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ABSTRACT Adaptive transmission (AT) is considered as one of the critical technologies to enhance the
effectiveness of communication systems. In this article, we propose a model-driven deep learning (DL)
scheme for AT in multiple-input multiple-output single-carrier frequency-domain equalization (MIMO-
SCFDE) systems, in which the adaptive modulation network (AMNet) and adaptive demodulation net-
work (ADNet) are adopted to complete the modulation of the signal and the modulation recognition of
the receiver. Under the target bit error rate (BER), the adaptive modulation (AM) scheme can adjust the
modulation mode selection of different transmitting antennas adaptively according to the estimated channel
information to improve the throughput. The features required by the AMNet are extracted from the received
signal, and the labels are assigned according to the optimal modulation scheme got by analyzing the signal
detection performance. Since the spectral correlation function has a powerful ability to suppress noise and the
cyclic spectrum varies with the modulation mode, we take the preprocessed cyclic spectrogram as the input
of ADNet to achieve the adaptive modulation recognition (AMR). Comparative experiments demonstrate
that the proposed scheme gets better performance in terms of throughput and reliability in MIMO-SCFDE
systems than the traditional scheme and the existing DL scheme.

INDEX TERMS Model-driven, deep learning, adaptive transmission, MIMO-SCFDE, adaptive modulation,
adaptive demodulation.

I. INTRODUCTION
Adaptive transmission (AT) refers to the technology that the
transmitter utilizes the channel state information (CSI) to
adjust the transmission strategy adaptively, including chang-
ing the transmission power, adjusting the modulation mode,
or adjusting the channel coding scheme so that the system can
improve the information transmission rate or reliability [1].
Traditional AT technology mostly enhances the performance
of the communication system through sophisticated algo-
rithms [2]. However, for 5G communications that require
high efficiency and high density, the increase in compu-
tational complexity will inevitably reduce the effectiveness
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of communications. With the resurgence of artificial intelli-
gence (AI) technology, deep learning (DL) as an advanced
data processing algorithm has been widely used in image
analysis and speech recognition [3]. The organic combi-
nation of DL and wireless communication will become a
breakthrough in physical layer transmission [4].

The research on applyingDL to the physical layer is mainly
divided into two types: data-driven network andmodel-driven
network [5]. The data-driven DL network regards the mul-
tiple function blocks of the wireless communication system
as an unknown black box replaced by the DL model and
then relies on a large number of labeled data to complete
the input-output training [6]. In [7], the receiving module
after removing the cyclic prefix (CP) in the orthogonal fre-
quency division multiplexing (OFDM) system is regarded
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as a whole and replaced by the offline trained deep neural
networks (DNN) to accomplish the process from the radio
frequency (RF) receiver to the sink directly. After revisiting
the idea of using DNN for one-shot decoding of random
and structured codes, [8] introduces the metric normalized
validation error (NVE) to investigate further the potential and
limitations of DL-based decoding concerning performance
and complexity. The author of [9] develops a novel DL-based
CSI sensing and recovery network called CsiNet-long short-
termmemory (LSTM), which not only considerably enhances
recovery quality, but also improves the trade-off between
compression ratio and complexity. Aiming at the problem
that the traditional adaptive modulation (AM) scheme does
not consider the channel correlation, [10] proposes a machine
learning-based AM model for the MIMO-OFDM system to
adjust data transmission rate according to the channel con-
dition. In [11], a novel signal detection scheme based on
the adaptive ensemble deep learning algorithm in single-
carrier frequency-domain equalization (SC-FDE) systems is
proposed, which adopts an integrated LSTMmodel to replace
the channel estimation and frequency domain equalization
process. Compared with the traditional physical layer tech-
nology, the above data-driven DL schemes improve perfor-
mance by replacing multiple modules of the communication
system in an end-to-end way. However, this kind of model
discards these existing wireless communication knowledge,
and the slight change of model structure will lead to the
decline of accuracy.

Themodel-driven DL networkmaintains the original phys-
ical layer structure and uses the DL model with high training
efficiency to replace a module or trainable parameters to
optimize the overall performance [12]. The work in [13]
introduces a peak-to-average power ratio (PAPR) reducing
network (PRNet) to determine the constellation mapping
and demapping of symbols adaptively on each subcarrier.
To achieve higher data recovery accuracy, [14] combines DL
with the expert knowledge and introduces a model-driven
approach by adopting the block-by-block signal processing
method that divides the receiver into channel estimation sub-
net and signal detection subnet. In [15], the author extends
the idea of end-to-end learning of communications systems
through DNN-based autoencoders OFDM with CP, which
enables reliable communication over multipath channels and
makes the communication scheme suitable for commodity
hardware with imprecise oscillators. The author of [16] pro-
poses a model-driven DL network for MIMO detection by
inheriting the advantages of Bayes-optimal signal recovery
algorithm and DL technology, and the network is easy and
fast to train because only a few adjustable parameters are
required to be optimized. To circumvent the challenge for
precoding design brought by the use of low-resolution digital-
to-analog converters (DAC) for each antenna and RF chain
in downlink transmission, [17] develops a model-driven DL
network for massive multiuser MIMO with finite-alphabet
precoding, which shows significant advantages in perfor-
mance, complexity, and robustness to channel estimation

error under Rayleigh fading channel. Based on the existing
physical layer module, the model-driven DL network can
significantly reduce the dependence on data and become one
of the most potential development directions for physical
layer transmission technology.

In this article, we propose a model-driven DL scheme for
AT inMIMO-SCFDE systems. Themain contributions of this
work can be summarized as follows:
• We adopt improved DL models, called AMNet and
ADNet, to replace the modulation and modulation
recognition processes of traditional communication sys-
tems, respectively. The feature input into the AMNet
is sequentially learned through a one-dimensional con-
volutional neural network (1D CNN), LSTM, and
fully connected deep neural network (FC-DNN). Also,
ADNet uses CNNs with different depths to construct
an integrated model to achieve the adaptive selection of
modulation recognition networks.

• We analyze the relationship between the MIMO channel
parameters and the optimal modulation scheme. It leads
us to select the estimated SNR, frequency-domain sub-
channel marking information, frequency-domain sub-
channel rank information, and channel equalization
information as the feature required for model training,
and assign labels according to the optimal modulation
scheme obtained by a comprehensive analysis of signal
detection performance.

• We analyze the path delay and received power
relationship and prove that the received power under
different path delays can be selected as the adaptive
factor to realize the adaptive ensemble of the output
of each sub-network in AMNet. Since the cyclic spec-
trum features change with SNR and modulation mode,
we utilize ADNet to achieve adaptive modulation recog-
nition (AMR) according to the cyclic spectrogram’s
complexity.

The remainder of this article is organized as follows.
Section II describes the structure of the model-drivenMIMO-
SCFDE system. Section III introduces the proposed AT
scheme, where the related DL algorithms implemented by the
AMandAMRmodels are also presented. The throughput per-
formance and modulation recognition accuracy based on the
proposed scheme are simulated and discussed in Section IV.
Finally, Section V concludes the article.

II. SYSTEM MODEL
Figure 1 shows the model-driven MIMO-SCFDE system for
AT. The MIMO-SCFDE system is built up with NT transmit-
ting antennas and NR receiving antennas. The bit informa-
tion to be transmitted is converted into multi-channel signals
and distributed to different antennas after serial-to-parallel
conversion [18]. Then, the signal of each channel adaptively
selects the optimal modulation mode according to the chan-
nel information fed back by the received signal and sent it
through different antennas with cyclic prefix (CP) inserted.
After passing the additive white Gaussian noise (AWGN)
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FIGURE 1. Model-driven MIMO-SCFDE system model for AT.

channel, the received signal is first processed to remove
CP [19]. At this time, the time-domain vector obtained by
the l-th receiving antenna can be expressed as

rN ,l = yN ,l + vN ,l =


y0N ,l
y1N ,l
...

yN−1N ,l

+

v0N ,l
v1N ,l
...

vN−1N ,l

, (1)

where yN ,l and vN ,l denotes the useful signal part and noise
part of the received signal, respectively. Also, N denotes
the number of fast Fourier transform (FFT) points, and
l = 1, 2, · · · ,NR. If the noise is assumed to satisfy the
AWGNwith a mean of 0 and a variance of σ 2

v , the frequency-
domain signal after performing FFT by the l-th receiving
antenna can be obtained as

RN ,l = FFTN (yN ,l)+ FFTN (vN ,l)

=


Y 0
N ,l
Y 1
N ,l
...

YN−1N ,l

+

V 0
N ,l
V 1
N ,l
...

VN−1
N ,l

. (2)

For the SC-FDE system, the cyclic convolution transfor-
mation in the time domain to the frequency domain can be
expressed as a point-by-point multiplication of the frequency
domain signal and the corresponding frequency domain sub-
channel gain [20]. Thus, the signals received by allNR receiv-
ing antennas on the k-th frequency-domain sub-channel can
be written as

RkN = Y kN + V
k
N =


Y kN ,1
Y kN ,2
...

Y kN ,NR

+

V k
N ,1
V k
N ,2
...

V k
N ,NR



=


H k
N ,1X

k
N ,1

H k
N ,2X

k
N ,2

...

H k
N ,NRX

k
N ,NR

+

V k
N ,1
V k
N ,2
...

V k
N ,NR

, (3)

where Y kN and V k
N denotes the useful signal and noise of the

received signal on the k-th frequency-domain sub-channel,
respectively. k = 0, 1, · · · ,N − 1. Also, X kN denotes
the signal component, and H k

N denotes the channel matrix
of the k-th frequency-domain sub-channel, which can be
expressed as

H k
N =


H k
1,1 H k

1,2 · · · H k
1,NT

H k
2,1 H k

2,2 · · · H k
2,NT

...
...

. . .
...

H k
NR,1

H k
NR,2

· · · H k
NR,NT

. (4)

In the MIMO-SCFDE system, in addition to solving the
problems of noise and channel fading, the receiver also needs
to adopt equalization technology to overcome multi-antenna
interference (MAI) caused by the superposition of received
signals from multiple receiving antennas [21]. When the
signal is equalized, the equalization matrix corresponding to
the sub-channel is first calculated according to the channel
matrix, and then the frequency domain equalization (FDE)
on each sub-channel is performed to compensate the fre-
quency selectivity of the channel directly [22]. The com-
monly used linear equalization methods include zero-forcing
(ZF) equalization and minimum mean square error (MMSE)
equalization [23]. The ZF receiver can eliminate the MAI by
distinguishing the data streams of different antennas, and the
equalization matrix can be expressed as

GkZF = ((H k )HH k )−1(H k )H , (5)
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FIGURE 2. AM scheme based on the AMNet deep learning model.

ZF equalization has low computational complexity but
does not consider the existence of noise. If the channel fading
is extensive, it also amplifies the noise while compensat-
ing for the signal. In response to these problems, MMSE
equalization considers both noise and MAI. The MMSE
equalization matrix corresponding to the k-th frequency-
domain sub-channel can be written as

GkMMSE = ((H k )HH k
+
σ 2
v NT
P

INT )
−1(H k )H , (6)

where σ 2
v denotes the noise variance, NT denotes the number

of transmitting antennas. Also, P denotes the total power of
the transmitted signal. The realization of MMSE equalization
requires not only the channel matrix but also the received
signal-to-noise ratio (SNR). Besides, MMSE equalization
cannot completely eliminate the interference between data
streams. After the IFFT, the AMR scheme based on the cyclic
spectrum is employed to demodulate the modulated signal,
and the original bit information is recovered after parallel-to-
serial conversion.

The combination of AT technology and the MIMO-
SCFDE system improves the effectiveness of information
transmission. However, the traditional rule-based AT scheme
ignores the channel correlation between antennas, and some-
times the transmission performance can not be optimized
by choosing the pre-defined transmission scheme accord-
ing to the channel information. Therefore, to meet the 5G

communication requirements, it is necessary to develop a
more reliable AT plan.

III. MODEL-DRIVEN DEEP LEARNING SCHEME FOR
ADAPTIVE TRANSMISSION
A. ADAPTIVE MODULATION SCHEME
The primary purpose of the AM scheme is to adjust the
modulation mode of each antenna according to the channel
conditions to improve transmission efficiency. The modula-
tion order varies with the modulation method, which reflects
the difference in transmission bit rate. For example, the mod-
ulation order of binary phase-shift keying (BPSK), quadra-
ture phase-shift keying (QPSK), 16 quadrature amplitude
modulation (16QAM), and 64QAM are 1, 2, 4, and 6 respec-
tively [24]. The channel with good conditions adopts a
high-order modulation mode to improve the transmission rate
on the premise of ensuring the signal detection quality. On the
contrary, the channel with poor conditions takes a low-order
modulation mode to ensure reliable communication [25]. For
the MIMO-SCFDE system with four transmitting antennas
and four receiving antennas, and each antenna has four kinds
of modulation options, the modulation schemes are listed
in Table 1.

Figure 2 shows the AM scheme based on the AMNet
deep learning model. AMNet is an integrated network model,
where each sub-network consists of 1D CNN, LSTM, and
FC-DNN. The 1D CNN includes a convolutional layer and
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TABLE 1. Modulation mode selection and order sum of different
modulation schemes.

an average pooling layer, which are used to extract the feature
parameters of the estimated channel and achieve dimension-
ality reduction of the data to be processed. The original
feature parameters and the reduced dimension feature param-
eters are used as the input of LSTM to improve the diversity
of features. The output of 1D CNN can be expressed as

X̂i = f (w ∗ Xi + b), (7)

where f (•) denotes the Relu activation function. Also, Xi, w,
and b are the input, weight, and bias value of the network.
Each LSTM unit can complete the long-term memory of
information and further extract features through the cooper-
ation of the forget gate, input gate, and output gate. After t
time steps, the output of LSTM can be obtained as

X̂i′ = LSTM (Xt , ft , it , ot ), (8)

where LSTM (•) is the operation of an LSTM unit, and Xt is
the input at the time of t . Also, ft , it , and ot are the operation
of forgetting gate, input gate, and output gate, respectively.
The LSTM is followed by a three-layer FC-DNN to make the
network’s output dimension consistent with the modulation
scheme category. The following formula obtains the final
predicted modulation scheme

Ŷi = σ (w′ ∗ X̂i′ + b′), (9)

where σ denotes the sigmoid activation function, w′ and b′

are the weight and bias of FC-DNN, respectively.
The number of sub-networks can affect the performance

and complexity of AMNet, so we set the number of sub-
networks equal to the combined amount of transmitting
antennas and receiving antennas. The feature X required for
each sub-network training is extracted from the received sig-
nal, and the feature information should select the parameters
that can reflect the channel condition. Each group of feature
information Xi is input into the AMNet in the form of a
matrix, which contains the estimated SNR, frequency-domain
sub-channel marking information, frequency-domain sub-
channel rank information, and channel equalization infor-
mation. SNR is an indicator for judging signal quality, and

the useful signal power and noise power are different under
different SNR. The expression can be calculated as

SNR(dB) = 10 lg(
PS
PN

), (10)

where PS and PN denotes the useful signal power and noise
power of the received signal, respectively. The frequency-
domain sub-channel marking information reflects the num-
ber of available frequency-domain sub-channels. The N bits
of sub-channel marking information can be expressed as
bCSI = (b0, b1, · · · , bN−1), where each dimension represents
a frequency domain sub-channel, and the selected and for-
bidden sub-channels are represented by 1 and 0 respectively.
The rank information of the frequency-domain sub-channel
is determined by the channel capacity criterion, which can
be written as R = (Rk , k = 0, 1, · · · ,N − 1), where
Rk represents the rank of the k-th frequency domain sub-
channel. Meanwhile, because the FDE process can resist
IBI caused by the channel’s time-varying and frequency
selectivity, the channel equalization information can also be
the embodiment of the channel condition. The modulation
scheme is formed by assigning modulation modes to each
antenna. However, two cases should be considered to obtain
the optimal modulation scheme. One is to select the mod-
ulation scheme with the largest sum of modulation orders
as much as possible when meeting the required bit error
rate (BER) of the system. The formula can be defined as

Si = argmax
i

(Oi), (11)

where Oi is the sum of modulation orders of the i-th modu-
lation scheme. The other is to select the modulation scheme
with the best BER performance if the required BER cannot
be met. The optimal modulation scheme obtained by analyz-
ing the comprehensive performance is selected as the label.
Accordingly, the AMNet can learn the relationship between
the extracted features and the optimal modulation scheme
through the nonlinear operation of multiple neural network
layers.

Since each sub-network will generate corresponding out-
put Sx after inputting the feature information of different
groups into the AMNet, it is necessary to integrate Sx to
get the final result Ŷi. As the received signal has a different
delay and received power under different transmission paths,
the received power under various delays is selected as the
adaptive factor to achieve the adaptive ensemble of Sx . The
number of sub-channels and feature information in the pro-
posed model is set to m and n, respectively, so the adaptive
factor of the j-th sub-channel and the i-th group of feature
information can be expressed as

Aij =
Pij
m∑
j=1

Pij

, (12)

where Pij denotes the received power of the signal com-
ponent corresponding to the i-th group of features when
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passing through j-th sub-channel, i = 1, 2, · · · , n, and
j = 1, 2, · · · ,m.
The index of themodulation scheme predicted by each sub-

network is represented by a matrix composed of 0 and 1. For
the modulation scheme Sx , the value of the x-th element in
the matrix is 1, and the remaining elements are 0. Meanwhile,
each sub-network results are combined through the matrix I ,
where the i-th group of feature information can be expressed
as

Ii =


0 0 0 · · · 0
0 0 0 · · · 0
1 0 1 · · · 1
...

...
...

. . .
...

0 1 0 · · · 0

, (13)

where each column of Ii denotes a kind of modulation scheme
output by the sub-network. Under the effect of adaptive fac-
tors, the integration result of the network can be obtained as

Ŷi = S
argmaxx (

m∑
j=1

Aij
⊙

Iij)
, (14)

where Iij denotes the vector composed of the j-th column
elements of Ii. Also, argmax(•) denotes the operation of
searching the maximum value in (•),

⊙
represents point

multiplication. According to the channel condition, the AM
scheme based on DL can adaptively adjust the combination
of modulation modes among different transmitting anten-
nas. Consequently, using the trained AMNet to replace the
original communication module can obtain a higher data
transmission rate under the premise of ensuring the BER.

B. ADAPTIVE MODULATION RECOGNITION SCHEME
In the context of using multiple modulation modes for signal
transmission, the ability to correctly identify the modulated
signal is the basis for demodulation. Since the cyclic spectrum
distribution of the modulated signal presents a cyclostation-
ary discrete characteristic on the cyclic frequency axis, modu-
lation recognition can be achieved by utilizing the modulated
signal with a sizeable cyclic spectrum amplitude value at the
non-zero cyclic frequency and no amplitude value or small
amplitude value of noise [26].

The estimation algorithm of the spectral autocorrelation
function is an essential step in obtaining the cyclic spectro-
gram. The discrete form of cyclic autocorrelation function
can be expressed as

Rαx (τ ) = lim
T→+∞

1
T

∫ T
2

−
T
2

x(t + τ/2)x∗(t − τ/2)e−j2παtdt,

(15)

where τ denotes the time interval, and α denotes the cycle
frequency. Also, ∗ denotes the complex conjugation, and T
denotes the duration of the signal. The FFT form of the cyclic
autocorrelation function can be expressed as

Sαx (f ) =
∫
+∞

−∞

Rαx (τ )e
−j2π f τdτ , (16)

where Sαx (f ) represents the cyclic spectral density function,
and f represents the signal frequency. When α is not 0,
the spectral correlation function of stationary noise is equal
to 0. In a limited data segment, the cyclic spectral density
function with a discrete frequency smoothing method can be
estimated as

Ŝαx1t (t, f )1f =
1
M

(m−1)/2∑
v=−(m−1)/2

1
1t

X̂1t (t, f + α/2+ vFs)

• X̂∗1t (t, f − α/2+ vFs), (17)

where 1f = MFs, which represents the spectral smoothing
interval. M is the number of smoothed points, Fs = 1/NTs,
Ts is the sampling time interval, and N is the number of data
points. 1t = (N − 1)Ts, which represents the total length of
the data.

Figure 3 shows the AMR scheme based on ADNet. The
establishment of ADNet first requires a data set contain-
ing the cyclic spectrogram of various modulation meth-
ods. To train the model with high classification accuracy,
we believe that the size of the data set should be large enough
to hold the possible situations. Due to the input parameters
required for ADNet training is a 2D image, it is neces-
sary to normalize the 3D cyclic spectrum to the X-Y plane.
In CNN-based modulation recognition, the shallow model is
fast but low accuracy, while the deepmodel has high precision
but takes a long time. To improve the adaptability of the
proposed scheme, we select the CNN model with different
network structures and depth to form the adaptive ensemble
DL model. Before inputting the cyclic spectrogram into the
modulation classification CNN, the complexity classification
network based on the color moment, gray level co-occurrence
matrix, information entropy, and edge detection parameters
are adopted to calculate the complexity of different cyclic
spectrograms. Then, the appropriate modulation classifica-
tion CNN is selected according to the complexity level of the
image.

The choice of modulation classification sub-network can
also affect the overall recognition performance. On the one
hand, if too few CNN layers are used, it is not enough to
extract features. On the other hand, if CNN taken has too
much depth, the recognition accuracy is not improved, but the
efficiency is reduced. According to the adaptability relation-
ship between the complexity of cyclic spectrogram and the
depth of CNN after several tests, LeNet-5, AlexNet, VGG-16,
and ResNet-50 are used for the cyclic spectrogram with the
complexity of 0, 1, 2, and 3 respectively, which can give full
play to the inherent characteristics of CNN and improve the
classification accuracy.

IV. EXPERIMENT AND ANALYSIS
In this section, we use the trained deep learning model to
replace the modulation and modulation recognition modules
of the MIMO-SCFDE system in Fig.1 and verify the per-
formance of the proposed AT scheme through comparative
experiments. Sub-section A compares the data throughput of
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FIGURE 3. AMR scheme based on the ADNet deep learning model.

rule-based and AMNet-based modulation schemes under dif-
ferent numbers of transmitting antennas and receiving anten-
nas. Sub-section B shows the advantages of the proposed
ADNet compared to existing methods in recognition accu-
racy. The data generation and signal preprocessing required
for the experiment are completed through MATLAB2019a.

A. PERFORMANCE COMPARISON ANALYSIS
OF AM SCHEME
The performance of the AM scheme is analyzed by adopting
the MMSE signal detection algorithm at the receiver. The
number of antennas adopted in the experiment ranges from
1 to 4, and the signals on each antenna can be modulated by
BPSK, QPSK, 16QAM, and 64QAM. The wireless channel
environment is based on the SUI-4 channel model, in which
the sampling rate is 10M, the frame length of SC-FDE is
256, and the CP length of 64 is considered. The experiment
is performed under the average classification accuracy of
AMNet. The detailed simulation parameters of AMNet are
shown in Table 2.

Figure 4 shows the throughput performance of different
modulation schemes. The throughput can be calculated as

Throughput = (1− BLER)×M × CR, (18)

where BLER, M , and CR denotes the block error rate, mod-
ulation order, and code rate, respectively. The number of
antennas will affect the throughput of the system. As shown
in Fig. 4, when N=1, due to poor channel conditions at
low SNR, a low-order modulation method is first adopted

TABLE 2. Simulation parameters of AMNet.

to increase the reliability. As the SNR increases, the channel
conditions gradually get better, so the modulation method is
adjusted to a higher-order. Under the same SNR, the through-
put when the target BER is less than 10−2 is higher than
that of 10−4, and the proposed AMNet scheme has more
system throughput than the comparison work in both cases.
Besides, the FC-DNN scheme is better than the rule-based
project by about 0.52bit/s and 0.4bit/s, respectively, at an
SNR of 10dB under these two BERs. When N=2, N=3,
and N=4, the increase in the number of antennas improves
the throughput of the system, and the maximum through-
put of these three cases are 12bit/s, 18bit/s, and 24bit/s,

197660 VOLUME 8, 2020



J. Li et al.: Model-Driven DL Scheme for AT in MIMO-SCFDE System

FIGURE 4. Throughput of different modulation schemes, (a) N D 1. (b) N D 2. (c) N D 3. (d) N D 4.

TABLE 3. Throughput (T) of AMNet and comparison scheme under 20dB.

respectively. Also, the selectivity of the modulation method
increases exponentially. Table 3 compares the throughput
of the proposed scheme with the FC-DNN scheme and the
rule-based scheme under 20dB. In the case of four types of
antenna numbers, the throughput of the proposed work is
0.5bit/s, 0.7bit/s, 1.3bit/s, and 1.9bit/s higher than the FC-

FIGURE 5. Misclassification rate curve under different training
parameters.

DNN program at a BER of 10−4, respectively, indicating
that the AM scheme can adaptively adjust the transmission
strategy to improve the throughput performance.

In the AM scheme, due to changes in the external envi-
ronment, the interference factors increase in the extracted
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FIGURE 6. Accuracy of different modulation recognition schemes, (a) BPSK. (b) QPSK. (c) 16QAM. (d) 64QAM.

features, and the classification accuracy of the offline trained
AMNet model in the online test stage may be affected.
The classification precision reflects the throughput of the
system, and as the number of antennas or modulation
schemes increases, the classification accuracy of the model
will gradually decrease. But what needs to be explained
is that the AM scheme selects the optimal modulation
scheme by choosing the highest information transmission
rate under the target BER, so the classification accuracy
of the model does not affect the system’s signal detection
performance.

B. PERFORMANCE COMPARISON ANALYSIS
OF AD SCHEME
To verify the performance of the proposed AMR scheme,
we generate 3D cyclic spectrograms of modulation signals
with BPSK, QPSK, 16QAM, and 64QAM under different
SNRs, and take the preprocessed 2D image as the input of
ADNet. The cyclic spectrum is estimated by the discrete
frequency smoothing algorithm with 20 smoothing points.

The cyclic spectrogram data set contains three parts: training
set, validation set, and test set, the numbers are 8000, 1000,
and 2000 respectively.

Owing to the reason that the selection of training parame-
ters determines the network’s recognition accuracy, we define
different settings according to the activation function, opti-
mizer, and loss function in Table 4 to compare the network
performance. The experiment was performed with QPSK
and SNR of -5dB. As shown in Fig. 5, for all networks
with different parameters, the network’smisclassification rate
gradually declines with the increase of the training step and
finally tends to be stable. Moreover, the model of Index
6 has the optimal performance with a misclassification rate
of 0.073 after 1000 iterations. Therefore, We conduct the
following comparative experiments based on the model under
Index 6 parameters.

Figure 6 compares the modulation recognition per-
formance of the proposed scheme with those based on
high-order cumulant, K nearest neighbor (KNN), sup-
port vector machine (SVM), and FC-DNN at different
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TABLE 4. ADNet under different training parameters.

SNRs. It can be seen from the figure that under different
modulation modes, the accuracy of all modulation recogni-
tion schemes improves with the increase of SNR, and the
recognition accuracy of BPSK is the highest. Among the
five schemes, the proposed ADNet scheme has the best
performance, and its SNR is 2dB, 8dB, 15dB, and 19dB,
respectively, when the accuracy reaches saturation. Although
the FC-DNN scheme and the ADNet scheme have similar
performance when they tend to stabilize, the recognition
precision of FC-DNN is significantly lower than the proposed
work under low SNR or high-order modulation. The reason is
that FC-DNN can classify general features through nonlinear
operations, while ADNet can extract deep-level feature infor-
mation by convolution kernel and weight sharing. When the
SNR is -10dB, the recognition accuracy of the ADNet scheme
is higher than the FC-DNN scheme by 0.02, 0.03, 0.06, and
0.09 under the modulation modes of BPSK, QPSK, 16QAM,
and 64QAM. Besides, SVM, KNN, and higher-order cumu-
lant schemes are lower than the former two schemes.

According to the cyclic spectrum of different modulation
methods, the AD scheme realizes AMR of the received signal
by combining deep learning technology and cyclic spectrum
features. Since ADNet adopts CNN with an integrated net-
work structure to realize the adaptive selection of the modula-
tion recognition scheme, the model needs a long training time
to comply with the expected classification accuracy. As the
data set increases, the training time of the network will also
rise, but at the same time, the prediction precision of the
system will be improved.

V. CONCLUSION
To improve the throughput of the MIMO-SCFDE system
and obtain a more reliable signal transmission capability,
we propose a model-driven AT scheme based on the com-
bination of deep learning and expert knowledge. The AT plan
takes AMNet and ADNet to replace the signal modulation
and modulation recognition process of the communication
system. The AM scheme is achieved by an integrated neu-
ral network model with a combined network of 1D CNN,
LSTM, and FC-DNN as sub-networks. The feature infor-
mation extracted from each sub-channel is input into differ-
ent sub-networks, and the conversion between features and
the optimal modulation scheme is performed according to
the network parameters obtained by training. Meanwhile,
the received power under various delays is selected as the
adaptive factor to realize the adaptive ensemble of the result

of each sub-network. Since the cyclic spectrum’s advantages
to accurately detect the signal type under low SNR, the AD
scheme completes the adaptive selection of the modulation
recognition scheme based on the complexity of the cyclic
spectrogram. When the target BER is 10−4, the simulation
results show that the proposed scheme can achieve a through-
put of 12bit/s and a modulation recognition average accuracy
of 0.927 at the SNR of 20dB and -5dB, respectively, which
improves the effectiveness of signal transmission. However,
with the increase in the number of modulation modes and
antennas, the model’s computational complexity will also
increase. Therefore, a more advantageous neural network
optimization algorithm is required.
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