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ABSTRACT Modeling an accurate forecasting model for short-term load is still challenging due to the
diverse causes of load changing and lack of information on many of these causes. In this paper, error trend
is used to reveal the trend effect caused by unknown load affecting factors and proposed adaptive second
learning of error trend (A-SLET) to self-adapt the trend effect. Furthermore, the training set is classified
based on balance point temperature and then parallelly trained and tested adaptive forecaster for hot days
and adaptive forecaster for cold days with proper data. Combining A-SLET with parallel forecasting and
training set classification, Adaptive and Parallel forecasting strategy based on Second Learning of Error
Trend (AP-SLET) is proposed. The work studied two distinct load patterns, one in the USA and the other
in Australia. Considering the yearly forecasting horizon, MAPE of the adaptive and parallel forecasting
strategy is 1.87%-4.04% for ME-Maine of New England and 2.81%-4.41% for New SouthWales. Compared
to the state-of-art forecasting methods, MAPE of the adaptive and parallel forecasting strategy is reduced
by 17.03%-33.33%, RMSE and MAE are reduced by 34.05% and 35.38% respectively. The experimental
results demonstrate the proposed strategy can transform unknown and unavailable load affecting factors into
known forecasting features and then adapt it to improve forecasting performance. The proposed strategy is
also forecaster independent and equally applicable to almost all load scenarios regardless of geographical
and seasonal differences.

INDEX TERMS Adaptive and parallel forecasting, short-term load forecasting, smart grid, second learning
of error trend, training set classification.

I. INTRODUCTION
Building an error-free load forecasting model is challenging
due to the diverse use of electricity and various random
and non-random factors. Among energy conscious users,
the widespread use of energy-efficient appliances, and the
use of different renewable energy sources are making load
forecasting more complex.

Up to now, numerous studies have been conducted to
tackle the problem of short-term load forecasting and smart
grid management. The most frequently used models in the
literature are the statistical models that try to find the qual-
itative relation between the historical load data and future
load in a time series. The auto-regressive model and its
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variations [1] are widely employed statistical models. Some
other statistical models are the gray model [2], multiple
linear regression [3], etc. Although most of the statistical
models require less computational resources, they consider
only linear relationships and can only be applied when deal-
ing with relationships that graphically look like a straight
line. Researchers also introduced several soft computing
techniques such as the improved fuzzy model [4], expert
system [5], etc. Knowledge-based methods [6], [7] are also
studied for load forecasting. Despite of the fact that these
soft computing models handle non-linear behavior and do not
require many computational resources, the accuracy is not up
to the expectation.

To adapt the non-linear behavior of various load chang-
ing factors and to improve the accuracy, researchers
showed their interest in artificial intelligence [8]. The most
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popular such models are artificial neural network [9], support
vector machine [10], decision tree [11], etc. In recent years
deep learning based techniques such as Long Short-Term
Memory (LSTM) [12], Gated Recurrent Units (GRU) [13]
gain popularity. Several algorithms such as particle swarm
optimization [14], multi-objective dragonfly algorithm [15],
follow the leader [9], ant lion optimizer [16], firefly algorithm
[17], artificial bee colony [17], and grasshopper optimiza-
tion algorithm [10] proposed for solving the parameters and
hyperparameters of these models. Later on, researchers found
the individual forecasters may suffer from uncertainty, high
sensitivity to model parameters, and over-fitting problems.

To mitigate the above-mentioned problems caused by the
single forecaster, researchers proposed ensemble technique
[18]–[23]. In the ensemble model, several independent fore-
casters are combined to improve the robustness over single
forecaster. Another crucial benefit of using ensemble tech-
niques is that it improves accuracy and can be used as a
sophisticated tool for forecasting. Although the ensemble
models ensure high accuracy, the accuracy still depends on
the inclusion of load affecting factors [22]. The more the load
affecting factors included in the forecasting model, the higher
the accuracy will be. But in reality, it is quite difficult to know
all the load affecting factors.

Feature selection is the process of selecting the most
contributing features for the output. Whereas, training set
construction is the technique to select particular data that
reflects the pattern of the load variation. To increase the
accuracy of load forecasting, training set construction plays
an important role. Training set construction rarely explored,
compared to feature selection and model development.
Researchers found that the training set containing similar
days as the forecasted days trains the model better. There are
several ways [24]–[29] to find similar days from the historical
load data. Although the same method is used for finding
similar days, the number, variable type, and weight factors
are different from each other. Reference [27] introduced the
index-mapping database and proposed an improved similar
days method. However, the source of mapping values was
not described. A day-to-day topological network consider-
ing feature similarity of historical day and forecasted day
proposed in [30], where all the features are considered with
the same importance to generate the day-to-day network.
A recent research article [10] also used the traditional similar
day approach to construct training set, considering temper-
ature and humidity. Since the load affecting factors change
over time, it is not wise to select a training set which has
a long gap from the forecasted day. The impact of calendar
effects and forecast granularity for short-term residential load
forecasting examined in [31]. Even though the use of similar
day approach increases accuracy, proper training of themodel
using this approach requires a large amount of historical data.
It is also computationally expensive if more than one variable
is considered for finding similar days.

Aiming to solve the above-mentioned challenges, A-SLET
is newly proposed. First, important load changing factors are

combined to construct a workable dataset for our load fore-
casting model. Next, the test set is excluded from the learning
set. The learning set is further divided into three sets and
eventually, the continuous validation set is obtained. After
that, the error of the validation set is measured. To get the
error trend, curve fitting is applied to the smooth error signal
of the continuous validation set. The purpose of using the
error trend is to overcome the lack of information and reveal
the trend effect caused by unknown load affecting factors.
After that, the error trend along with the original features
is used for second learning. The purpose is to self-adapt
the trend effect caused by unknown load affecting factors.
To avoid the problem of training set construction discussed
earlier, the training set is divided into two different sets: cold
days and hot days based on balance point temperature [3].
A parallel training and forecasting are applied to get the
forecasting result. Finally, AP-SLET is proposed combining
training set classification, parallel forecasting, and A-SLET.
In this paper, A-SLET and AP-SLET are applied to forecast
the daily peak load of two public datasets with vast geograph-
ical differences. The effectiveness of A-SLET and AP-SLET
is explored on distinct patterns of load by performing exper-
iments and comparative studies.

The rest of this paper is structured as follows. Section II
and section III introduce A-SLET and AP-SLET respectively.
Section IV provides experimental results and associated dis-
cussions. The concluding remarks are given in Section V.

II. ADAPTIVE FORECASTING STRATEGY BASED ON SLET
Second learning [22] sometimes refers to stacking approach
[32], [33], is a common technique for merging the results
of more than one machine learning model. Suppose
(s1, s2, . . . , sn) and (g1, g2, . . . , gn) are the generated results
of models S and G respectively. To merge the results of S
and G, another model M is trained and forecasted using the
generated results of S and G. However, our proposed SLET is
quite different from the conventional approach. In the conven-
tional approach, the generated result of same time horizon is
used as input to another model but in our model, it is not the
same time horizon. Moreover, error trend is estimated from
the generated result, and later on another model is trained and
tested using the original data along with the error trend. Error
trend presents the estimated random variation free error of
the specific time horizon. By incorporating the error trend,
the accuracy of the forecaster can be improved. The error
of forecaster is mainly caused by some unconsidered load
affecting factors. So, the error trend analysis allows us to
incorporate the trend of unknown load affecting factors in
our forecasting strategy. It also enables us to consider the
unavailable affecting factors.

A. DATASET CONSTRUCTION AND DIVISION
The accuracy of electricity load forecasting depends on
the inclusion of important load changing factors. Gener-
ally, the electricity load dataset does not contain information
on different load changing factors. In this paper, weather,
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FIGURE 1. Adaptive forecasting strategy based on second learning of error trend.

calendar, economic are considered as important load chang-
ing factors and combined with load data to maximize accu-
racy. Suppose our dataset D = [Tn−9,Tn−8, . . . ,Tn], where
Ti indicates index of year. Each year has 365 days so each
index of year Ti has 365 time-lag. Each time lag has features
of important load changing factors and load for the specific
time lag. The first step of getting error trend is the sampling
process and the procedure is demonstrated in Fig. 1. To do so,
the whole dataset is divided into a learning set (Tn−9 to Tn−2)
and a test set (Tn). Later on, the learning set is divided into
following three parts if three years of data as the training set
for error measurement and four years data as second learning
training set is considered: Tn−9 to Tn−2, Tn−5 to Tn−1 and
Tn−4 to Tn−1. The need for such division and flow of data are
demonstrated in Fig. 2. The three data parts are for getting the
error trend for training set, getting error trend for testing set
and second learning training set itself respectively.

B. SAMPLING PROCESS
The first two parts of the learning set go through the sampling
process and several samples each of which consisting a train-
ing set and a validation set are generated. The samples are
constructed in such a way that the validation sets become con-
tinuous. For example, if the first sample has the training set
of Tn−4,Tn−3,Tn−2, and validation set of Tn−1 then the sec-
ond sample should have training set of Tn−3,Tn−2,Tn−1 and
validation set of Tn. The reason for the continuous validation
set is to get the error trend for the training set and test set.

C. ERROR MEASUREMENT
The second step is the error measurement of continuous
validation set. As discussed earlier, a single forecaster suffers

from limited generalization ability, high sensitivity to model
parameters, and overfitting problems. The accuracy of a sin-
gle forecaster fluctuates excessively if applied to different
forecasting instances. On the other hand, ensemble models
are relatively stable with better accuracy. Considering the
above benefits, studies suggested using the ensemble model.
Although the ensemble model is proposed to use, our pro-
posed techniques are model-independent, which means the
proposed techniques can be used with the model to improve
its accuracy. The three forecasters that are used in our pro-
posed framework have their advantage and disadvantage. But
together they can build a robust model [22]. For our pro-
posed techniques, the forecasters used to construct ensemble
mode are support vector regressor (SVR) [34], multilayer
perceptron (MLP) [35], and gradient boosting regression tree
(GBRT) [22]. The choice of the forecaster is inspired by the
suitability of the forecaster for time series analysis, parameter
optimization, and running time.
There are several techniques available for merging the

results of individual forecaster such as arithmetic averaging,
regression-based merging, performance-based merging, etc.
In this research paper, the simple average technique used for
merging the results forecasted by the individual forecaster.
For K forecasters, forecasting results f1t , f2t , . . . , fkt at the
time t, the merged load is given by,

f̄t =

k∑
i=1

fit

k

where f̄t denotes the merged load at the time t. The error of
the validation set is calculated by the difference between the
actual load in the validation set and the forecasted load.
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FIGURE 2. Dataset division and flow of data.

D. ERROR TREND
As the error signal of the continuous validation set is
obtained, the third step is to calculate the error trend. The pro-
cess for obtaining the error trend is also given in Fig. 1. The
average error signal of two consecutive years is considered
for curve fitting and the reason behind it is to use a relatively
stable error signal for curve fitting. Hence, the error trend
produced by the process is considered as the error trend of
next horizon. For example, the error signal of the year Tn−1
and Tn is used to produce the error trend of Tn+1. Curve fitting
is proposed to produce error trend from two error signals. It is
the process of constructing a mathematical function that best
fits the series of given data points. The constructed mathe-
matical function allows us to create new data points that can
represent the original curve. Hence, polynomial interpolation
refers to the interpolation by the polynomial of the lowest
possible degree. Suppose that the polynomial interpolation is
in the following form

p(x) = anxn + an−1xn−1 + . . .+ a2x2 + a1x + a0 (1)

The statement that p interpolates the data points means that

p(xi) = yi for all i ∈ {0, 1, 2, . . . , n}

Equation (1) can be represented as follows,
xn0 xn−10 xn−20 . . . x0 1
xn1 xn−11 xn−21 . . . x1 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xnn xn−1n xn−2n . . . xn 1



an
an−1
. . . .

a0

 =

y0
y1
. .

yn


The solution minimizes the following squared error so that
the newly constructed curve becomes the best-fitted curve in

the lowest possible degree.

E =
n∑
i=0

|p(xi)− yi|2

Curve fitting is required when a curve fluctuates in an exces-
sive manner, and a smooth curve is needed that can represent
the original curve. It removes the random variation and shows
the trend and cyclic components. In this paper, curve fitting is
used to get the smooth and random variation free error trend.

E. SECOND LEARNING AND ADAPTIVE STRATEGY
The error trend along with the existing features are then used
to train the adaptive forecaster. Hence, the error adaption is
done by second learning because first learning is used to
generate the error trend. Equation (2) and (3) show the way
to include the error trend in the training set and test set for
the adaptive forecaster. The adaptive forecaster is basically a
forecasting model whose function is to adapt the error trend
in second learning. The inclusion of the error trend in training
set and test set makes the strategy adaptive enabling adaptive
forecaster to adapt the effect of unknown load changing fac-
tors. There are n numbers of features and m instances present
in the training set. f ji ,Ei and Li present feature value of j, error
trend value, and actual load value at the time i respectively.
Among them Li is the target variable and only used in the
training set. Each instance in the training set can be any fore-
casting granularity. For our this experiment, we used the daily
forecasting granularity is used. The full procedure of A-SLET
is presented in Fig. 1. We propose to use multi-source data
for improving forecasting accuracy. As the name suggested,
information fusion of data from multiple sources constructs
a multi-source dataset. Generally, the electricity load dataset
does not contain information on different load changing fac-
tors. So, to include the important load changing factors, it is
necessary to consider multi-source data for improving the
accuracy of electricity load forecasting. In this paper, weather,
calendar, economic and historical load data are considered as
multi-source data.

Train =


f 11 f 21 f 31 . . . f n1 E1 L1
f 12 f 22 f 32 . . . f n2 E2 L2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f 1m f 2m f 3m . . . f nm Em Lm

 (2)

Test =


f 1m+1 f 2m+1 . . . f nm+1 Em+1
f 1m+2 f 2m+2 . . . f nm+2 Em+2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f 1m+k f 2m+k . . . f nm+k Em+k

 (3)

III. ADAPTIVE AND PARALLEL FORECASTING STRATEGY
BASED ON SLET
The necessity of constructing a training set is already
discussed in section I. In this paper, a new method of con-
structing the training set is proposed, that uses the concept of
training set classification. The proposed training set classifi-
cation method relies only on a single variable that is tempera-
ture. As it relies only on a single variable, it does not need any
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FIGURE 3. Adaptive and parallel forecasting strategy based on second learning of error trend.

weight factors. Another advantage of the proposed method
is that it can turn some features to linear, which means the
demand of electricity follows a straight line with the increase
or decrease of the linear feature. This may help the linear
forecasting model to be more accurate.

A. BALANCE POINT TEMPERATURE
The point of temperature, which is neither too hot nor too
cold, is called the balance point temperature. Both the training
set and test set can be divided based on the balance point
temperature. The need for electricity in the balance point
temperature is minimum because of the minimum electric-
ity requirement for heating and cooling purpose. Most of
the literature considers 65◦F as a balance point temperature
(e.g. [3]). In this experiment, days with the temperature below
to the balance point temperature are called cold days, and
days with the temperature above or equal to the balance
point temperature are called hot days. Based on the balance
point temperature, a new training set classification method is
proposed. In the proposed method, the training set is divided
into cold days and hot days for the proper training of the
adaptive forecaster.

B. PARALLEL FORECASTING
The parallel forecasting is the type of forecasting where
multiple forecasters are trained and forecasted simultane-
ously [19]. The long-time horizon is divided into several
horizons, that can be forecasted parallelly. The final fore-
casting result is produced by merging the results of mul-
tiple forecasters. Suppose year index Tn to forecast, which
may be considered as long-time horizon. As each year has
365 days so, there are 365 time-lags to forecast if daily peak
load is considered. The 365 time-lags can be divided into
((t1, t60), (t61, t100), . . . , (t320, t365)), which may be consid-
ered as short-time horizon. The division of the time-lag is
user-dependent and requires domain knowledge to maximize
accuracy of the forecaster. The forecaster f1, f2, f3, . . . , fn can
be trained to forecast the divided small horizon parallelly. The
parallel forecasting allows us to use different training sets
to forecast specific test sets. For a distinct type of test set,

parallel forecasting is highly effective. In our experiment
case, the training set is divided into hot days and cold days
based on the balance point temperature. Similarly, the fore-
casted horizon is divided into hot days and cold days as well.
Two adaptive forecasters are then trained using cold days
and hot days to forecast the cold days and hot days in the
forecasted horizon.

C. PROPOSED FORECASTING STRATEGY
Combining A-SLET, the training set classification, and par-
allel forecasting, a new strategy for load forecasting called
AP-SLET is proposed. The flow chart of AP-SLET is shown
in Fig. 3 and the process of sampling, error measurement, and
error trend calculation are shown in Fig. 1. The whole process
starts with dividing the dataset into a learning set and a test
set. Sampling process, error measurement, and error trend
calculation procedures are then applied to the corresponding
part of the learning set. The training set for second learning is
divided into cold days and hot days based on balance point
temperature. Two adaptive forecasters are then parallelly
trained using two proper training sets. Cold days adaptive
forecaster and hot days adaptive forecaster are trained with
the cold days training set and hot days training set. The trained
adaptive forecasters are used to forecast cold days and hot
days of the test set. The final forecast is made by merging the
results of two adaptive forecasters.

IV. EXPERIMENTAL STUDY
A. DATASET PREPARATION
The proposed forecasting strategies are applied to two differ-
ent datasets with a large geographical area and distinct load
patterns to show effectiveness. One of the datasets is from
the New England region of the USA [36], and another is
from New South Wales (NSW) of Australia [37]. ISO New
England Inc. is responsible for reliable operation of New
England’s electric power generation and transmission system.
In this experiment, the daily peak load of Maine of New
England is used. Load data of New South Wales are collected
from the Australian Energy Market Operator. Meteorological
data are obtained from [38]. To experiment with the ME peak
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load, 23 meteorological features, 9 calendar features, and one
economic feature are collected from multiple sources. NSW
data include 12 weather features, 7 calendar features, and
the price of the electricity. The considered features are col-
lected from multiple sources and merged to make a workable
dataset. However, the merging depends on the availability of
these features for the specific load zone in the required fre-
quency. The experiment datasets are noise-free and there are
no empty values. This allows us to skip the data preprocessing
part.

B. EXPERIMENTAL ENVIRONMENT SETUP
The experimental environment includes the Intel (R) Core
(TM) i5-8250U CPU (1.80GHz, 8GB memory), and the
operating system is Windows 10 (64-bit). Five widely used
forecasters: SVR, GBRT, MLP, LSTM and GRU, which are
capable of coping with the nonlinear relationship of fea-
tures, are used to show the effectiveness of proposed frame-
works. For SVR, the gaussian Radial Basis Function (RBF)
is used as kernel function, kernel coefficient γ is set to 0.1,
the bandwidth of the RBF kernel ε is set to 1.4, and penalty
parameter C is set to 500. For GBRT, the number of trees
is 500, the learning rate υ is 0.1, and the Least Absolute
Deviation (LAD) is used to optimize the loss function. For
the MLP regressor, the number of hidden layers is 1 with
50 hidden units, activation function for the hidden layer is
Rectified Linear Unit (ReLU) function, and the solver for
weight optimization is Limited-memory Broyden Fletcher
Goldfarb Shanno (L-BFGS) method. For both LSTM and
GRU, four hidden layers each of which has fifty hidden units
are staked together. Other hyperparameters such as activation
function, dropout rate, and epoch are set to ReLU, 0.2 and
50 respectively. Table 1 presents all the necessary parameters
of the forecasters. The choice of the above-mentioned param-
eters is based on the trial and error method.

C. ACCURACY IMPROVEMENT CAPABILITY OF A-SLET
To study the effectiveness and stability of A-SLET, experi-
ments are carried out in four different cases. In the first two
cases, A-SLET is applied to forecast the daily peak load of
the ME load zone of ISO-NE for the years 2014-2015 and
2015-2016. For next two cases, experiments are carried out to
forecast the daily peak load of NSW for the years 2014-2015
and 2015-2016. All the cases are considered from the begin-
ning of March to the end of February the following year.
Experiment to study the effectiveness of the A-SLET is car-
ried out on season basis because peak load pattern varies
from season to season and seasonal experiments can explore
the effectiveness of the strategy regardless of load pattern.
Fig. 4 shows the peak load variation of different seasons. The
order of the seasons in ME and NSW are spring, summer,
fall, and winter. Each season has three months of duration,
and for the ME region, spring starts from the beginning of
March and follows the order. For the NSW region, spring
starts from September and follows the order. It is evident from
Fig. 4 that there are some similarities and dissimilarities in

TABLE 1. Parameters and hyperparameters of the forecasters.

FIGURE 4. Peak load of four seasons for different cases.

the load pattern of two different load zones. Four years of
historical data before the forecasted horizon are used as the
training set for final forecasting. For error measurement and
error trend calculation, a few more years of historical data are
used.

In this experiment, error measurement is done by ensemble
forecaster discussed in section II.C. Six-degree polynomial
interpolation is used to get the error trend from the previous
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TABLE 2. Seasonal MAPE of different forecasting techniques.

FIGURE 5. Error trend of different cases.

FIGURE 6. Seasonal MAPE of different forecasting techniques. Axis 1 to
16 represents the 16 seasons as in the order of left to right of Table 2.

two year’s average error. Fig. 5 shows the error trend of four
cases. It is quite evident from the figure that, error trend of
the same region follows almost similar error patterns.

Table 2 and Fig. 6 show forecasting errors for different
forecasting methods. In the experiment, SVR, GBRT, and

TABLE 3. Standard deviation of peak load for different seasons.

MLP separately served as adaptive forecaster of A-SLET.
Results demonstrate the inclusion of our technique for SVR,
GBRT, and MLP increases the accuracy in almost all scenar-
ios which indicate the proposed method is forecaster inde-
pendent. In other words, A-SLET increases the forecasting
accuracy regardless of the forecaster that is used.

Furthermore, Table 2 and Fig. 6 show seasonal forecasting
errors. As each year has four seasons, the three forecasters
have 20 different scenarios. Table 2 and Fig. 6 present 80 sea-
sonal scenarios as four cases are considered for the analysis.
In most scenarios, our proposed forecasting technique works
well. The higher the standard deviation is for any season
the more the load fluctuates in that season. A-SLET works
well even when the load fluctuates excessively in summer
(See Table 3). Although many features have been considered
including meteorological, calendar, and economic features
to track the peak load of ME and NSW, forecasting error
for base forecasting method is higher than A-SLET. The
reason behind it is the fact of unknown features that were
not considered. Aiming to solve this challenge, the proposed
A-SLET calculates error trend of historical load to reveal the
trend effect caused by these unknown load affecting factors.
Then, the second learning of error trend in A-SLET gains the
underlying laws of historical error trend effect for the future
load. Thus, A-SLET transforms the unknown load affecting
factors into known forecasting features and improves the
accuracy of load forecasting. As a result, error reduction
of summer for ME 2014-2015 (GBRT), NSW 2014-2015
(SVR), NSW 2015-2016 (MLP), ME 2014-2015 (LSTM),
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FIGURE 7. Distribution of hot days and cold days of ME-Maine and NSW.

and NSW 2014-2015 (GRU) are 18.07%, 12.83%, 32.80%,
36.16%, and 26.27% respectively, and average error reduc-
tion for all 80 scenarios is 15.17% in terms of MAPE.

Out of the 80 scenarios, A-SLET is incapable of just
five scenarios (ME 2014-2015-Sum.-MLP, ME 2014-2015-
Fall- GBRT, ME 2014-2015-Spr.-GBRT, NSW 2015-2016-
Win.-LSTM, and ME 2014-2015-Sum.-GRU) and the best
performing scenarios are ME 2014-2015-Fall-SVR, NSW
2015-2016-Sum.-MLP, NSW 2014-2015-Win.-GBRT, NSW
2015-2016-Spr.-LSTM, and ME 2014-2015-Spr.-GRU. The
incapable scenarios and best performing scenarios are dis-
tributed in different geographical areas and seasons. Our
proposed method did not perform well on these five scenar-
ios because of the load structure of the specific forecasted
horizon. In other words, our proposed technique is general to
almost all scenarios regardless of seasonal and geographical
differences. Furthermore, A-SLET can improve the accuracy
of all the yearly scenarios. As the cases are from two vast
geographical areas with distinct load patterns, seasonal and
yearly analysis of the cases show the generality of themethod.

D. ACCURACY IMPROVEMENT CAPABILITY OF AP-SLET
To demonstrate the effectiveness of AP-SLET, experiments
are carried out with the same cases mentioned earlier.
A yearly forecasting horizon is considered to analyze the
effectiveness of the proposed technique. The climate of the
two specified regions is different from each other.ME is in the
hemiboreal climate region and NSW in the humid subtropical
climate region. For balanced distribution of cold days and hot
days in the training set, hot days in the training set can be
used to train the adaptive forecaster for hot days and cold
days in the same training set can be used for training the
adaptive forecaster for cold days. However, for imbalance
distribution, domain knowledge can be applied for selecting
the right length of the training set. The distribution of hot
days and cold days for ME and NSW are shown in Fig. 7.
It is evident from the figure that ME has more cold days than
the hot days and vice versa for NSW. For the proper training
of the forecaster, because of the imbalanced distribution of
hot days and cold days, the whole training set is used to train
the adaptive forecaster for hot days in case of ME and whole
training set to train the adaptive forecaster for cold days in
case of NSW.

TABLE 4. Yearly MAPE of different forecasting techniques.

FIGURE 8. Yearly MAPE of different forecasting techniques.

Similar to the A-SLET experiment, SVR, GBRT, MLP,
LSTM, and GRU separately serve as adaptive forecaster of
AP-SLET and compared their performance with correspond-
ing A-SLET, and base forecaster. The experiments are carried
out in twenty different scenarios. Each scenario is comprised
of a forecaster, forecaster with A-SLET, and AP-SLET. The
experiment results are given in Table 4 and Fig. 8. Analyzing
the table and figure, it is found that out of the twenty scenar-
ios, the AP-SLET does not perform well in three scenarios
and in one scenario MAPE is equal compared with A-SLET.
However, AP-SLET demonstrates better forecasting accuracy
in all the scenarios compared with base forecasters. MAPE of
AP-SLET is reduced by 18.39% while MAPE of A-SLET is
reduced by 16.93% on average. MAPE of AP-SLET is better
compared to A-SLET because AP-SLET involves training set
classification method based on the balance point temperature
that allows AP-SLET to learn better than A-SLET. However,

201896 VOLUME 8, 2020



M. F. Elahe et al.: Adaptive and Parallel Forecasting Strategy for Short-Term Power Load

TABLE 5. MAPE comparison with [30].

TABLE 6. MAPE comparison with [9].

AP-SLET shows slightly better performance than A-SLET
because training set classification and parallel forecasting
have less impact on accuracy improvement compared to
adaptive second learning.

E. COMPARATIVE EXPERIMENT ON AP-SLET AND
STATE-OF-THE-ART FORECASTING METHODS
In this section, a comparative study is conducted on
AP-SLET, state of the art forecasting method [30],
ANN-FTL [9], and BART [39]. Reference [30] proposed
a training set construction method based on the day-to-
day topological network. ANN-FTL is a hybrid forecasting
method that integrates FTL with ANN while BART is a
non-parametric, Bayesian, sum-of-trees model. Similar to
the mentioned state-of-the-art forecasting methods, features
considered for the comparison are calendar, weather, socio-
economic, and historical load data. The ensemble forecaster
described in section II.C used for error measurement and
adaptive forecaster of AP-SLET. Both [30] and AP-SLET
involve technique for proper training the forecasting model
with training samples similar to the test samples. While [30]
builds topological network of similar days, AP-SLET uses
balance point temperature-based training set classification
technique for training the model. As shown in Table 5,
theMAPE of AP-SLET is 1.51% andMAPE of [30] is 1.82%
for the same test case, which indicates AP-SLET shows better
forecasting accuracy.

The comparison with [9] is carried on three datasets:
ISO-NE [36], NSW [37], and ERCOT [40]. For all the three
datasets, both ANN-FTL and AP-SLET are applied to the
same test set mentioned in [9]. Analyzing Table 6, it is found
that AP-SLET is the best performer for all three cases and
MAPE of AP-SLET is reduced by 17.85%-33.33%.

To compare the result with BART, both BART and
AP-SLET are applied to ERCOT [40]. Similar to [39],
detrending is performed prior to applying AP-SLET.
As shown in Table 7, compared to BART, RMSE, and MAE
ofAP-SLET are reduced by 34.05% and 35.38% respectively.

AP-SLET usually requires a long training set in compari-
son to the technique where there is no training set construc-
tion technique involved. This is because the techniques with

TABLE 7. Comparing performance metrics with [39].

the training set construction use a part of the training set that
is similar to the test set instead of the whole training set.
Moreover, for imbalance distribution of hot days and cold
days in the dataset requires domain knowledge to set the right
length of the training set.

Time consumption of AP-SLET is compared with [30]
using the same training set and test set. The overall run-
ning time of [30] and AP-SLET is 24.7419(h) and 0.0055(h)
respectively, where the overall running time is the sum of
learning and testing time. For our proposed method, learning
time is used for error measurement, curve fitting, and second
learning. The overall running time ofAP-SLET ismuch lower
compared to [30] because AP-SLET uses simple training set
classification method where [30] uses a very complex day-
to-day topological network. The time-cost comparison shows
AP-SLET fully meets the real-life application requirement.

V. CONCLUSION
Themajor contribution of this paper focuses on improving the
forecasting accuracy by adapting the error trend in the second
learning caused by unknown load affecting factors. A new
strategy is proposed in this paper called A-SLET. A robust
experiment has been done to show the effectiveness of
A-SLET. The A-SLET has been examined in eighty differ-
ent scenarios, which are comprised of various forecasters,
forecasting horizon, and areas with a vast geographical dif-
ference. Compared to the base forecaster, MAPE of A-SLET
is reduced by 15.17% and 16.93% on average for seasonal
and yearly forecasting respectively. To further extend, along
with a proposed training set classificationmethod and parallel
forecasting, AP-SLET is proposed. It is shown from the
experimental results that the accuracy of AP-SLET is better
compared to the A-SLET in most of the scenarios and MAPE
ofAP-SLET is reduced by 18.39%on an average compared to
the base forecaster. AP-SLET is further compared with three
state-of-art forecasting methods. Compared to the state-of-art
forecasting methods, MAPE, RMSE, and MAE of AP-SLET
are reduced by 17.03%-33.33%, 34.05%, and 35.38% respec-
tively. The experimental results demonstrate both A-SLET
and AP-SLET can transform the unknown and unavailable
load affecting factors into known forecasting features and
then adapt it to improve forecasting performance. Both of
the strategies are also equally applicable to almost all load
scenarios ignoring geographical and seasonal differences.
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