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ABSTRACT DNA N6-methyladenine (6mA) has subsequently been identified as an important epigenetic
modification which plays an important role in various cellular processes. The precise discrimination of
N6-methyladenine (6mA) in genomes is required to recognize its biological functions. Although, we have
several experimental techniques for the identification of 6mA-sites, in silico prediction has evolved as an
alternative approach due to high-cost and labor-intense in experimental techniques. Taking into account,
the implementation of an efficient and accuratemodel for identification of N6-methyladenine is of high prior-
ity. Several machine learning and deep learningmodels have already been developed to classify genome-wide
6mA sites. However, their success in predicting 6mA sites still has room for improvement. Based on this,
we proposed a novel deep learning based model for the prediction of DNA N6-methyladenine sites in rice
genomes. We built our model based on a special architecture called SpinalNet using DNA 6mA sites in rice
genome and obtained an accuracies of 94.31% and 94.77% with an MCCs of 0.88 and 0.89 on two different
datasets. The model generalizes well to other genomes as well, validated through cross-species testing. The
results validate that the proposed model produces better scores than existing models regarding all evaluation
parameters. A user-friendly webserver is made available at http://nsclbio.jbnu.ac.kr/tools/SpineNet6mA/.

INDEX TERMS Deep learning, DNA sequence, epigenetics, neural networks, spinalnet.

I. INTRODUCTION
DNA N6-methyladenine (6mA) is an important epigenetic
modification of diverse species genomes, found in bacteria,
eukaryotes, and archaea [1], [2]. It refers to the methylation at
the 6th position of an adenine ring and is a highly researched
subject in epigenetics [3]–[6]. DNA 6mA modification is
usually the one of the most widespread DNA modification
in prokaryotic genomes, once thought to be non-existent in
eukaryotes (including human-being), since it was not found
in earlier studies [7]. This process plays an important role
in regulating various biological processes, including the sys-
tem of restriction-modification, cell defense, DNA repair and
replication, and gene expression [8]. Studying the distribution
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of DNA 6mA may provide a bottomless understanding of
the process of epigenetic modification. Modern studies have
shown that the abnormal state of modification of DNA 6mA
is linked to human cancer and other diseases [9]. Numerous
6mAmodifications have been observed in various multicellu-
lar eukaryotes with the advent of high-throughput sequencing
technology, but still inadequate. The development of experi-
mental techniques contributes to the analysis of 6mA modi-
fications. In silico prediction of DNA 6mA sites in a genome
have evolved as an alternative approach due to the constraint
of labor-intensive and costly experiments.

Recently, the initiation of experimental approaches using
the machine and deep learning methods have overwhelmed
numerous complications in recognizing 6mA modifications.
The 6mA modification has always been a hot topic in
research, and a lot of researchers are using the machine and
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deep learning algorithms to recognise 6mA sites in the rice
genome [10]–[12].

Feature extraction always plays a significant role in
machine learing during the creation of any predictor
[13]–[16]. Researchers use different feature extraction algo-
rithms like binary encoding, nucleotide chemical properties,
KMER, andMarkov features, etc. in their models. A machine
learning based tool using support vector machine (SVM)
named iDNA6mA-PseKNC was proposed by Feng et al., to
anticipate 6mA sites in Mus musculus genome unveiling that
this method is tried and tested to recognize genome-wide
6mA sites in numerous species [17]. Lately, Chen et al.,
provided a standard dataset, 6mA-rice-Chen, for 6mA pre-
diction containing equal number of 6mA and non-6mA sites,
880 each, in the rice genome [18]. To ascertain 6mA sites in
the rice genome, they built an SVM based tool (i6mA-Pred)
using many handcrafted DNA sequence features. On this
dataset, 83% accuracy was claimed using the i6mA-Pred
tool. Using the same benchmark dataset Pian et al., made
a prediction of 6mA sites using their model MM-6mAPred
based on theMarkovmodel and outperformed the i6mA-Pred
tool [19]. Following the same, Tahir et al., proposed another
model named iDNA6mA for the same purpose of identifi-
cation of 6mA in the rice genome. They again trained and
tested their model on the same dataset used by Chen et al., and
outperformed i6mA-Pred while predicting 6mA sites [10].
Basith et al., proposed a model using ensemble approach
for the prediction of rice genome. They used several feature
encoding methodologies and machine learning classifiers
and named the model, SDM6A. They claimed that SDM6A
outperformed the previous models including i6mA-Pred and
iDNA6mA on the same benchmark dataset [20]. Lv et al.,
came up with another benchmark dataset with a huge number
of sequences for rice genome named 6mA-rice-Lv and pro-
posed their tool, iDNA6mA-rice. The dataset 6mA-rice-Lv
consists of 154,000 positive sequences and 154,000 negative
ones, where the positive sequences contain the 6mA sites.
They trained and tested iDNA6mA-rice on this dataset using
five-fold cross-validation and achieved good results [21].
Yu and Dai proposed a model called SNNRice6mA based
on convolutional neural network (CNN) for improving the
prediction accuracy using 6mA-rice-Lv dataset [22]. Using
the same five-fold cross-validation SNNRice6mA achieved
an accuracy of 92.02% on 6mA-rice-Lv dataset which is the
better among all of the previous methodologies.

Deep Neural Networks (DNNs) have brought state-of-
the-art success in various fields of science and engineering
[11], [12], [23], [24]. Earlier studies demonstrated that deep
learning is an impressive technique for analyzing and classi-
fying sequences in bioinformatics [25]–[32]. Current DNNs
have vanishing gradient problem, as the number of layers
increases, the number of connections increases persistently.
Narrowing down to few neurons is unfeasible in current
DNN architectures if we have a large number of inputs.
In [33] Kabir et al., proposed a new DNN architecture called

SpinalNet to overcome the above-mentioned issues. The
SpinalNet architecture has been explained in Section II.

In this article, we have proposed a deep architecture using
SpinalNet for the first time for sequence data to get high accu-
racy while predicting the 6mA sites in rice genome. Unlike
traditional machine learning methods, it learns high-level
abstract features by using the CNN architecture. The archi-
tecture has been trained and validated on 6mA-rice-Lv and
6mA-rice-Chen benchmark datasets and achieved an accu-
racy of 94.31% and 94.77% with an MCC of 0.8868 and
0.8966 respectively and outperformed all the previous meth-
ods. The main contributions in this study are providing a
novel deep learning architecture for bioinformatics applica-
tions, in addition, improving the state-of-the-art performance
of the 6mA computational models.

This article is organized as follows: Section II presents the
SpinalNet network, Section III introduces the datasets used
in this study, Section IV presents the proposed methodology,
Section V introduces the evaluation metrics used to study
the performance of the proposed model, Section VI presents
the achieved results, Section VII shows the performance of
the proposed design on different species, and Section VIII
concludes the paper.

II. SPINALNET
By imitating the functionality of the visual cortex of cats,
convolutional neural networks (CNN) have been developed
by the researchers which dramatically improved the NNs
accuracy [34]. By observing the recent success of CNNs and
the wonderful architecture of human spinal cord Kabir et al.,
developed a NN with gradual inputs, named SpinalNet as
shown in Figure 1 [33].

FIGURE 1. Structure of SpinalNet.

The configuration of the network is composed of input row,
an intermediate row of multiple hidden layers, and the output
row. To minimize the number of multiplications, we keep the
number of inputs per layer and the number of neurons per
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hidden layers as small as possible but this may cause the
network to underfit. To overcome this issue, each layer in
the intermediate row receives input from the previous layer.
Since the input is recurring, if any significant input feature
does not affect the output in one of the hidden layers, they can
affect in another hidden layer. The input is split into two rows
in Figure 1 and both rows are allocated to different hidden
layers repetitively.

A generalized version of SpinalNet having 4 hidden layers
containing 2 neurons per layer is shown in Figure 2a. The
first layer of SpinalNet just takes the weighted sum of inputs
a1 to a5. The outputs of the hidden neurons from the first
hidden layer go only to the related neurons of the second
hidden layer. By assigning zero weight, interconnections and
connections from the very first hidden layer to the output
are disconnected. The following hidden layer is given the
weighted sum of a6 to a10 along with the weighted sum of
the previous layer. So this layer’s neurons apply an activa-
tion function to the weighted sum of previous layers inputs
a1 to a10. A similar approach will be applied to the next
two layers. Therefore, the SpinalNet having 4 hidden layers
containing two neurons per layer is equivalent to a traditional
neural network of one hidden layer with 4 neurons as shown
in Figure 2b.

FIGURE 2. 4 layer SpinalNet equivalent to 1 layer traditional neural
network.

III. DATASETS
In this study, we have used the 6mA-rice-Lv dataset,
which was previously being used by [21] and [22] in
their deep learning models. The sequences in this dataset
were experimentally identified in the study carried out by

Zhou et al., [35]. These identified sequences were deposited
in the NCBI Gene Expression Omnibus https://www.ncbi.
nlm.nih.gov/geo/ under the accession number GSE103145.
It contains a total of 265,290 6mA sites. Thus, to avoid redun-
dancy and remove the homologous bias, CD-HIT program
was used to remove the similar sequences with the similar-
ity above 80%. As a result, 154,000 6mA sites-contained
sequences were selected as positive dataset. Negative
dataset was prepared from the NCBI database https://www.
ncbi.nlm.nih.gov/genome/10 by randomly selecting
154,000 sequences that have not-methylated-adenine in the
center and rich of GAGG, AGG, and AGmotifs. These motifs
are reported to be frequent in 6mA sequences [35].

We considered another benchmark dataset, 6mA-rice-
Chen, comprises of 880 each of positive and negative sample
sequences. This dataset has been used by many researchers
to evaluate their models [10], [18]–[21]. Along with these,
we have used two another datasets, 6mA-chinensis and
6mA-vesca, for cross-species testing. In both positive and
negative samples, the DNA sequences are 41bp long. All the
positive samples had a 6mA site in the middle, while the
center for each negative sequence has no 6mA change site.
Table 1 presents an in depth view of the datasets:

TABLE 1. Details of benchmark datasets used.

IV. PROPOSED METHODOLOGY
The samples in the used dataset are sequences of DNA,
represented as a string like AGTACT . . .CAT . Since neural
networks accept only numerical data we need to represent
the strings first into a form that is acceptable to the network.
Therefore, we have used binary encoding which is an effec-
tive scheme to convert the nucleotides into such format:

A : 1, 0, 0, 0

T : 0, 1, 0, 0

C : 0, 0, 1, 0

G : 0, 0, 0, 1

Here, the nucleotide representation is not novel, and depic-
tions of A, T, C, and G are exchangeable. The binary
encoding algorithm can be interpreted as a single nucleotide
representation also called a one-hot-encoding algorithm.
It is then possible to transform a random DNA sequence
containing m nucleotides into a matrix of features having
shape 4× m [21], [36].
We built a novel deep learning model SpineNet-6mA using

SpinalNet. SpineNet-6mA consists of five convolutional lay-
ers followed by pooling and dropout layers. The convolution
greatly surges the number of parameters. Pooling may be
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FIGURE 3. SpineNet-6mA architecture for the identification of DNA 6mA modification.

applied to minimize the number of parameters by reducing
the size of input for the next layer but it also causes loss of
information [37]. The input to themodel is the binary encoded
sequences. The block diagram of the proposed model is as
shown in Figure 3.

Convolution layer [38] named conv0 having 16 filters with
a filter size of 5 is applied on the input matrix followed by
batch normalization [39] named normLayer0 and activation
layer named act0. ReLU [40] has been used as a non-linear
activation function throughout the network, except sigmoid
on the output layer. Mathematically, ReLU, and sigmoid can
be expressed as:

ReLU (x) = max(0, x)

Sigmoid(x) =
1

1+ e−x

The model from here is divided into two sub-branches,
the first branch consists of conv1 comprises of 16 filters again
of size 5 each followed by normLayer1 which is followed by
pool1 of size 2, and then act1. The output of act1 is given
as input to conv2 having 32 filters of size 5 each followed
by normLayer2 and pool2 of the same size above. It is then
followed by a dropout layer named dropoutLayer1 with a
dropout value of 0.25 which is followed by the activation
layer act2. The dropout process discards some intermedi-
ate features and improves the reliability of the model by
preventing the overfitting problem. The second branch is
just similar to the first one except for the difference in the
number of filters in convolution layers. The first convolution
layer in the second branch named conv3 consist of 64 fil-
ters and the second convolution layer named conv4 consist
of 128 filters. After the activation layers in both branches,
the outputs are flattened respectively to integrate the interme-
diate features and then concatenated to get a single flattened
output. The dimensionality reduction is a common technique
to reduce the number of inputs to a neural network without
significant degradation of output [41]. The network’s input
combination may include a large number of interrelated and

unrelated data. Therefor, the concatenated flattened output is
then fed to the SpinalNet-block having 6 dense layers of 8
neurons in each dense layer. The input to the SpinalNet-block
is the 960-d vector which is the concatenation of the learned
features from the two CNN branches of the model. This vec-
tor is then split into two vectors of 480-d for both to be used
in the spinal net block as shown in Figure 3. Since SpinalNet
has fewer neurons per hidden layer compared to the number
of inputs, it takes input in every layer and may automatically
repudiate insignificant data. The output of the dense layers is
then fed to the sigmoid function for the classification purpose.
The sigmoid function provides a float value from 0 to 1, which
is known to be the likelihood of the 6mA change site in the
input DNA sequence. If the likelihood is greater than 0.5,
the model classifies the sequence as positive, and if it is less
than 0.5 the model classifies the sequence as negative [42].
The positive sample indicates the center of the input DNA
sequence as the 6mA site.

We used stochastic gradient descent (SGD) as an optimizer
by setting the learning rate as 0.001 and a momentum of 0.95.
Furthermore, we have used a learning rate scheduler during
the training phase to reduce the learning rate if the loss value
on the validation set is not reduced anymore. For the first
ten epochs, the scheduler preserves the initial learning rate
and then reduces it exponentially. The maximum epochs for
training are set to 100 and the training batch size to 32.
In addition, we used early stopping [43] with the patience
of 30 epochs that specifies, it will stop the training process
when the prediction accuracy on the validation set stops
improving after 30 epochs.

We put our model into effect based on Keras 2.3.1. The
ideal hyper-parameters are observed by making use of the
well-known grid search algorithm. The used hyper-parameter
values have been mentioned in Table 2.

V. PERFORMANCE EVALUATION METRICS
We used the traditional 5-fold and 10-fold cross-validation
method to validate our approach to be compatible with the
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TABLE 2. Hyper-parameters used in SpineNet-6mA.

previous studies using the benchmark datasets 6mA-rice-Lv
and 6mA-rice-Chen. To evaluate the performance, we uti-
lized the same five metrics including sensitivity, specificity,
accuracy, Matthews correlation coefficient (MCC), and area
under the curve (AUC) to remain consistent with the previous
methodologies.

The metric sensitivity is also known as True Positive Rate
(TPR), can be expressed as:

Sensitivity = TPR =
TP

TP+ FN
where, TP, TN, FP, and FN denote true positive, true negative,
false positive, and false negative, respectively.

Specificity is also known as True Negative Rate (TNR) and
expressed as:

Specificity = TNR =
TN

TN + FP
The correct predictions to the test data is called accuracy.
It can be defined as:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
The Matthews correlation coefficient (MCC) reflects the
model’s output as a binary classifier [44]. It can be defined
as:

MCC =
TP× TN-FP× FN

√
(TP+ FP)(TP+ FN )(TN + FP)(TN + FN )

The last figure ofmerit we used is the AUC defined as the area
under the receiver operating curve (ROC). The value of AUC
ranges between 0 and 1, where 1 indicates the perfection of
the model.

VI. RESULTS
Proving that our methodology SpineNet-6mA is superior to
other approaches using the benchmark dataset 6mA-rice-Lv,
we contrasted it with the two existing state-of-the-art tools
including iDNA6mA-rice [21] and SNNRice6ma-large [22]
to recognize DNA 6mA sites in rice genome. Results showed
better performance of our method, SpineNet-6mA, than those
of the above-mentioned tools.

The two state-of-the-art techniques to which we are com-
paring our results on the benchmark dataset, 6mA-rice-Lv,

used 5-fold cross-validation to obtain their results. To achieve
a better comparative analysis, we used the same validation
strategy to validate SpineNet-6mA by keeping the same
number of folds. We make use of the corresponding five
metrics including sensitivity, specificity, accuracy, MCC and
AUC, to remain aligned with the assessment metrics used
in these studies. From the original study, the outputs of
iDNA6mA-rice [21] and SNNRice6mA-large [22] has been
quoted directly in Table 3. We found that SpineNet-6mA
outperformed both iDNA6mA-rice and SNNRice6ma-large
in all five evaluation metrics. A comparison of the pro-
posed model with the above-mentioned existing techniques
using 6mA-rice-Lv dataset is shown in Table 3. From
Table 3 we can see that SpineNet-6mA outperforms the
model iDNA6mA-rice by 2.71% of sensitivity, 2.42% of
specificity, 2.61% of accuracy, 4% of MCC, and 2% of
AUC. Similarly, the SpineNet-6mA outperforms the model
SNNRice6mA-large by 1.38% of sensitivity, 3.17% of speci-
ficity, 2.27%of accuracy, 4% of MCC, and 1% of AUC. The
graphical illustration of the experimental results is shown
in Figure 4.

TABLE 3. 5-fold cross-validation performance comparison between
iDNA6mA-rice, SNNRice6mA-large, and SpineNet-6mA on 6mA-rice-Lv
dataset.

FIGURE 4. 5-fold cross-validation performance comparison between
iDNA6mA-rice, SNNRice6mA-large, and SpineNet-6mA on 6mA-rice-Lv
dataset, Graphical Representation.

The achieved results by SpineNet-6mA are stable with
very low standard deviations. They are given as, sensitivity:
95.71 ± 0.007%, specificity: 92.92 ± 0.015%, accuracy:
94.31± 0.009%, MCC: 88.68± 0.018%, and AUC: 98.19±
0.005%.
The receiver operating characteristic curve of SpineNet-

6mA is shown below in Figure 5, and comparison of the
ROC curves between SpineNet-6mA, SNNRice6mA-large,
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FIGURE 5. ROC curve of SpineNet-6mA on 6mA-rice-Lv dataset.

and iDNA6mA-rice on the testing set of 6mA-rice-Lv dataset
is shown below in Figure 6.

FIGURE 6. ROC curves comparison of SpineNet-6mA with
SNNRice6mA-large and iDNA6mA on 6mA-rice-Lv dataset.

To show the robustness of our model, we used one
small dataset of rice, 6mA-rice-Chen, and compared the
results with the previous well-known models. The existing
models for the identification of 6mA sites in rice genome
includes, i6mA-Pred [18], iDNA6mA [10], SDM6A [20],
MM-6mAPred [19], iDNA6mA-rice [21] and DNA6mA-
MINT [26]. To be consistent and to have a fair comparison we
trained and tested the model using 10-fold cross-validation on
6mA-rice-Chen dataset and evaluated the same five metrics,
specificity, sensitivity, accuracy, MCC, and AUC.

From Table 4 we can clearly see that SpineNet-6mA
outperforms all previous methodologies with respect to all
evaluation metrics.

VII. CROSS-SPECIES EVALUATION
To check the model’s validity which is trained on rice-dataset,
we tested on other species Rosa chinensis [45] and Fragaria
vesca [46] to predict DNA 6mA sites. We denoted these
datasets as 6mA-chinensis and 6mA-vesca. 6mA-chinensis
contains 813 positive and 813 negative sequences, while,
6mA-vesca contains 1966 positive and 1966 negative

TABLE 4. 10-fold cross-validation performance comparison between
SpineNet-6mA and previous tools on 6mA-rice-Chen dataset.

sequences.We also performed similar testing on the two other
methods iDNA6mA-rice and SNNRice6ma-large using these
two datasets and found that SpineNet-6mA has achieved
higher performance when compared with the existing tools.
For SNNRice-6mA-large they have provided the weights
so using those weights we performed the testing while
iDNA6ma-rice has provided their online server for testing
purposes. Using the server we calculated TP, TN, FP, and FN
and then calculated the accuracy and MCC using equations
provided in section V. A comparison of the results between
SpineNet-6mA, iDNA6mA-rice, and SNNRice6mA-large on
Rosa chinensis [45] and Fragaria vesca [46] datasets can be
seen as in Table 5. SpineNet-6mA outperformed the models

TABLE 5. Cross-Species Performance comparison between
iDNA6mA-rice, SNNRice6mA-large, and SpineNet-6mA on 6mA-chinensis
and 6mA-vesca datasets.

FIGURE 7. Cross-species performance comparison between
iDNA6mA-rice, SNNRice6mA-large, and SpineNet-6mA on
6mA-chinensis and 6mA-vesca datasets, Graphical Representation.
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iDNA6mA and SNNRice6mA in accuracy by 2.05% and
4.07% on 6mA-chinensis dataset while 3.23% and 2.46% on
6mA-vesca dataset respectively.

The graphical illustration of the cross-species performance
results is shown in Figure 7.

VIII. CONCLUSION
Accuracy in the detection of N6-methyladenine (6mA) is
of great importance. In this study, we developed a novel
deep learning model SpineNet-6mA for the detection of 6mA
sites with high accuracy. The proposed model is based on a
special architecture called SpinalNet which attempts to imi-
tate the human somatosensory system to effectively receive
large data and achieve better efficiency. Using this model,
we achieved an accuracy of 94.31% and 94.77% which
is 2.27% and 1.53% better than the best existing state-of-
the-art models on 6mA-rice-Lv and 6mA-rice-Chen datasets
respectively. The proposed model also produced state-of-
the-art results on testing another species not used in the
training. We reckon that our proposed method can indeed
be genuinely beneficial for the detection of 6mA-sites and
hence be helpful in drug discovery and the bioinformatics
field. For good, SpineNet-6mA has been made available at
http://nsclbio.jbnu.ac.kr/tools/SpineNet6mA/ for free access.
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