100,000 policies, implementing a Monte Carlo
simulation using 1,000 risk-neutral scenarios in 50 different
market conditions for 360 monthly time step would require
1.8 x 10'? cash flow projections. This amount of cash flows
would take approximately 2,500 hours to be computed by
a computer that can process 200,000 projections per second
[209]. However, the calculated Greeks are generally used for
intra-day dynamic hedging, therefore the time available for
each simulation is generally much lower. This challenge may
be addressed with building a simpler model to approximate
results of the Monte Carlo simulation, also known as, meta-
modelling [210].

2) DATA QUALITY

Non-Stationarity: Many statistical methods used for FRM
assume constant distributional properties of the underlying
data [211]. However, it is widely accepted that real-life finan-
cial time series data may not follow a constant distributional
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FIGURE 2. Major challenges in machine learning for FRM.

property (e.g. heteroskedasticity of log asset returns) and
is highly variant across different timespans [6], [38], [212].
These changes are generally caused by various business
or economic cycles [213]. The non-stationarity of the
multi-variable correlations makes the problem even more
complex. Also, observables such as variances and corre-
lation coefficient can strongly depend on the length of
the time window the time series is sampled from [214].
This non-stationarity property of financial time series data
makes it difficult to apply machine learning models for
forecasting.

Noisy data: A financial time series data is believed to
contain a high amount of white noise or low signal-to-noise
ratio, which makes the task of accurate forecasting extremely
challenging [215]. Also, datasets used for fraud detection can
be extremely noisy [216]. Implementing noise reduction tech-
niques may improve the model performances for detecting the
interdependence of financial markets [217].

Imbalanced dataset: For problems such as fraud detec-
tion, where the number of fraudulent activities is extremely
low compared to non-fraudulent activities, the challenge of
unbalanced data set is highly evident [176], [212], [218].
Since the class of interest (fraudulent activity) is extremely
under-represented in the fraud detection datasets, the effec-
tiveness of binary classifiers is reduced significantly [182].
This naturally makes the learning task using simple classifiers
very challenging.
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B. ALGORITHM
Biased portfolio-level estimates: Many machine learning
models are trained to optimise the prediction on a single
unseen data point, often assumed an iid sample of the under-
lying distribution. For FRM, however, the primary interest
is not on individual contracts, but on the whole portfolio.
A model predicting well on individual-level measurements
may not predict well on portfolio-level measurements. In par-
ticular, it is well recognized that bias may be introduced when
the portfolio-level estimates are derived from individual-level
estimates [219]. Portfolio bias can come from two sources.
First, the training data may be a small subset of the whole
portfolio, and may not be representative of the underlying risk
distribution. For example, in metamodelling of Monte-Carlo
simulation, the training set size is limited by the simulation
budget. Next, machine learning models tend to create biased
estimates due to the use of regularization. Addressing these
two sources of bias will be key to solve the bias problem.
Slow convergence of sequence learning networks:
Although not specific to finance sector, several sequen-
tial networks (RNNs, LSTMs) are becoming increasingly
common in financial forecasting (for example, volatility
forecasting [37], loss reserving [54] and mortality fore-
casting [25]). This brings about the already known chal-
lenges of these networks, slow training time [220]. In
other domains, researchers have proposed several alternative
methods for sequential modelling, such as 1-dimensional

VOLUME 8, 2020



A. Mashrur et al.: Machine Learning for FRM: A Survey

IEEE Access

TABLE 5. Datasets for FRM research.

Volatility forecasting and portfolio optimization:
Yahoo! Finance [192]

Bloomberg Markets [193]

Wall street journal [194]

Two Sigma financial news data [195]

FRED Economic Data [196]
The Economist [197]

Sensitivity analysis:

Synthetic variable annuity datasets [198]
ties.

Credit scoring:

Multivariate time-series data that includes historical asset prices and other market data (e.g.
adjusted price, trading volumes).

Unstructured text data (Financial news) regarding financial assets.

Macroeconomic time-series data (for example, GDP, exchange rates, commodity prices).

Monte Carlo simulation results of synthetic insurance portfolios with derived market sensitivi-

Home credit default risk dataset [199]

Australian credit approval dataset [200]

German credit scoring dataset [201]

Collection of datasets that include historical financial attributes of loan applicants (including
previous loans, monthly credit balance, past payments).

Anonymised attributes of 690 Australian loan applicants used for credit approval decisions

Dataset containing attributes of German credit applicants with a binary response variable

indicating credit default risk

Claims modelling:

French motor third-party liability datasets [202]

Two datasets containing claim frequency and claims severity of auto-insurance policies along

with several demographic, behavioural, and vehicle-specific properties for each policy.

Loss reserving:

NAIC Schedule P Triangles [203]

Multivariate time-series data that includes claims history of 50 insurance companies during

accident years 1988-1997.

Australian private motor triangles [202]

Multivariate time-series data containing claims history of 2 lines of businesses of an Australian

insurer during 1978-1995.

Mortality forecasting:

Human mortality database (HMD) [204]
2016.

Insurance underwriting:

Prudential life insurance dataset [205]

Time-series data that includes historical mortality rates for multiple countries during 1950-

Dataset containing various attributes of life insurance applications and an ordinal response

measure indicating varying levels of risk

Fraud detection:

Credit card fraud detection dataset [206]
ber 2013.

Fraudulent online transaction detection [207]

Dimensionality-reduced historical credit-card transactions of European cardholders on Septem-

Two datasets containing several numeric and categorical properties of online transactions (for

example, transaction amount, used card type, user device).

Fraudulent firm classification dataset [208]
firms.

convolutions [221], attention-based models [222]. However,
research in the application of these methods in the FRM
domain is still limited.

C. MODEL
Model uncertainty: Many machine learning models are
highly stochastic in nature. For example, neural networks
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Non-confidential financial data of 777 firms in India used for classifying possible fraudulent

generally use stochastic gradient descent techniques to find
locally optimum weights [223]. These local optimas highly
depend on the initialised model weights which are selected
at random. This introduces uncertainty into the decisions
made by neural networks which can adversely impact
its acceptability in critical and highly regulated financial
tasks [224].
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FIGURE 3. Emerging machine-learning research directions (in the light-green boxes) and how they may address challenges in FRM.

Lack of explainability: Model interpretability and explain-
ability is a fundamental concern in the highly regulated
financial domain. Models that profile individuals to make
credit/pricing decisions are required to explain the rationale
for their decisions for ethical and regulatory purposes. Model
explainability is an active area of research, not just in finance
but in other sectors as well.

Lack of fairness: Many machine learning methods used in
finance rely on representational learning, however, external
biases may instigate the credit rating or insurance pricing
models to learn representations that may be discriminatory
[224], [225]. This is an active area of research in applied
machine learning [226], [227].

VI. FUTURE DIRECTION
Based on the challenges mentioned in the previous section,
we can highlight some key research directions that can highly
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benefit the machine learning applications within the FRM
domain. As illustrated in Figure 3, these challenges can
be addressed with several ongoing research areas within
machine learning literature. Some of these key research direc-
tions are discussed in this section.

A. FEDERATED LEARNING

Federated learning ( [228], [229]) adopts distributed training
techniques to avoid any data leakage. The aim of federated
learning is to maintain data privacy and security by training
a shared model without accessing data held by a different
party [230]. To addresses the challenges of data privacy in
finance, federated learning techniques can be used to enable
multiple-party model training without exchanging the under-
lying private or sensitive customer or financial data.
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Federated learning can be integrated with differential pri-
vacy techniques [231] to establish a stronger standard for
individual privacy in modelling tasks on sensitive FRM
datasets [232]. Differential privacy has been widely accepted
by both researchers and practitioners as the de facto stan-
dard of privacy [233]. A standard technique for achieving
Differential privacy is the Laplace mechanism, which adds
noise without deteriorating final model performance [234].
Whereas federated learning techniques mainly focus on pre-
venting sharing private data across multiple parties, differen-
tial privacy can add one more layer to overall model security
by ensuring that the federated model weights can not be used
to identify private information. Interested readers can find
more about the recent developments of deferentially private
federated learning in [229], [232], [235].

B. EXPLAINABLE Al

High-dimensional parametric models such as Neural net-
works are known to accurately identify latent correlations
among features and labels. Most of the current work in
literature focuses on applying these techniques mainly for
prediction purposes, but very few attempt to find the causal
relationship between features and model prediction. How-
ever, for many sensitive tasks in FRM, such as credit approval
decisions or insurance pricing, causal explanation of model
predictions can be of significant importance to both model
developers and regulators [236]. Several existing approaches
to identify causal explanation of decisions of complex predic-
tive models used in credit risk management tasks have been
reviewed in [236].

Model explainability and fairness both fit in the broader
recognition of “responsible AI”’ by technology companies
such as Google and Microsoft, which developed their own
Al principles [237], [238]. Throughout machine learning
literature, different methods to address model explainabil-
ity has been proposed by [239], [240]. There is also a
debate on how meaningful it is or when it is meaningful,
to explain the decision of a highly accurate model [241]. Inter-
ested readers can find more about the recent developments
in [242].

C. FAIRNESS-AWARE MACHINE LEARNING

Improvements in discrimination discovery and fairness-aware
machine learning techniques can significantly benefit highly
sensitive FRM tasks, such as credit approval or insur-
ance underwriting decisions. A comprehensive review of
fairness-aware machine learning techniques can be found
in [243].

D. UNCERTAINTY ESTIMATION

To address the challenge of model uncertainty in a criti-
cal application domain like FRM, it is important to accu-
rately estimate the measure of uncertainty involved with
each model-driven decision. Measuring uncertainty related
to neural network outputs is an area of active research.
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Prediction Intervals (PI) can be accurate indicators of uncer-
tainty associated with point forecasts by neural networks
[244]. This is highly beneficial for regression-based tasks
in FRM. Also, some notable machine learning models that
can quantify the estimated uncertainty of their prediction
are SDE-net [245]. MC-Dropout [246], and DeepEnsemble
[247]. A systematic review of neural network uncertainty and
methods for measuring this uncertainty can be found in [248].
Such methods can enhance the acceptability of decisions
made by machine learning models within this domain.

E. LEARNING FROM SMALL DATA

As discussed in Section V, many FRM tasks may suffer from
the challenge of data unavailability due to data privacy, lack of
historical records, or expensive simulation. This necessitates
the implementation of models that can learn from few exam-
ples efficiently. One approach to address this issue is to gener-
ate representative synthetic datasets. For example, generative
networks can be used to simulate datasets with fraudulent
activities [182]. Insurance datasets may also be synthesised
with such models for claims modelling or insurance pricing
purposes [249]. Another approach is to implement learning
techniques capable of learning effectively from a small num-
ber of examples. A comprehensive review of such small data
learning techniques can be found in [250].

F. ROBUST LEARNING

For FRM tasks that suffer from statistically problematic data
attributes such as non-stationarity or high amount of noise,
robust learning methods may be implemented. Since these
problematic data attributes (high noise or low signal-to-noise
ratio) are not only specific to the finance domain, there is an
active stream of research across different domains to learn
from extremely noisy data. Robust learning methods may
be implemented both in a classification context [251] or
time-series context [252].

G. IMBALANCED LEARNING

For tasks that suffer from highly imbalanced classes, imbal-
anced learning techniques may be applied to address this
issue. A comprehensive review of several machine learning

methods to address the issue of class-imbalanced datasets can
be found in [253].

H. OTHER RELEVANT RESEARCH DIRECTIONS

Improvements in attention-based models, such as the one pro-
posed by [183] can help learn better representations for fraud
detection models. These attention-based models are also
known to outperform traditional recurrent neural networks,
LSTMs, and GRUs for sequence modelling [220], which is
highly relevant in financial forecasting tasks. Also, portfolio
bias regularization methods (for example, [219]), can enable
regression-based models to achieve better portfolio-level pre-
dictive performance when the primary objective is to estimate
portfolio risk metrics.
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VIi. CONCLUSION

We have reviewed recent machine-learning applications in
financial risk management. We identified areas that have
been well-studied and also areas that require further research
efforts. The well-studied areas include volatility forecast-
ing, credit rating, bankruptcy prediction, fraud detection. In
these tasks, advanced machine-learning models, including
deep-learning models, have been extensively used. On the
other hand, areas such as mortality forecasting, loss reserving,
or claims modelling have not attracted an equal level of
attention.

In terms of models, although important research chal-
lenges still exist in the more traditional statistical models,
more high-value open problems involve the more advanced
machine-learning models. The FRM domain has much to gain
from leveraging recent breakthroughs in machine learning,
particularly deep learning, applied to other domains.

These include the new uncertainty estimation methods in
computer vision, robust algorithms for small, noisy, or non-
stationary data.

Finally, some generic machine-learning questions are
particularly central to FRM and will likely drive further
machine-learning development. In particular, federated learn-
ing systems have the potential to ensure private and more
secure learning using sensitive financial data. Explainability
and fairness of machine-learning models are also essential
considerations for FRM that require further research.
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