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ABSTRACT Deep convolutional neural networks have recently achieved dramatic success in super-
resolution (SR) performance in the past few years. However, the parameters of the mapping functions of
these networks require an external dataset for training. In this paper, we propose a convolutional network for
image super-resolution reconstruction that can be trained using an internal dataset constructed using a single
image. The proposed single image convolutional neural network (SICNN) is designed with two branches.
First, a large scale-feature branch trains the feature mappings that are from the low resolution (LR) image
patches to the high- resolution image (HR) patches. The LR image patches are the enlarged image patches
via bicubic interpolation. Second, the small scale-feature branch trains the feature mappings that are from
the down-sampling image patches to the enlarged image patches. In contrast to the existing SR networks,
the SICNN enjoys two desirable properties: 1) it does not require external datasets to conduct training, and
2) it enlarges an SR image at an arbitrary scale while restoring the clear edges and textures. The results
of evaluations on a wide variety of images show that the proposed SICNN achieves advantages over the
state-of-the-art methods in terms of both numerical results and visual quality.

INDEX TERMS Image super-resolution, convolutional neural network, internal dataset, arbitrary scale,

enlargement.

I. INTRODUCTION
Super-resolution (SR) reconstruction seeks to restore high
resolution (HR) images from one or more low resolution (LR)
images. Super-resolution (SR) reconstruction demands that
the image details can be still retained clearly while the
reconstructed images are being zoomed in or out on. Super-
resolution (SR) reconstruction is widely applied to video
supervision, medical imaging, military reconnaissance, and
remote surveillance [1]-[3]. This technology has therefore
attracted great attention over the last three decades and many
methods have been proposed. These methods can be divided
into the following three categories: interpolation-based
methods, reconstruction-based methods, and learning-based
methods.

Interpolation-based SR methods [4], [5] estimate the miss-
ing pixel in an HR image using the neighborhood pixels in the
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input LR image. Although the complexity of interpolation-
based methods is low, they usually result in blurred edges and
image details. Therefore, this type of method can only be used
as the preprocessing step of the SR task and not as an efficient
scheme for high-quality SR reconstruction.

Reconstruction-based SR methods use the prior knowl-
edge to reconstruct the HR image, that is, the recon-
structed HR image should be very similar to the input
LR image if the input is degraded by blurring and down-
sampling. Reconstruction-based SR methods can be divided
into the four subtypes: global prior-based [6], [7], local
prior-based [8], [9], self-similarity prior-based [10], [11], and
hybrid prior based [12] methods. The advantage of this kind
of method is that they do not require extra external datasets
while reconstructing the SR images. However, the perfor-
mance of this kind of method is not desired when the
enlarging scale factor becomes larger.

Learning-based SR methods [13]-[16] first learn the map-
ping relationship between LR and HR image pairs from an
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external training dataset and then estimate its HR image from
the test LR image using this mapping relationship. Learning-
based SR methods can be classified into four subtypes:
sparse coding-based [13], [14], regression-based [15], neigh-
bor embedding-based [16], and deep learning-based meth-
ods [17]-[34]. Among these subtypes, deep learning methods
based on a convolutional neural network (CNN) significantly
improve the super-resolution reconstruction performance by
learning many complex non-linear mappings.

The SRCNN [17] is the first convolutional neural net-
work (CNN) to recover HR images from LR images, and
it has made significant progress compared with traditional
methods. Although SRCNN only has three convolution lay-
ers, its performance is very stable. The shortcoming of this
network is that the input LR images must be the desired size,
which will make the input LR images lose some details. The
FSRCNN [18] uses LR images with arbitrary sizes as its input
and exploits deconvolutional layers to enlarge the feature
maps. Meanwhile, the proposed ESPCN [19] enlarges the
feature maps by replacing deconvolutional layers with sub-
pixel convolution layers. The subpixel convolution layer was
adopted in both SRResNet [20] and EDSR [21] to magnify
the final feature maps. However, the deconvolutional layer
and the subpixel convolution layer methods can only magnify
the feature maps at some certain integer scales (X2, X3, and
X4). Meta-SR [22] proposed to replace the typical upscale
module with a meta-upscale module that can dynamically
predict the weight for each pixel, thus generating HR images
with arbitrary sizes.

Some networks improved the image super-resolution
reconstruction performance by enhancing the network depth.
VDSR [23] increased the network depth and allowed the
number of convolution layers to reach 20 by introducing
residual learning. Many variants have been derived from
VDSR, such as SRResNet [20] and EDSR [21], which con-
tain more convolution layers than VDSR (SRResNet has
32 layers and EDSR has 64 layers). SRResNet also pro-
posed propagating the feature maps of each layer into all
subsequent layers to alleviate the vanishing gradient problem
by using skip connections. The DRCN [24] first adopted
a recursive learning to share parameters and increase the
receptive field, thus improving the performance of the net-
work. The DRRN [25] also introduced recursive blocks with
shared parameters to make the network stable. The RDN [34]
introduced direct connections among the layers within each
dense block so that the network has the characteristic of
dense connections. The dense connections further enhance
the depth and the performance of the network.

Increasingly more CNN-based methods were devoted to
learning the mapping function between the LR and HR
image pairs to improve the quality of SR images. However,
the reconstructed images from this type of method will eas-
ily generate artifacts when the difference between the input
image and the training images is large because the mapping
relationship of these methods heavily relies on the external
dataset. Second, it is not just impossible but also unrealistic
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to provide an appropriate external training dataset for each
image. ZSSR [26] filled the void and was the first and only
CNN to train the feature mapping using the patches separated
from a single image rather than an external dataset. The issue
is that ZSSR only trained the mapping function of images in
a single scale and failed to exploited the multi-scale of the
images.

In this paper, we proposed a convolutional neural net-
work not requiring an external training dataset for image
SR reconstructing. The dataset used to train the parameters
of the proposed convolutional neural network (SICNN) is
composed of image patches separated from the test image
itself. When the parameters of the SICNN tend to be stable,
the test image that is zoomed in or out on is input into the
SICNN, and the output of the SICNN will be the magnified
SR image with an arbitrary scale. The general overview of
the process for improving the performance of the SICNN is
shown in Fig. 1. Fig.2 shows its architecture consisting of
two branches: the large scale-feature branch is composed of
convolution layers and its input is obtained from up-sampling
on the HR image patches, and the small scale-feature branch
is composed of convolution layers and deconvolution layers
and its input is obtained from down-sampling on the HR
image patches. Here, the HR image patches correspond to
those separated from the test image. The purposes of using
the two branches are the following: 1) image details can be
clearly reconstructed by capturing image features at different
scales, and 2) the network training time and the depth of
the network can be reduced by expanding the width of the
network. In addition, residual learning is still introduced into
the large scale-feature branch, which ensures that the overall
features are passed to the subsequent layers of the network.
Experiments show that our proposed SICNN can reconstruct
the HR images with arbitrary scale factors without an external
training dataset.

The major contributions are summarized in three folds:
1) We propose a convolutional network (SICNN) to recon-
struct HR images with an arbitrary scale factor using an
internal dataset rather than an external training dataset; 2) We
propose using dual branches to extract the image features
from two scale image patches to improve the performance of
the SICNN; and 3) We propose first enlarging the LR image
to the proper size, then capturing the features and finally
reconstructing its HR image.

Il. RELATED WORK

Many strategies of upgrading the quality of SR images have
been developed. Here, our discussions focus on the strategies
that are relative to the proposed SICNN.

A. DATASETS

Most of the CNN-based SR reconstruction networks require
thousands of images from an external dataset (for example,
Set5 [27], Set14 [28], BSD100 [29], and Urban100 [30]) to
be trained by learning a nonlinear mapping function between
their HR and LR image pairs. In fact, it is external datasets
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FIGURE 1. The comparison of the proposed SICNN and other CNN networks.
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FIGURE 2. The architecture of the proposed SICNN.

that provide many training images so that CNNs can fully
maximize their good modeling ability, thus significantly
improving the image super-resolution reconstruction perfor-
mance. However, the external datasets have some defects:
first, in some applications such as hyperspectral images or
SAR images reconstruction, we do not have enough available
external datasets to train the CNN; second, although there are
probably lots of images included in datasets, there is still no
guarantee that each LR image can provide a suitable mapping
relationship; and last, huge datasets need a complicated and
time-consuming network to be competently used. The ZSSR
network combined internal datasets with a CNN for the first
time and used a large number of repeated LR image patches
to train the feature mapping to HR image patches. Some
experiments show that internal datasets have been proved
to result in better experiment results when the degradation
model of an HR image is unknown. Better quality SR images
are more likely to be achieved when the appropriate external
dataset cannot be obtained. Considering the advantages of
internal datasets, this paper extends the multiscale features
to the convolution neural network to fully mine the internal
dataset and improve the network performance.
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B. ARBITRARY ENLARGEMENT

As we all known, most existing SR networks based on a
CNN only consider the super-resolution of some certain inte-
ger scale factors (x2, x3, and x4). These networks treat
super-resolution of each scale factor (having not considered a
non-integer factor) as an independent task and zoom in on the
feature maps using deconvolution [18], [31], [32] or the sub-
pixel convolution [19], [21], [33], [34]. The aforementioned
networks must design a specific magnification scheme for
each scale factor. Each magnification scheme can zoom in on
the image only using a fixed integer scale factor. These issues
limit the use of SR networks based on CNNs to real-world
scenarios. Aiming at this problem, Hu et al. [22] proposed
a meta-upscale module, which is composed of convolution
layers, to magnify the feature maps. For an arbitrary scale
factor, the coordinates of the pixels of the feature maps and
scale-related vector are taken as the input of the meta-upscale
module and the output is the weights of the corresponding
pixels of the magnified images, thus generating HR images
with arbitrary sizes by using these weights. We observe that
the mechanism of meta method is the same as that of the
bicubic interpolation method. The only difference is that the
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weights of the former are trained via a convolutional neural
network, and the weights of the latter are calculated using
an interpolation formula. The dramatic success of the deep
convolution neural network in super-resolution (SR) perfor-
mance shows that the convolution neural network is better
at capturing the abstract features of images. In view of the
above reasons, the proposed SICNN directly trains each pixel
value of the LR images to reconstruct the SR images with an
arbitrary scale.

lll. PROPOSED METHOD

As computing hardware is improved, CNNs get more pow-
erful and take a longer time to train. This is because these
networks are getting increasingly deeper, and the number of
network parameters keeps growing. In fact, lots of convo-
lutional layers or a complicated network structure are not
necessary for the SR reconstruction of images with less
details and many smooth areas. In addition, the dataset con-
structed from a single image itself can meet the requirement
of training the feature mapping relations of these images. This
motivates us to design a small CNN to reconstruct an SR
image without an available external dataset. The proposed
SICNN is designed with the two branches and fulfils four
functions: small scale-feature mapping, large scale-feature
mapping, multi-scale feature fusion, and residual learning.
The architecture of the proposed SICNN is shown in Fig.2.
Before we detail the proposed the SICNN, the generation of
the internal dataset is first introduced.

A. INTERNAL DATASET GENERATING

The SICNN is designed to be trained with an internal dataset.
Compared with an external dataset, an internal dataset has
better adaptability and a shorter training time. The tested
image is used to create the internal dataset. This internal
dataset is further augmented through flipping, rotating, and
translation those image patches separated from the test image.
The size of the image patch of the internal dataset depends
on the enlargement factor. Supposing that the size of the test
image is N and the enlargement factor is r, there can be up
to N x N image patches in the constructed internal dataset
and the size of each patch should be N x r/2. The input of the
small scale-feature branch is the LR image patches (denoted
as Fp in Fig.2) which are obtained via down-sampling those
image patches belonging to the constructed internal dataset,
and whose size is N x r /4. The input of the large scale-feature
branch is the LR image patches (denoted as Fp) which
are obtained via bicubic interpolation those image patches
belonging to the constructed internal dataset, and whose size
is N x r/2. The output of the SICNN should be an image
with the size of N x r /2. In the training stage of the network,
the image patches in the dataset are considered as HR image
patches, and the LR image patches (denoted as X in Fig.2,
and their size is same as the size of the LR image patch Fy)
are obtained via down-sampling the HR image patches. The
proposed SICNN is trained by learning the mapping functions
between HR and LR image patches. In the reconstructing
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stage of an image, the input of the SICNN should also be the
test image with a size of N xr /2.

B. LARGE-SCALE FEATURE MAPPING

There are generally two methods to learn the mapping
between the LR image patches and the HR image patches.
The first one is to enlarge the LR image to the proper size via
interpolation and then extract the features from the interpolate
LR image using convolution kernels, which might result in
some detail features of the image being lost. The second
method is to directly extract the features from the LR image
using convolution kernels and then enlarge the image to the
output size using deconvolution at the end of the network.
Although the second method can greatly shorten the training
time, the detail features with the same scale might be lost.
Neither of the two methods can train fully the feature mapping
of the network. Considering the advantages of multiscale
features, the SICNN uses two branches, the feature mapping
of the small and the larger scales, to extract the features at
different scales from the LR image. The bottom branch shown
in Fig.2, consisting of 8 convolution layers followed by
8 rectified linear units, corresponds to the large scale-feature
mapping of the SICNN. The input is the LR image patches
(denoted as F'1) obtained from bicubic interpolation, and the
output is Fyg, which can be represented as

Fss = Hss (FS) (1)

where Hy; is a composite function including three consecutive
operations: a 3 x 3 standard convolution, batch normaliza-
tion (BN), and rectified linear units (ReLU); Fg denotes the
feature-maps generated by the 8" convolution layer, totaling
64 feature-maps. The number of feature maps of each convo-
lution layer in the large scale-feature branch is 64.

C. SMALL-SCALE FEATURE MAPPING
Large scale-feature mapping may not be able to learn some
small feature details because the bicubic interpolation will
cause these details to be too smooth to capture. To correct
the issue caused by bicubic interpolation, we also adopt small
scale-feature mapping to capture the small feature details
directly from the LR image patches and then use deconvo-
lution to enlarge the feature maps to the required size.

The deconvolution layer amplifies the feature maps with
a set of deconvolution filters, and it can be thought of as
the inverse operation of convolution. Just as convolution is
used to extract features by means of a convolution kernel,
the deconvolution can also capture the feature details. In addi-
tion, the deconvolution operation can enlarge the features to
the desired resolution of the output image by padding zeros
between the pixels of the LR image patch and then convolving
the padding image to the desired resolution. Moreover, the
deconvolution can simplify the calculation and speed up the
convergence of the loss function.

In the small scale-feature mapping branch, we extract the
features from the input LR image X directly using 4 con-
volution layers followed by rectified linear units (ReLU),
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and then increase the resolution and the output size through
2 deconvolution layers. The output of the small scale-feature
mapping branch is denoted as F,, which is concatenated with
the large scale-feature maps into the multiscale features.

D. MULTI-SCALE FEATURE FUSION AND RESIDUAL
LEARNING

The small scale-feature mapping and the large scale-feature
mapping produce two sets of 64 channel feature maps con-
taining the features extracted from the image patches with
different scales. Multiscale feature fusion concatenates these
two sets of feature maps and gets a set of 64 channel feature
maps again, which can be denoted as

mx([Fss’ FCS]) (2)

where [F, F5] denote the concatenation of the convolu-
tion layers of the small scale-feature mapping and the large
scale-feature mapping, respectively, and H,,, refers to a com-
posite operation of 1 x 1 and 3 x 3 convolutions. First, 1 x 1
convolution kernel is used to fuse the multi scale features and
reduce the number of the feature maps, and then a 3 x 3
convolution kernel is used to extract the multiscale features
again and realize residual learning.

Although a small CNN meets the requirement for recon-
structing SR images with fewer details and many smooth
areas, it is crucial to ensure that the overall features of images
are passed from the current convolution layer to the next.
To end this, we introduced residual learning [31] to directly
connect the overall features of the LR image patches to the
subsequent convolution layer. The final output of the SICNN
is denoted as

Fs =

IV. EXPERIMENTS
The motivation of the SICNN that was designed is how
to reconstruct HR images using a deep convolutional neu-
ral network when we have no external dataset suitable for
training at hand. We conduct several experiments to vali-
date the performance of the SICNN. First, we examined the
SR images from the SICNN that was respectively trained
with an internal dataset and an external dataset. Second,
we examined the effect of multiscale feature mapping on the
SICNN. Third, we examined the magnification performance
of the SICNN. These three experiments are our ablation
study, displaying the impact of the basic components on the
performance of the SICNN. Finally, we selected six represen-
tative SR methods as the comparison baselines to evaluate
the SR image quality of the SICNN: bicubic interpolation;
a reconstruction-based SR method that requires no external
datasets (CTV-DNLM [11]),three CNN-based methods that
require external datasets (SRCNN [17], the RDN [34] and
the meta network [22]), and the ZSSR network [26] that uses
internal datasets.

The peak signal-to-noise ratio (PSNR) and structural sim-
ilarity (SSIM) [35] are used to evaluate the SR results of the
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simulation images. We also use the information fidelity cri-
terion (IFC) to measure the restored image details. Ref. [36]
pointed out that the SSIM index and the IFC index are bet-
ter for evaluating the fidelity of detail features. The higher
the values are, the more similar the local structures of the
image will be and the better the fidelity of the image will
be. For the images from real-world scenarios, we introduced
reference-free image quality evaluation metrics such as the
NIQE [37] and SSEQ [38] to evaluate the SR quality due
to the lack of the corresponding true HR images. These two
indices are sensitive to the detail contrast, texture diversity
and content sharpness of the images without the requirement
for HR reference images. Therefore, they are particularly
suitable for the quality evaluation of images from real-world
scenarios [39]. The smaller the NIQE and the larger the
SSEQ, the better the image quality.

A. EXPERIMENTAL SETTING
In the training phase, many patches are separated from the
tested image and are down-sampled to get the LR image
patches. The LR image patch X via down-sampling operation
is taken as the input of the SICNN and the original image
patch is taken as the ground truth image patch or the HR
image patch. Supposing that the test image has the size of
N x N, there can be up to N x N image patches in the internal
training dataset. This internal dataset is further augmented
through applying the flipping, rotating, and translation oper-
ations to those image patches separated from the test image.
The size of the training patches is determined according to
the scale factor. If the size of the test image is 100 x 100
(N = 100) and the scale factor is 1.2, the number of the
training patches will be 100 x 100 and each patch should
have the size of 60 x 60. Meanwhile, the LR image patch X
from the down-sampling operation will be 30 x 30. Once
the network is trained, the test image (whose size should be
60 x 60 via down-sampling operation) can be fed into the
network. The output will be the desired high-resolution image
(whose size will be 120 x 120) and be enlarged by 1.2 times.
In the SICNN, except for the 1 x 1 convolutional layer
after the concatenation, the other convolutional layers consist
of 64 filters with a size of 3 x 3. We use the L; smooth loss
with the ADAM optimizer and start with a learning rate of
0.001. The final convolution layer is 3 or 1, where the former
corresponds to a color image and the later refers to a gray
image.

B. ABLATION STUDIES

1) THE EVALUATION OF THE INTERNAL DATASET

In this section, we aim to verify that the SR qualities of
some images can also be obtained by learning their own
characteristics through the proposed SICNN when an external
dataset is not available. To end this, we first respectively con-
struct internal datasets using two different types of images.
If SICNN is trained by using the internal dataset that is
constructed by the image (as shown in Fig.3(b)) who has a
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FIGURE 3. The distributions of the Sobel gradient of the images used to
construct 6 internal datasets.

more decentralized distribution of gradient values, SICNN is
represented as SICNN-1. If SICNN is trained by using the
internal dataset that is constructed by the image (as shown
in Fig.3(a)) whose gradient distribution is relatively concen-
trated within the small gradient value, SICNN is denoted as
SICNN-2.The abscissa of Fig. 3 represents the mean square
value of Sobel gradient and its ordinate indicates the number
of pixels with the same Sobel gradient. Each color represents
a bin that reveals the underlying distribution of the number
of pixels within a certain range of Sobel gradient. There
are relatively few pixels with large gradient values in the
images shown in Fig. 3(a), There are relatively a lot more
pixels with different gradient values in the images shown
in Fig. 3(b). We took the SRCNN [17], the ZSSR [26] and
the CTV-DNLM [11] as the comparison baselines. Regard-
ing these methods, the SRCNN requires an external dataset
for training, and 10 thousand images of its external dataset
came from ISLVRC 2012 [40] and the Waterloo Explo-
ration Database [41]; the ZSSR network and CTV-DNLM
method based on reconstruction are the same as our proposed
SICNN and do not need an external dataset. An image with a
size of 256*256 can construct an internal dataset containing
65536 image patches. This number of patches is equivalent
to the number of images in an external dataset training a
network. The PSNRs obtained from these methods are shown
in Fig.4. In Fig.4, ZSSR is represented as ZSSR-1 when it is
trained by using the same dataset with SICNN-1, else ZSSR
is denoted as ZSSR-2.

It can be seen from Fig.4 that when the performance of
the networks tends to be stable, the PSNRs obtained from
SICNN-2 are higher than those of the other methods. The
results from SICNN-1 are lower than those of SRCNN but
higher than those of the ZSSR-1 network and CTV-DNLM
method. This demonstrates that the proposed SICNN is good
at reconstructing the SR images containing not too much
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different gradient information via the internal dataset. For
those images with a relatively centralized distribution of
gradient values, the self-similarity of an image is very high.
The SICNN-2, which is trained using the internal dataset
constructed from highly similar images, is bound to be very
familiar with this image, and so it can acquire better SR
images. For those images with a more decentralized distri-
bution of gradient values, the performance of the SICNN-1 is
also superior to those of the ZSSR network and CTV-DNLM
method that do not require an external dataset. The PSNR
numerical results shown in Fig.3 illustrate that although the
overall performance of the proposed SICNN is not as good
as that of the SRCNN using the external dataset, it offers sig-
nificant advantages over other SR methods using the external
dataset when the external dataset is not available.

2) THE BEHAVIOR OF THE MULTI-SCALE FEAURE MAPPING
The input image is enlarged to the proper size via interpola-
tion and then the features are extracted from the interpolated
LR image using convolution kernels, which might lead to
some detail features of the input image being lost. To make
up for its weakness, we also directly extract the features from
the input image using convolution kernels and then enlarge
the feature maps to the output size via deconvolution. In the
SICNN, we designed the small scale and the larger scale fea-
ture mapping branches to respectively extract the features at
different scales from the input image. To verify the effective-
ness of this scheme, we conducted the following experiments:
the feature extracting and the feature learning are operated
just using the large scale-feature mapping branch and the
small scale-feature mapping branch is omitted. We denoted
such network as SICNN-1. Like the last experiment, we
took the ZSSR network as the comparison baseline method
because it is also a super-resolution reconstruction algorithm
for an internal dataset and examined the PSNRs, SSIMs and
IFCs obtained from the ZSSR network, SICNN-1 method and
SICNN method.
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Fig. 5 shows the probability distributions of the PSNR,
SSIM and IFC gains of the 50 SR images with a magnification
factor of 2.5. These gain values are respectively obtained from
the proposed SICNN and SICNN -1 relative to the baseline
ZSSR method. The statistical results illustrate that the per-
formance of the SICNN is significantly superior to that of the
ZSSR method. Meanwhile, the performance of SICNN-1 is
very close to that of the ZSSR method. This indicates that
the strategy that adopts the small scale and the larger scale
feature mapping branches to respectively extract the features
at different scales for the LR image can significantly improve
the SR performance of the SICNN.

3) THE MAGNIFICATION WITH ARBITRARY SCALE

There are not many super-resolution algorithms that focus
on any scale factor. Thus, we use the following methods
as baselines to evaluate the magnification superiority of
the SICNN. Bicubic interpolation can be used to enlarge
images. Therefore, the first baseline is the bicubic interpo-
lation method used to enlarge the HR image. The second

VOLUME 8, 2020

baseline (IPW) interpolates the HR image to the needed size
and then uses the convolutional layers to predict the weights
for each interpolation pixel. The third baseline is the meta
method [22] which designs a special convolutional module
to predict the weights of each pixel and utilizes the residual
dense block (RDB) [34] to capture and train the feature of the
input image. The fourth baseline is the ZSSR network [26]
which only uses a single branch of small scale-features to
capture and train the features from the input image. We train
all these models on an arbitrary scale factor together.

The experimental results are shown in Fig.6. The top row
of each subgraph is the visual result of the baseline method
and the bottom row is the visual result of the SICNN. The
top row of Fig. 6 (a) shows that the stripes obtained from the
bicubic interpolation are too blurry to distinguish. This shows
that upscaling the input image with only bicubic interpolation
not only cannot make any texture or details clear, but it
also causes many details to be lost. Both the IPW method
and the meta method are used to learn the optimal weights
of the interpolated pixel for an arbitrary scale factor via
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TABLE 1. The average results of PSNR (dB), SSIM, and IFC from the Bl degraded images for arbitrary scale factors.

Dataset Scal Methods
atase cale Bicubic RDN CTV-DNLM SRCNN ZSSR Meta SICNN
27.96 3327 33.01 33.84 33.85 33.76
x 2 0.7123 0.8875 0.8302 0.8530 0.8865 0.8938 0.9017
1.5495 2.3844 1.8289 2.0097 2.2241 2.4297 24721
24.04 30.46 30.64 30.93 30.89 31.25
Sets x 3 0.5697 0.7758 0.7467 0.7772 0.7833 0.7782 0.7869
1.4382 1.5917 1.5382 1.5765 1.5978 1.5973 1.5988
26.48 - - 30.75 30.64 31.08
x 1.2 0.6621 - 0.7443 . 0.7905 0.7841 0.8021
1.5047 - 1.6336 - 1.6558 1.6532 1.6605
26.01 33.04 31.94 32.15 33.24 33.23
X2 0.6834 0.8479 0.8068 0.8127 0.8466 0.8475 0.8524
1.5358 2.2354 1.7125 1.9276 2.1728 2.2263 22212
23.04 30.08 3042 30.75 30.82 30.97
Set14 x 3 0.5385 0.7753 0.7531 0.7654 0.7693 0.7712 0.7792
1.4571 1.5694 1.5496 1.5499 1.5674 1.5712 1.5869
24.63 - - 30.16 30.29 30.33
x 1.2 0.5465 . 0.7803 . 0.7938 0.8047 0.8119
1.4892 : 1.6337 N 1.6453 1.6351 1.6467
25.17 3348 32.09 33.43 33.42 3321
x 2 0.6929 0.8276 0.8067 0.8293 0.8327 0.8324 0.8309
1.5021 2.2353 1.8255 1.9547 2.1369 22357 22164
23.63 31.99 3136 31.97 3223 32.62
BSD100 x 3 0.5899 0.7812 0.7612 0.7724 07812 0.7873 0.7902
1.4418 1.6049 1.5525 1.5671 1.5836 1.6114 1.6256
2436 - - 32.73 32.64 32.81
x 1.2 0.6127 . 0.7879 . 0.7995 0.7907 0.8073
1.4863 : 1.5648 N 1.6476 1.6324 1.6792
2624 32.06 29.83 31.92 32.83 3272 32.65
x 2 0.6392 0.8294 0.7674 0.8135 0.8279 0.8306 0.8301
1.5352 2.0245 1.8556 1.9306 2.0344 2.0121 2.1437
24.15 3147 2948 30.85 31.06 31.87
Urban100 x 3 0.5993 0.7994 0.7023 0.7551 0.7921 0.8071 0.8133
1.4418 1.6125 1.5546 1.5789 1.5936 1.6086 1.6354
2534 - - 3261 30.97 32.16
x 1.2 0.6127 . 0.7279 . 0.8192 0.7892 0.8235
1.4736 : 1.5638 N 1.6865 1.6565 1.6920
2536 32.53 31.13 3241 3242 3291
X 2 0.6185 0.8126 0.7463 0.7927 0.8126 0.8185 0.8164
1.5129 1.9507 1.8214 1.9042 1.9695 1.9657 2.0456
2291 29.92 29.12 30.19 31.04 31.98
Manga109 x 3 0.5727 0.7823 0.7021 0.7342 0.7687 0.8074 0.7902
1.4344 1.5987 1.5468 1.5669 1.5812 1.6093 1.6256
23.16 - - 31.88 31.54 32.03
x 1.2 0.6038 . 0.7196 . 0.8098 0.8092 0.8176
1.4563 : 1.5573 N 1.6254 1.6476 1.6827

convolutional layers. The difference is that the former uses
the same convolution kernel for the different scale factors
while the latter uses different convolution kernels. Convo-
lution is good at capturing and learning the abstract features
of an image but not good at computing the weights of pixels.
The ZSSR network and the proposed SICNN are to capture
the features of the enlarged images using the convolutional
layers. The difference is that the SICNN not only captured
the features from the enlarged image, but it also captured the
features from the original image patches. Therefore, although
the visual results from the meta method and the ZSSR method
are both better than those of the IPW method, they are still
clearly inferior to those of the proposed SICNN (shown in
the bottom row of each subgraph). As the magnification
increases, the shoe heels from the IPW method (Fig.6(b)) are
not quite clear; the strips from the meta method (Fig.6(c))
are somewhat unclear, and the petals from the ZSSR method
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(Fig.6(d)) are somewhat clear. However, the visual results
of these images obtained from the SICNN are considerably
clearer. This demonstrates that the proposed SICNN has good
magnification performance and is more efficient than these
baseline methods.

C. COMPARISON WITH OTHER METHODS

To comprehensively verify the performance of the proposed
SICNN, we examine the SR results of the proposed SICNN
on simulated images and real-world images, respectively. The
simulated images are the images degraded by applying certain
processes on some images from the datasets, including the BI
degraded images and the DN degraded images. We processed
some images selected from the five datasets (Set5 [27],
Set14 [28], BSD100 [29], Mangal09, and Urban100 [30]) in
the same way as Ref. [34]. Using the MATLAB environment,
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(e) RDN (f) Meta

(9) ZSSR (h) SICNN

FIGURE 7. Visual comparison of SR results (x2 scale) of Bl degraded image comic.

BI degraded images are obtained by using bicubic down-
sampling, and DN degraded images are obtained by adding
Gaussian noise at a level of 10. Meanwhile, the scale factor is
set to 2 times, 3 times, and 1.2 times, respectively, to examine
the magnifying performance of the SICNN. The regions of
interest (ROIs) in each resultant image are magnified using
bicubic interpolation with a scale factor of 2 or 3 and shown
in the corners to compare the high frequency details obtained
from different methods.

1) COMPARISONS ON BI DEGRADED IMAGES

The quantitative assessment values in terms of the
PSNR, SSIM, and IFC obtained from the SRCNN [17],
the meta network [22], the RDN [34], bicubic interpolation,
the CTV-DNLM method [11], and the ZSSR network [26]
are presented in table 1. The SICNN achieves the better
metric values. In particularly, the three metrics of the SICNN
network outperform those of the SRCN, meta network, and
the RDN by large margins when some relatively smooth
images are magnified with a non-integer power of 2. For
the SRCNN, the RDN, and meta network that require exter-
nal datasets, when suitable training datasets are available,
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these deep convolutional neural networks can have powerful
learning capabilities by integrating multiple convolutional
layers and providing accurate predictive features for the SR
image. However, these networks all first reconstruct the LR
images and then the obtained HR images are enlarged using
other approaches. That is, reconstruction and magnification
are two separate tasks, which may degrade the quality of
the obtained HR images. In the SICNN, an LR image of
any arbitrary size and ratio can be its input, which means
that the enlarged image can also be used as the input of
our network. When the image is enlarged, the details of the
image may be lost. To overcome this problem, we designed a
double branch of convolution layers: the bottom branch trains
the large scale-feature mappings, and the top branch trains
the small scale-feature mappings and enlarges the obtained
feature maps via deconvolution. These components are useful
for improving the numerical indicators of the SICNN. This is
also confirmed by the visual results of the HR images.

The visual quality of BI degraded images (comic and
imag_068) are shown in Fig. 7 and Fig.8. Bicubic interpo-
lation has the worst visual quality despite its very easy and
fast operations. Owing to being able to extract multidirec-
tional and anisotropic features, the CTV-DNLM method can
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(e) RDN (f) Meta
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(9) ZSSR (h) SICNN

FIGURE 8. Visual comparison of SR results (x3 scale) of Bl degraded image img_068.

(a) The DN image

(e) RDN (f) Meta

(9) ZSSR

(h) SICNN

FIGURE 9. Visual comparison of SR results (x3 scale) of DN degraded image img_071.

estimate more detail information from the images compared
with bicubic interpolation method, but some obvious artifacts
also appear along the edges. The SRCNN, the RDN, and
the meta network are the three deep convolutional neural
methods using external training datasets and they achieved
satisfactory visual results of the SR images. The meta net-
work and the RDN are good at restoring the edge and texture
details and only produces slight artifacts at the sharp edges.
The RDN method [34] is far better than the CTV-DNLM
method. However, compared with the SCICNN, the RDN
loses quite many details along the edges and the edges look
very unnatural. The meta network is clearly inferior to our
SICNN both in reproducing natural-looking details and pre-
serving sharp edges when the magnification images with
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a non-integer power of 2 must be reconstructed. This may
result from the difference between computing the weights
of the interpolation pixels and capturing the features of the
interpolation pixels. The SICNN achieved SR images with
better visual quality than those of the meta network and the
RDN. Although the ZSSR network is also a convolutional
neural method using an internal training dataset and can also
be applied to SR images with any size, the captured and
trained features are from only the enlarged images and the
enlarged images have already lost considerable details, thus
resulting in noticeable jagged artifacts being produced in the
textured regions. By comparison, the SICNN was trained not
only using the large scale-feature map but also using the
small scale-feature map; therefore, it can capture and train as
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TABLE 2. The average results of PSNR (dB), SSIM, and IFC from the DN degraded images for arbitrary scale factors.

Dataset Scale Methods

Bicubic RDN CTV-DNLM SRCNN ZSSR Meta SICNN

26.85 32.68 30.07 30.90 32.73 32.74 32.65

X 2 0.7012 0.8793 0.8291 0.8419 0.8754 0.8827 0.8806

1.5384 2.3089 1.8178 1.9986 2.2130 2.3186 2.3610

23.93 29.47 28.05 29.53 29.82 29.78 30.14

Set5 X 3 0.6586 0.7685 0.7356 0.7661 0.7722 0.7671 0.7758
1.4271 1.5852 1.5273 1.5862 1.5867 1.5864 1.5857

25.37 - 29.12 - 29.64 29.53 29.97

x 1.2 0.6512 - 0.7332 - 0.7795 0.7730 0.7913

1.4936 - 1.6225 - 1.6447 1.6421 1.6496

25.49 31.99 29.54 30.83 31.04 32.13 32.12

X 2 0.6723 0.8374 0.7957 0.8016 0.8355 0.8364 0.8413

1.5247 2.1246 1.7014 1.9165 2.1617 2.2152 2.2103

21.93 30.57 27.68 29.31 30.75 30.82 30.97

Set14 X 3 0.5274 0.7601 0.7423 0.7543 0.7582 0.7641 0.7632
1.4462 1.5628 1.5385 1.5387 1.5563 1.5601 1.5758

23.52 - 26.27 - 29.05 29.18 29.22

x 1.2 0.5354 - 0.7692 - 0.7827 0.7936 0.8008

1.4781 - 1.6226 - 1.6342 1.6243 1.6356

24.06 32.39 29.27 3091 3222 32.32 32.10

X 2 0.6818 0.8134 0.7956 0.8182 0.8216 0.8217 0.8191

1.4914 2.1132 1.8144 1.9436 2.1258 2.2246 2.2053

22.52 30.04 27.95 30.25 30.86 31.12 31.51

X 3 0.5785 0.7725 0.7501 0.7613 0.7701 0.7762 0.7791

BSD100 1.4307 1.5923 1.5414 1.5562 1.5725 1.6002 1.6145
23.25 - 28.24 - 31.62 31.53 31.72

X 1.2 0.6016 - 0.7768 - 0.7884 0.7796 0.7962

1.4752 - 1.5537 - 1.6365 1.6213 1.6681

25.13 31.75 28.72 30.81 31.72 31.61 31.54

X 2 0.6281 0.8146 0.7563 0.8024 0.8168 0.8195 0.8191

1.5241 2.0172 1.8445 1.9195 2.0232 2.0010 2.1326

23.044 30.63 27.63 28.37 29.74 30.94 30.76

Urban100 X 3 0.5882 0.7954 0.6912 0.7443 0.7811 0.7963 0.8022
1.4307 1.6026 1.5435 1.5678 1.5825 1.5975 1.6243

24.13 - 28.52 - 31.52 29.86 31.05

x 1.2 0.6016 - 0.7168 - 0.8081 0.7781 0.8124

1.4625 - 1.5527 - 1.6754 1.6454 1.6809

24.25 31.29 28.16 30.02 31.30 31.31 31.83

X 2 0.6074 0.8096 0.7352 0.7816 0.8015 0.8074 0.8053

1.5018 1.9458 1.8103 1.8931 1.9584 1.9546 2.0345

21.82 29.88 26.87 28.01 29.08 29.93 30.87

Mangal09 X 3 0.5616 0.7815 0.6912 0.7232 0.7576 0.7983 0.7791
1.4233 1.6026 1.5357 1.5557 1.5701 1.5982 1.6145

22.05 - 27.24 - 30.77 3043 30.92

x 1.2 0.5927 - 0.7085 - 0.7987 0.7981 0.8065

1.4452 - 1.5462 - 1.6143 1.6265 1.6716

many image features as possible, achieving the desired visual
results of the SR images.

2) COMPARISONS ON DN DEGRADED IMAGES

In this section, we conduct experiments on simulated noise
images to verify the performance of the proposed SICNN in
the presence of the noise. The noise level o is set to 10 to
imitate a real noise image. Table 2 shows the PSNRs, SSIMs
and IFCs obtained from these imitated noise images using the
different methods.

We observed that these assessments are all lower than those
of the results obtained from the BI degraded images of the
previous experiment. Among all these methods, the SICNN
still has advantages since it not only has the higher PSNR
mean values but it also has relatively high SSIMs and IFCs.
The results of the bicubic interpolation method are the low-
est. Higher PSNRs indicate that the denoised images are
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closer to the original clean images; higher SSIMs and IFCs
demonstrate that the methods are good at restoring the details
such as the edges and textures from a noisy image. For
the noisy images with a certain known level, meaning that
the paired training dataset is available, the networks have a
powerful capability of extracting features, which can provide
accurate predictive features for the output data. Thus, the
assessment values obtained from the convolutional neural
networks (SRCNN, RDN, and meta) are higher than those
of the reconstruction-based SR methods (CTV-DNLM). The
numerical results from the ZSSR network are considerably
better than those of the reconstruction-based SR methods but
inferior to those of the SICNN because the ZSSR captures
features only from the enlarged images.

Fig.9 and Fig.10 show the visual results from these meth-
ods when applied to DN degraded images (img_071 and
img_001), respectively. Although the Bicubic method is
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s e
(e) RDN (f) Meta

FIGURE 10. Visual comparison of SR results (x2 scale) of DN degraded image img_001.

TABLE 3. The average results of NIQE and SSQE from the real-world images with a magnification factor of 3.

Num Indices — Methods
Bicubic CTV- DNLM SRCNN RDN Meta ZSSR SICNN
200 Avg NIQE 0.9489 0.9432 0.9561 0.9398 0.9174 0.9296 0.9153
200 Avg SSEQ 7.3251 7.3247 7.3275 7.5639 7.5286 7.4325 7.7502

insensitive to noise, the SR images are oversmoothed and
lots of details have been lost. The CTV-DMLN produces
slight artifacts at the edges despite removing the noise. The
SRCNN preserves the rich details of edges but the details
are sharpened. The RDN, the meta network and ZSSR net-
work both achieve good quality for image edges and textures
in spite of there being a few jaggy artifacts in the smooth
regions when they handle slightly smoother images with the
amplification factor of an integer multiple of 2(for example,
the scale factor is 2). The SR results of the ZSSR network
are inferior to those of the meta network but its results are
very close to those of the RDN when they handle the images
with abundant details with the amplification factor of not
an integer multiple of 2 (for example, the scale factor is 3).
In contrast, the proposed SICNN achieves a good balance
between removing the noise and recovering the detail features
of images, achieving satisfactory visual quality regardless of
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whether the magnification factor is an integral multiple of 2
or not.

3) COMPARISONS ON REAL-WORLD IMAGES

The simulated experiments cannot adequately validate the
effectiveness of the proposed method since the degraded
images in the simulation are not acquired in a real degrada-
tion way. In view of this, we repeat the SR experiments on
real-world LR images to illustrate the feasibility and robust-
ness of the proposed SICNN in some real-world scenarios.
We randomly collected 260 representative images, which
were obtained in the real world under complex degradation
conditions such as environmental noise, motion blur and dim
light. In this experiment, we focus on the comparisons of the
quantitative indicators (NIQE and SSEQ) because there are
no corresponding HR images.
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(a) House

(b) Text

FIGURE 11. Two real-world images and the corresponding ROls.

(d) RDN (f) Meta

(g) ZSSR

(h) SICNN

FIGURE 12. Visual comparison of SR results (x2 scale) of real-world image House.

The quantitative evaluation of the baseline methods and
our SICNN, that is, the NIQE and SSEQ indicator values,
are shown in Table 3. The NIQE index is used to measure
the quality of distorted images and is expressed as a simple
distance between the distorted images and the model that is
constructed via statistical features collected from a natural
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scene. The SSEQ index can assess the quality of a distorted
image across multiple distortion categories by utilizing the
local spatial and spectral entropy features of distorted images.
The larger the SSEQ and the smaller the NIQE are, the better
the SR reconstruction quality. In Table 3, the SSEQ of the
CTV- DNLM method is the lowest while the NIQE of the
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(a) real-world image

(b) Bicubic

(d) RDN (f) Meta

(c) CTV- DNLM (d)SRCNN

(9) ZSSR (h) SICNN

FIGURE 13. Visual comparison of SR results (x3 scale) of real-world image Text.

SRCNN network is the highest, which are partly because
these two schemes cannot estimate the fine details in the
textural region. Overall, the metrics for the different methods
on the House and Text images suggest that the results of our
SICNN are the most satisfactory.

Two ROIs selected from the House and Text images are
presented in Fig. 11. Figs.12 and 13 show the SR image
qualities obtained from the baseline methods and the pro-
posed SICNN when the images are magnified by 3 times.
From the results, we see that the comparison methods bicubic
interpolation, CTV-DNLM [11], SRCNN [17], meta [22],
RDN [34], and ZSSR [26] have some details lost to some
extent or blur some texture details and edges. In contrast,
our proposed SICNN can generate clear image details and
well restore image textures. The results of our SICNN contain
finer textural details and fewer noticeable artifacts along the
sharp edges.

V. CONCLUSION

In this paper, we proposed a novel multiscale network, which
creates an internal dataset using the test image itself and
exploits a double-branch structure to capture and train the
image features at different scales, for SR image reconstruc-
tion (SICNN). To make full use of the relative information
between the local features and the overall features, residual
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features learning is introduced to the branch structure of
large scale-feature mapping to further boost the reconstruc-
tion performance. Another difference from the existing SR
image reconstructing network is that the SICNN first enlarges
the image and then reconstructs it. This means two things:
the image can be reconstructed at any arbitrary scale, and the
reconstructed feature map can be directly concatenated to
form the final image without any more enlargement. The
quantitative and qualitative evaluations demonstrate that the
proposed SICNN outperforms the existing super-resolution
methods from some images with relatively centralized distri-
bution of the gradient values; furthermore, the comprehen-
sive evaluations on benchmark datasets demonstrate that the
proposed SICNN achieves performance close to the state-of-
the-art super-resolution methods but it is clearly superior to
those methods that do not require external datasets.

In future work, we will explore a suitable strategy to share
the parameters and thus extend our SICNN model to the
SAR image restoration field because it is difficult to obtain
appropriate external datasets for SAR images.
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