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ABSTRACT To evaluate heap security, researchers have designed evaluation tools that automatically locate
heap vulnerabilities. Most of these tools define heap interactions as heap misuses that are bugs, such as
overflow in a target heap allocator, and verify whether each combination of heap interactions can be used
as an exploit. However, this definition of heap interactions requires preliminary work by a user possessing
evaluation tools and specialized knowledge—the user needs to manually do much work to find which heap
misuses exist in the target heap allocator. In addition, because the existing heap misuses vary according to
target heap allocators and versions, this preliminary work must be performed on each heap implementation.
That is, the current definition of heap interaction cannot be generalized to all heap implementations.
In this article, we propose a novel heap security evaluation model, called Heap Security Pilot (HS-Pilot),
to overcome the preliminary work load and the dependency of heap misuse in heap implementation.
In HS-Pilot, a heap interaction is newly defined as the modification of heap metadata, based on the idea that
any heap misuse can be represented by a sequence of heap metadata, i.e. combination of heap interactions
used byHS-Pilot. Consequently, the heap interactions inHS-Pilot can be applied to all heap implementations
without specialized knowledge, and therefore, are more general than that in existing heap evaluation tools.
Our evaluation shows that HS-Pilot can cover the analysis range of other evaluation tools, and is able to
detect 14 known types of heap exploitation against heap allocator ptmalloc and all types of heap exploitation
found by a state-of-the-art evaluation tool.

INDEX TERMS Computer security, memory defenses, software testing.

I. INTRODUCTION
Most modern heap allocators—such as dlmalloc, ptmalloc
and musl—use an inline metadata approach in which the
metadata and the user data are placed in adjacent memory
regions. The inline metadata approach is a consistently pop-
ular heap implementation method due to the advantages of
cache and memory-saving features [8]. However, this design
is vulnerable to metadata corruption attacks such as overflow.
Heap allocators without security considerations can easily
cause anomalies by tampering with the metadata. Currently,
a number of heap vulnerabilities have been leveraged for
malicious software activity [30].

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiangxue Li .

Many studies on the heap allocator have been considered
for security aspects [33–[35]. As its importance emerged,
researchers also proposed a variety of evaluation tools for
heap security [6]–[8]. Existing tools use heap misuses such
as overflow, use-after-free, and double-free to verify whether
the combinations of heap interactions containing the misuses
can be used as heap exploitation primitives. Unfortunately,
the tools based on heapmisuses have two limitations: the need
for preliminary work and the specificity of heap misuse.

First, in order to use existing evaluation tools, an evaluation
tool user must first manually locate the existence of heap
misuses on a target heap allocator before using the evaluation
tool. This preliminary analysis requires expertise and user
judgment to determine the appropriate parameters for heap
misuse. Users using these evaluation tools find it difficult to
acquire expertise and meet the challenge of being responsible
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for the wrong range of heap misuse. For example, when using
overflow as a heap interaction in existing evaluation tools, the
user should select a threshold to set how many bytes can be
changed by overflow. If the threshold is not large enough,
the evaluation tools are not able to find a possible heap
exploitation. Conversely, if the threshold is too large, it may
take the existing tools a long time to analyze many cases
with long, overflowed data. Therefore, to set the threshold
at a proper value, the user must have deep knowledge of
exploitation techniques, making it difficult for some users to
use these existing tools.

Second, the preliminary analysis described above is depen-
dent on each implementation of heap allocators. More specif-
ically, a heap misuse may occur or disappear on a new
version even in a heap allocator. This means that it takes
enormous effort to find heap misuses that are not explicit
in existing tools. As an example of the first case, in glibc
version 2.25, a new function called tcache was introduced to
improve performance. However, a lack of security awareness
about tcache causes a new heap misuse that did not occur
in previous versions. Conversely, in regards to the second
case, a double-free occurred in dlmalloc version 2.7.2, but
this misuse no longer works on dlmalloc version 2.8.2 or later
versions. Therefore, heap misuse cannot be generally defined
for various heap implementations, and the preliminary work
must be done as needed for each allocator and version [10].

In this article, we propose a new heap security evaluation
model to solve the limitations of existing heap evaluation
tools. In HS-Pilot, we newly define heap interaction as the
modification of heap metadata. For the preliminary work
for HS-Pilot, only the metadata structure in the target heap
allocator is required, but it is not a burden to find the metadata
information because it is publicly available from source code
or paper. For this advantage, HS-Pilot, hardly affected by
the difference of allocator implementations, can be generally
applied to various implementations.

In addition, each heap misuse in existing tools can repre-
sent a combination of modifications of heap metadata. This
modification on heap metadata is semantically the smallest
behavior in a heap exploit, and therefore, can be consid-
ered atomic heap interactions. By using the atomic heap
interactions, HS-Pilot can cover the analytical range of other
evaluation tools. The main contributions of this article are
summarized as follows:

1) We propose a new heap security evaluation model,
HS-Pilot, which can be utilized without specialized
knowledge and much preliminary work.

2) In HS-Pilot, we newly define atomic heap interaction
based on heap metadata. The atomic heap interactions
make it possible for HS-Pilot to be applied to various
heap allocator implementations.

3) HS-Pilot can cover the analysis range of existing eval-
uation tools because heap interactions in existing tools
can be represented combinations of atomic heap inter-
actions used by HS-Pilot. Moreover, HS-Pilot can find
some exploits that existing evaluation tools cannot.

FIGURE 1. Two types of chunk states in ptmalloc, in which the size
corresponds to smallbin.

4) We evaluate HS-Pilot on some allocators. In ptmalloc,
HS-Pilot can find all 14 known heap exploitation tech-
niques, as compared to 8 techniques found and 1 tech-
nique not found by HEAPHOPPER.

II. BACKGROUND
Each application implements or selects an appropriate heap
allocator. In modern embedded systems such as devices in
IoT environments, there are not enough resources. In these
cases, a lightweight C library such as musl [20] can be used,
and the operation for dynamic memory allocation is also sim-
plified. However, streamlined function can contain system
faults through unsecure memory allocation. To prevent the
situation of exploiting heap, heap allocator is evaluated by
evaluating tools. In our approach, to analysis heap security,
an user of an evaluation tool have to know the structure of the
chunk that is basic unit of the heap allocator. This section
introduces the design of heap allocator that use in inline
metadata along with attacks that occur using heap allocator.

A. DESIGN OF HEAP ALLOCATOR
There are various heap allocators to manage the heap of an
application. These heap allocators use a similar structure of
heap metadata to achieve a common goals that are to max-
imize compatibility, portability, locality, and error detection
while minimizing time, space and anomalies [17].We discuss
the structure of metadata in ptmalloc, the most popular heap
allocator. Ptmalloc is an allocator derived from dlmalloc [17],
and is the base design of various allocators such as Quickfit
[19] and musl. The GUN C library project, commonly known
as glibc, also uses ptmalloc as the default heap allocator and
as a core library for systems using Linux as the kernel [21].

Chunks are sorted by 8 bytes in a 32-bit architecture and
each metadata fields are aligned by sizeof(size_t). Ptmalloc
maintains metadata corresponding to allocated or freed chunk
as shown in Fig. 1 depending on the state of memory. The
allocated chunk has two pieces of metadata: prev_size and
size. In the size, the last three bits are not used due to the
aligned size and then store three information. The first is
PREV_INUSE bit that is the lowest bit of size. When the
previous chunk is in use, the bit is set the value to 1 and if
the previous chunk is freed, the bit is stored the size of the
previous chunk in the prev_size and change the value to 0.
The second is IS_MMAPPED, which indicates whether the
chunk is allocated by themmap() system call. Memory region
created by calling system functions is managed differently
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TABLE 1. A description of the heap exploitation technique in terms of metadata tampering and the resulting exploitation type.

from existing chunks. The last is the NON_MAIN_ARENA
bit. Ptmalloc, which supports the thread function, manages
the heap memory area per thread. The flag bit is activated
when an allocated chunk is created to other thread rather than
the main thread.

The freed chunks are managed by bins, which are struc-
tures of a freed chunk list for each size. The freed chunk
has four pieces of metadata in smallbin: prev_size, size,
fd(forward pointer) and bk(backward pointer). The reason
that freed chunks have more metadata than allocated chunks
is because they contain information to efficiently reuse mem-
ory. The first two metadata fields play the same role as in an
allocated chunk, and the latter two are used to maintain freed
chunk list of the same size or within a specified range. To add
metadata fields such as fd and bk, unused memory is used as
metadata fields without additional memory allocation.

The heap creation for an application uses the top chunk
design for a small memory footprint. It contains information
about the available size of the heap. If there is no suitable
sized chunk for allocation, the top chunk returns the new
chunk of the size to be created, keeping the rest as top chunks.
If there is no space, the usable heap area is increased through
sbrk or mmap system call.
There is a technique that modifies these top chunk as well

as one that corrupts the chunkmetadata. Therefore, top chunk
should be considered as a element of security evaluation. It is
difficult to detect technique such as house_of_force because
address of top chunk change fluidly. In order to tracing top
chunk, HS-Pilot use hook function that can capture address
of top chunk in runtime.

B. HEAP EXPLOITATION TECHNIQUES
There are various techniques for exploiting the heap shown
as TABLE 1, and can be broadly classified into two types:
The first is passive heap exploitation, which is an attack
method that uses only valid function of the heap without
modifying any metadata, such as malloc and free [13]. The
passive attack is executed by incorrect heap implementations,
but many modern heap implementations now defend against

these attacks due to a fund of knowledge. The other type is
active heap exploitation, which include most heap exploita-
tion techniques. An active attack leads to malfunction of heap
by manipulating metadata and bypassing security-checking
routine applied in heap implementation. Since security check-
ing routines are not perfect, heap evaluation tools can help by
making up for the missing part for improving heap security.

The type of a heap exploitation techniques essentially has
three prongs: Overlapping Allocation, which overwrites all
or part of a chunk already allocated through the heap API;
Non-heap Allocation, which allocates a chunk through mal-
loc to non-heap areas(e.g., stack); and ArbitraryWrite, which
overwrites a limited or arbitrary value in a desired address.

III. RELATED WORK
In the past, heap exploitation techniques were discovered
by attackers manually analyzing the heap implementation.
Attacks related to heap did not get the attention of attackers,
because it took a lot of effort to succeed. However, automatic
exploit generation tools for heap [9], [31], [32] have been
recently made so that attackers can easily create exploitation.
Attacks that use vulnerabilities of heap allocator are simply
reproduced if the memory in the heap is controlled by attack-
ers. It means that the same vulnerability exist in applications
that use the corresponding heap allocator.

Applications can also be attacked without a deep under-
standing of applications, because the heap vulnerabilities
are application independent. Due to application’s indepen-
dence, heap vulnerabilities are more critical to security
than vulnerabilities that depend on the implementation of a
particular application. Heap exploitation have been studied
extensively [16], [26] in the field of software security, and
many researcher have attempted to develop framework, using
a variety of innovative automation tools (e.g., model check-
ers, fuzzing and symbolic execution) [9].
HEAPHOPPER [7] is the first automatic evaluation tool

thorough model checking and symbolic execution to eval-
uate the security of a heap implementation. By detecting
the heap exploitation primitive, HEAPHOPPER helps to
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FIGURE 2. Comparison of our mechanism with previous study.

identify implementation problems in heap implementation.
The framework defines heap interaction based on heap mis-
use and analyzes it using the symbolic execution engine angr.
In similar way,ARCHEAP [8] is the latest heap allocator eval-
uation tool through fuzzing. It defines similar heap interac-
tion like HEAPHOPPER. However, rather than checking all
combinations of heap interactions, ARCHEAP devises a way
to quickly estimate the possibility of exploitation primitive
and generate combinations of heap interactions. It uses the
american fuzzy lop (AFL) [28] fuzzer to generate the input
value of the heap interaction, and the shadow memory is
designed for real-time analysis.

Heap implementations can be analyzed using tools,
of which the most common are fuzzing and symbolic
execution. Fuzzing helps to find exploitable input by gen-
erating random values, and an evaluation tool enables effi-
cient exploitation detection. Fuzzing generates random value
depending on criteria and done not consider semantic of
heap implementation. Therefore, fuzzing does not guarantee
security of the heap allocator even if the exploit has not been
detected. In HS-Pilot, a combination of heap interactions is
analyzed using symbolic execution, which has wide analysis
coverage because symbolic execution generate executable
path that reflects semantics of heap implementation.

In Fig. 2, our analytical mechanism is shown compared to
previous studies. Previous papers discovered heap exploita-
tion techniques [6]–[8] by constructing heap interactions
based on heap misuse. However, because security routines
are different between allocators and versions, it is necessary
to determine the heap misuse that may occur and generate a
coordinated combinations of heap interaction. In this article,
we define atomic heap interactions through information on
the metadata structure of heap. As a result, our tool does not
require additional analysis unlike previous research.

IV. DESIGN
A. ADVERSARY MODEL
This section presents the capabilities of an attacker. An
attacker aims to identify vulnerabilities in target heap allo-
cator, and evaluation tool has the same goal as the adver-
sary model. Therefore, we give the evaluation tool the

same abilities as the actual attackers. By modeling powerful
attacker capabilities, we analysis heap implementation simi-
larly with a real environment and effort to identify all known
heap exploitation techniques. Modern protection techniques
such as address space layout randomization (ASLR) [25]
make it difficult to found heap exploitation techniques, but
these defense do not essentially improve the security of heap
implementation. As bypassing protection techniques is out of
scope in our research, we assume that there is no protection
techniques except for the security checking routine imple-
mented in heap implementation.

Because heap APIs represent how they work in real
programs based on heap implementations, evaluation tools
should be able to run valid heap APIs. According to standard
documentation [22], functions(heap APIs) that manage heap
memory aremalloc, free, calloc, realloc, memalign, etc. How-
ever, an increase in the number of heap interactions can result
in a large overhead of the evaluation tool. So we replaced
alternative heap APIs to prevent this. Other allocation APIs
(excluding malloc and free) use malloc or free inside. In
addition, they perform additional actions such as resizing
or copying user data. These additional actions are meaning-
less from a metadata perspective, which means they can be
replaced by malloc and free. For this reason, the previous
papers also evaluated heap allocators using malloc and free.

To discover potential heap exploitation, the evaluation tool
changes heap metadata, and then bypasses security check-
ing routines. The heap implementation design is specified
in the annotation or white paper, from which we can also
easily obtain information about the metadata. The attacker
can modify metadata as a field of chunk or exploit indirect
metadata from the target heap allocator, such as the top
chunk. Similarly,HS-Pilot analyzes corrupt metadata through
symbolic execution. Indirect metadata is not metadata of
each chunk, but can indirectly affect the management of all
chunks. This indirect metadata can be obtained with the same
behavior used in previous heap exploitation techniques, such
as modifying the top chunk.

B. HS-PILOT
To evaluate the security of the heap implementation, we intro-
duce HS-Pilot, an automated approach to generating heap
exploits through heap metadata corruption. HS-Pilot con-
trols the heap in the same way as the adversary model that
presented earlier in section 4.1. The operation process of
HS-Pilot is shown in Fig. 3. To generate combinations of heap
interactions, we use configuration file and code generator.
Configuration file consists of information needed for anal-

ysis such as the location of a target heap allocator, set of
heap interactions, bound and temporal/spatial constraints.
The location of heap allocator is the directory path of target
heap allocator, and the set of heap interactions are valid heap
interactions extracted against the target heap allocator based
on section 4.3. SinceHS-Pilot analyzes combinations of heap
interactions, we need to specify a bound which means the
maximum combination length for finality of analysis. Also,
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FIGURE 3. Overview of HS-Pilot.

we have to configure temporal/spatial constraints because of
limitation on system resource.

Algorithm 1 Generating Compilable Files With a Heap

Interaction (HI)
Input : FileConfig
Output: CompilableFiles

D← GetDepth(FileConfig)

HIPre← GetPreHI(FileConfig)

HISet ← GetHI(FileConfig)

Sizemalloc← GetSize(FileConfig)

for DCurr ← 2 to D do
HICombs← DoCombination(HISet , DCurr , HIPre)

HIConc−Combs← DoAppendIdx(HICombs)

VulnerableCombs← GetVulnerableCombs(FileConfig)

for A combination HISingle−Comb ∈ HIConc−Combs do

if HISingle−Comb ∈ VulnerableCombs then
Remove(HISingle−Comb)

else
MakeFile(HISingle−Comb,Sizemalloc)

end

end

end

Code generatormakes a compilable code based on combi-
nation of heap interactions. This process can be represented
by pseudo-code, as shown in Algorithm 1. To minimized
unnecessary analysis, a predecessor can be set for each heap
interaction. For example, to modify the forward pointer of
a chunk, a chunk is required. In other words, it is invalid
that modify forward pointer before allocating chunk. Con-
sequently, We set predecessors for heap interactions by using
relationships betweenmetadatas. Setting the predecessors has

the advantage of optimization for analysis phase, and the
accuracy of HS-Pilot is not affected, even if predecessors are
not set.

For analysis only through metadata modification (to avoid
creating other unnecessary paths), we perform heap interac-
tion specification. Therefore, each heap interaction have to
specify chunk that perform that action in the combinations of
heap interactions. To differentiate the chunks used for analy-
sis, Allocated chunks maintain each unique index in order.
The concretization process uses indexes to specify which
chunks to modify through heap interaction. Then, HS-Pilot
creates all possible combination by using concrete heap inter-
actions. Since modifying with metadata that has already been
tampered is unnecessary, combinations with duplicate heap
interactions are eliminated beforehand. Because it is pointless
to tamper with metadata in the same chunk, theses combi-
nations are eliminated in advance. In addition, the Proof of
Concept (PoC) code is stored to reflect the previous analysis
result, and the newly created combinations are compared
with the base combination of the PoC code. If the generated
combination contains a combination based on PoC code,HS-
Pilot removes the combination.

After compiling generated combinations, the executable
files are analyzed with the angr framework [24], a binary-
based symbolic execution engine. Source code-based analy-
sis is difficult to reflect information generated and changed
at runtime. Because it is difficult to find the corruption of
memory management, we use a binary-based symbolic exe-
cution engine. Symbolic execution restricts the value of a
symbolic variable using constraints on the basis of control
flow. For our analysis, metadata that is modulated through
heap interaction is set as a symbolic variable, and the infor-
mation necessary for runtime analysis, such as address of top
chunk, is obtained through defined hook function. To effi-
ciently detect heap exploitation primitive, we set a read/write
strategies for symbolic variables. According to existing heap
exploitation, analysis is facilitated via a value based on a
target address, allocated chunk address or fake chunk address.
Therefore we use these specified address for the read/write
strategies.
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During the analysis, we need criteria to detect the heap
allocators malfunctioning. So we use security checker to
detect security violations of target heap allocator. We define
three security violations for heap.

1) Overlapping Allocation: When allocating a chunk,
it means that the previously allocated chunk and the
chunk to be allocated through the malloc function
become overlapped. The security checker verifies the
existence of coincidence between the allocated malloc
list and the chunk to be allocated using address and size.

2) Non-Heap Allocation: It means that the chunk to be
allocated through the malloc function is created outside
the heap section. The malloc function allocates unused
memory in the heap, but exploiting heap allocator can
return non-heap memory. For example, because of a
memory locality, the address of the fake chunk that is
not in heap is allocated, and this situation can occur
when freeing a fake chunk and allocating the same size
memory.

3) Arbitrary Write: This means to write an arbitrary or
limited value at the target address. Malloc and free
contain code that writes memory inside the function
to manage metadata. By exploiting mechanism about
metadata change, we can modify the value of the target
address. The value of the target address can only be
modified to a restricted value if the mechanism has
constraints. If there is no constraint, the value can be
modified to any value. We observe whether the value
of the target address has changed after calling malloc
and free to detect Arbitrary Write.

If a state that is a security violation is reached during
analysis,HS-Pilot obtains a value that satisfies the constraints
of the symbolic variable for the violated state, and generates
PoC code based on the value. To reduce the duplication of the
analysis, we gradually increase the length of the combination
and reflect the results of the previous analysis.

C. ATOMIC HEAP INTERACTION
A heap interaction refers to what can be done with an evalu-
ation tool to actually verify target heap allocator. In previous
researches, heap interactions were defined based on heap
misuses. Because it would be pointless to evaluate security
of heap implementation using a non-existent heap misuse,
it is necessary to check existence of heap misuse in target
heap allocator before analysis. Checking step requires expert
knowledge and effort. Also, different versions of the heap
misuse occur even with the same heap allocator.

In this article, we define atomic heap interactions through
metadata of heap. Each metadata represents the smallest unit
containing one piece of information for managing the heap
and is no longer semantically divisible. Therefore, we call an
heap interaction based on metadata as atomic heap interac-
tions. Identifying the metadata structure of a heap implemen-
tation is a well-known piece of information without analysis,
and is easier than figuring out the heap use of the target

heap allocator. This definition overcomes the limitation of
existing research that require expertise. In our research, HS-
Pilot accesses different metadata via offsets based on the
chunk address. Since the size of each metadata is fixed, we do
not need setting a misuses of threshold such as a overflow
size. Atomic heap interactions have four types.

• Dynamic memory related heap interaction - This
means a valid API to be used on the heap such as
malloc and free, and these functions dynamically man-
age memory. Malloc receives input parameter that is
the size to be allocated and returns the address of the
allocated chunk. Information about allocated memory is
then maintained as a global variable, and the size to be
allocated can be specified through a configuration file.
Free receives input parameter that consists of an address
to be deallocated with no return value. The argument of
the free function can include the address value assigned
through malloc function and fake chunk.

• Malloc metadata-based heap interaction - It is a type
of heap interaction that manipulates the metadata of
allocated chunks. The allocated chunk has metadatas
such as a chunk size, flag bits and previous chunk size
that is the size of the chunk adjacent to the current chunk.

• Free metadata-based heap interaction - This heap
interaction manipulates freed chunk metadata. In gen-
eral, freed chunks are managed by size through a linked
list.
for efficient use of allocated chunk metadata and
memory. If the allocated chunk is fake free, free
metadata-based heap interaction can be used for the
chunk that is not free. In other words, chunks allocated
through the heap API can all use heap interactions about
metadata used in malloc and free, regardless of state.

• Indirectly affecting heap interaction - This heap inter-
action indirectly affects the heap and does not belong
to the above three interaction types. This type includes
modifications to metadata for heap management, such
as top chunk, or memory allocation for connections with
other areas, such as fake chunks. This heap interaction
can be identified through actions used in known heap
exploitation techniques.

HS-Pilot uses an defined atomic heap interactions through
above criteria. Since the heap area is initialized after the
first malloc call in the program, we use dummy chunks to
perform analysis in the initialized heap state (allocation and
deallocation). Sowe can use initialized heap state information
such as top chunk. Also, fake chunks that are created outside
of the heap are not affected by sequence of heap interactions,
so code generator initially places fake chunks to create com-
binations that minimize duplication.

D. HEAP HOOK FUNCTION
HS-Pilot analyze using a lot of information that is generated
at runtime. Because the address to be read or written dif-
fers for each combination of heap interactions, information
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related to the heap have to be collected at runtime. In addi-
tion, it should be maintained that fake chunk address and
information about the top chunk address. However, since
runtime information is not shown in source code, we use hook
functions to obtain runtime information. HS-Pilot uses four
hook functions.
• Malloc hook function - Heap API is difficult to analysis
because of complex mechanism such as memory consol-
idation. HS-Pilot uses values that are returned directly
through malloc function, so there is no need to consider
complex mechanisms. Malloc hook function stores the
size and address of the chunk in a malloc chunk list
whenmalloc function is called from binary file.HS-Pilot
is able to verify that keeping security policy, such as
checking whether it is allocated inside the heap through
the stored address.

• Free hook function - Similar to the Malloc function,
free hook function occurs when the free function is
called from a binary file. HS-Pilot remove an address
that received input of free function in malloc chunk list,
and insert the address in free chunk list. If the address is
not in malloc chunk list, insert only free chunk list. This
situation is fake free if the address is not in free chunk
list. Contrastively, if the address is in free chunk list, it is
double free.

• Fake chunk hook function - Fake chunk is data that
maintains a similar structure to chunk in non-heap
section. The goal of fake chunk is to make target heap
allocator identify as legitimate chunk. The fake chunk
address is what must be known for heap interaction input
to create a valid exploitation technique. When analyzing
this information, note that the address of the fake chunk
stored on the stack may be different from the actual
runtime memory location. For this reason, when we
discovered a heap exploitation technique, we used the
hook function to preserve address information for fake
chunks and reanalyze the information.

• Top chunk hook function - Position of top chunk
depends on chunks that are presently allocated, and size
metadata field of top chunk keep howmuchmemory can
newly be allocated in the heap. The goal of exploitation
is to allocate more than the size that can be allocated in
the heap by modifying the size field. Top chunk hook
function find address of the top chunk. In ptmalloc,
HS-Pilot finds the address of the top chunk by referring
to the main_arena structure that manages the heap area
inside the libc function.

HS-Pilot uses four defined hook functions to obtain run-
time information.Malloc and Free hook function are occurred
when malloc function and free function are called, and fake
chunk and top chunk hook function are hooked by defining
special function.

V. IMPLEMENTATION
In this article, we implemented the prototype model,
HS-Pilot, to analyze ptmalloc, the allocator of glibc

Listing. 1. Source code of hook function to obtain runtime information.

version 2.23. In configuration file, we use YAML format
that is a data serialization language. The process of code
generation and analysis is written by python version 3.5.4
and with a totals 1500 line of code. We generate code using
a file format that is compile with GNU compiler collec-
tion(GCC) on linux, and analyze it with version 8.19.4.5 of
the angr framework, which is a binary symbolic execution
engine.

For efficient analysis, angr provides an option called the
plug-in function, which is simply simulated instead of a real
function. Plug-in functions that are related to malloc and free
are also implemented. However, we have to analysis real
implemented functions so removed this option. If HS-Pilot
encounters invalid path that lead to fail at runtime such as
abort function, our tool halt analysis. Symbolic Execution
performs objective analysis, and increases the reliability of
the tool by creating an automated input without user interven-
tion of the evaluation tool. We can get this advantage through
using symbolic execution.

In angr, a global variable address can be caught through
symbols of binary file. However, no symbols are gener-
ated for a local variables in the stack. In addition, several
information is generated after heap section is initialized. For
these information, HS-Pilot perform defined hook function.
Listing 1 show source code of hook function to obtain address
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TABLE 2. Description of combination for known heap vulnerability techniques generated by the code generator.

TABLE 3. Analysis results of 14 heap exploitation techniques detected using HS-Pilot.

of top chunk and fake chunk. When the top chunk is created,
the address of the top chunk is held in a structure called
main_arena which is a specific value apart from libc. We use
the top field of this structure to obtain the top chunk address
at runtime and store the address by size_t bytes. Thus we are
able to statically locate the address of the top chunk in the
PoC code, and modify the size information of top chunk. A
fake chunk can be created in the stack area or inside the chunk
created with the malloc function. Similar the top chunk hook
function, the fake chunk hook function is used to find the
chunk address.

VI. EVALUATION
The goal of HS-Pilot is to verify security about heap
allocators. We evaluated the detection performance of
against 14 known heap exploitation techniques in ptmalloc.
In addition, we compared HS-Pilot with the HEAPHOPPER,
a state-of-the-art heap evaluation tool. In this section, we dis-
cuss the following questions.

1) Can atomic heap interactions (newly defined heap
interactions) generate combination for known heap
exploitation techniques?

2) Can heap exploitation techniques be detected through
the generated combinations?

3) How efficient is HS-Pilot compared to other state-of-
the-art frameworks?

First, it is essential to verify that the code generator is
able to generate a combination for known heap exploita-
tion techniques. This process is equivalent to ensuring that
atomic heap interactions are well defined, as an incor-
rectly defined heap interactions are not able to reproduce
currently known heap exploitation techniques. TABLE 2
shows the combinations for the 14 heap exploitation tech-
niques as described in section 2.2. The metadata that is
used in largebin, such as fd_nextsize or bk_nextsize, can
be modified through a fake chunk created inside target
chunks. Because fake chunk triggers the constraints of
the numerous symbolic variables, HS-Pilot has to resolve
state explosion in symbolic execution. To prevent this
situation, we limited number of possible uses of fake
chunks.

Second, it should be checked whether the used evaluation
tool properly detects heap exploitation. We describe our anal-
ysis using atomic heap interactions for known heap exploita-
tion techniques as shown TABLE 3. Malloc size is candidate
of parameter that is used in malloc function, and depth sig-
nifies bound that is length of the combination. Analysis time
means the time that is required to analyze through HS-Pilot
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TABLE 4. Table comparing HS-Pilot with HEAPHOPPER against 8 heap exploitation techniques.

when the corresponding combination of heap interactions is
given.

Several types of vulnerabilities can occur in one combi-
nation of heap interactions, and HS-Pilot detects the type of
vulnerability first discovered. For example, unsafe unlink is
a heap exploitation technique that writes unrestricted values
to a desired address. The process is as follows. We write
Addrobject as the address of the object. When we want to
highlight the status of a given chunk, we denoteCHA orCHF

andmetadata for a specific chunk is indicated asmetadataCH .

1) Allocate two chunks, CHA
1 and CHA

2 , with the size of
0× 100.

2) Store AddrCH1 and AddrCH2 in a global buffer G.
3) Create a fake chunk FCH inside CH1, where

prev_sizeFCH and sizeFCH are equal to 0. fdFCH and
bkFCH are equal to AddrG − C1 and AddrG − C2,
respectively, where C1 and C2 are constants.

4) Modify prev_sizeCH2 and sizeCH2 to make CHA
1 look

like the fake freed chunk CHF
1 .

5) Free CHA
2 . After that, CH

F
2 and CHA

1 are merged into
one freed chunk. As a result, AddrCH1 in G is overwrit-
ten.

6) Put the Addrtarget in AddrCHA
1 +C1

. Addrtarget is stored
in G due to the manipulated CH1. In this case, target is
the object we want to tamper with.

7) Change the value of AddrCH1 to a desired value. Then,
we can set the desired value in the target address.

The above heap exploitation technique is triggered by a
change in the value of the global buffer through the unlink
macro by freeing the second chunk. This means that this is
an arbitrary write that writes a limited value at an arbitrary
address, and HS-Pilot detects changes in the global buffer
through a security checker in step5. The final goal of unsafe
unlink can be achieved through the subsequent process.

Finally, the difference between HS-Pilot and existing
evaluation tool is explained through comparison. We com-
pares HS-Pilot with HEAPHOPPER as shown TABLE 4.
We test 8 exploitation techniques that are detectable by
HEAPHOPPER. In HS-Pilot, the length of combination is
long because of using small units. Through a read/write
strategy during symbolic execution, the check is performed
on a specific address rather than all addresses, and the path of
symbolic execution is constructed to mitigate the state explo-

sion problem of symbolic execution. Heap misuse-based
interactions result in a number of symbolic variables being
allocated because target memory is not clear. In other words,
many symbolic variables act as overhead of the evalua-
tion tool, increasing analysis time. HS-Pilot uses a fixed
length target memory to mitigate the state explosion in a
symbolic extension. This can be seen in our comparison
experiment between HS-Pilot using new atomic heap inter-
actions and HEAPHOPPER using traditional heap misuses.
house_of_spirit is a typical example of this.

For the finiteness of code execution, we set the tunable
threshold. The temporal threshold was 1,500 seconds and
spatial threshold was 8GB in used evaluation tools. HS-Pilot
was able to analyze eight heap exploitation techniques within
the threshold. Since we are not able to predict a point of
vulnerability, we need to analyze each combination until the
entire path is reached, not when you first find the vulnerabil-
ity. To do this, we measured the time to detect the first vulner-
ability and the time to detect the entire path. The analysis was
performed three times, and each value represents an average
value. Because HS-Pilot has fewer symbolic variables than
existing tools based on symbolic execution, HS-Pilot saves
67% on average when finding the first vulnerability and 95%
when checking all paths.

In HS-Pilot, an address of a stack is specified. It mean
that the address of the stack can be analyzed via read/write
strategies by granting access to memory near the fake chunk.
Also, by setting the memory layout, we are able to deter-
mine the gap between the heap and the stack. By using
this information, we also found the specific malloc value of
the house_of_force technique and subsequently generated a
combination, enabling us to allocate the stack area address
using the malloc function.

Additionally, we analyzed dlmalloc, which is identical to
the chunk metadata of ptmalloc. Since it has the same meta-
data structure, atomic heap interactions used by ptmalloc can
be used intact. However, even though the structure of the
metadata is the same, we have to analyze dlmalloc because
possible vulnerabilities differ according to internal imple-
mentation. We found that version 2.7.2 of dlmalloc is yielded
the same vulnerabilities as ptmalloc, which was a highly
probably outcome, as ptmalloc is based on dlmalloc 2.7.0.
In order to set the top chunk to execute the house_of_force
technique, ptmalloc stores information from the top chunk in
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a structure called main_arena, and dlmalloc 2.7.2 is stored
in the av_ structure. Since the newer dlmalloc 2.8.6 is not
able to do double free, it is deemed safe against the fastbin
heap exploitation technique. Also, version 2.8.6 of dlmalloc
uses the _gm_ structure to maintain information about the top
chunk of the heap.

Finally, we analyzed musl 1.1.9 version. musl is similar
in design with dlmalloc, so we were able to analyze it using
atomic heap interaction without any significant burden. How-
ever, we checked the top of the heap with the mal.brk value
without keeping the top chunk in the musl design. As a result,
we found that modifying the top chunk resulted in an invalid
interaction with musl and that the house_of_force technique
could not be exploited. Similar to dlmalloc 2.8.6 version,
we were able to apply double free defense techniques to
show the invalidity of the previously known fast bin attack
technique. In addition, the analysis using HS-Pilot showed
that heap exploit techniques related to non-heap allocation for
the stack were not valid. This is because there is a routine to
check if the address is in the stack when allocating the chunk
address in musl. Heap allocators are constantly developing to
improve security, and existing manual tasks can be automated
through heap evaluation tools. Before heap allocators are
released, HS-Pilot can improve security by using our heap
evaluation tool.

VII. DISCUSSION
There are various vulnerabilities in heap implementations that
cause heap corruption, but they must involve heap API use or
heap metadata tampering. Use-after-free leads to information
leakage about metadata and user data. In order for metadata
information leakage to trigger heap corruption, a write action
must occur on the metadata. HS-Pilot analyzes heap alloca-
tors based on metadata writes, so it is possible to recreate
the manipulation of information leaked after use-after-free
occurs. In addition,HS-Pilot considers both the memory area
shared by user data and metadata itself as metadata. Because
of this, user data through use-after-free is independent of
metadata and does not compromise the integrity of heap
implementations. The same goes for an uninitialized read
and a buffer overread. Metadata management is done in
the heap API, and information leakage through a memory
read alone does not cause unintended behavior in the heap
implementation.

VIII. CONCLUSION
In this article, we proposed a new heap security evaluation
tool HS-Pilot that uses atomic heap interactions. We verified
a heap allocator without special knowledge about heap mis-
uses. The number of combinations increases due to refined
heap interaction, but this is alleviated through feedback. In
addition,HS-Pilot also showed that the analysis time for each
combination improved over existing evaluation tools that use
symbolic execution. Able to detect all 14 known heap exploit
techniques for ptmalloc, HS-Pilot is proven to have a wider
analysis range than HEAPHOPPER.
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