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ABSTRACT Electrooculogram (EOG) and power line noise artefact detection and rejection have commonly
utilized Stone’s blind source separation (Stone’s BSS) algorithm. The paper suggests a hybrid method
between particle swarm optimization (PSO) and Stone’s BSS for the detection and rejection of electroocu-
logram (EOG) and power line noise in the single-channel without the use of a notch filter. The proposed
method contains three major steps: centralizing and whitening of the input EEG signal, incorporating the
processing EEG signal into the iterative algorithm of the particle swarm optimization (PSO) to randomly
generate the optimal value of (hshort, hlong) and weight vector W parameters, and applying Stone’s BSS
using the generalized eigenvalue decomposition (GEVD) method to eliminate electrooculogram (EOG)
and power line noise artefacts to obtain a clean EEG signal. The authors assess the robustness of the
suggested method evaluated using real and simulated electroencephalogram (EEG) data sets. The simulated
electroencephalogram (EEG) data and electrooculogram (EOG) and line noise (LN) artefacts are produced
and mixed randomly in the MATLAB program; two types of real EEG data are taken in 9 and 19 channels.
Evaluation results show the proposed algorithms as effective techniques for extracting both the power line
noise and electrooculogram (EOG) artefacts from brain mixtures compared to specific BSS algorithms
(e.g., Stone’s BSS, evolutionary fast independent component analysis (EFICA), fast independent component
analysis (FastICA), and joint approximate diagonalization of Eigen matrices (JADE)) while preserving the
clinical features of the reconstructed EEG signal.

INDEX TERMS Electroencephalogram (EEG), electrooculogram (EOG), particle swarm optimization,
signal analysis, Stone’s BSS technique.

I. INTRODUCTION
Electroencephalography is a technique used in biomedi-
cal signal processing studies to describe the human brain’s
behaviour. Electroencephalogram (EEG) signals are gener-
ated by cortical neuron-correlated reciprocal behaviour. Brain
efficiency is measured with sense nodes linked to the head of
the patient [1]. The first paper that portrayed the method for
the recognition of human brain output was written in 1929.
The essential features of the EEG signals are demonstrated
without difficulty by the multiple sensors (electrodes), the
spatial and temporal reference set, perfect for the dependence
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on electrode magnitude and time-based applications [2]. EEG
signals comprise a mixed signal of unintentional effects dur-
ing the measurement cycle, such as electrooculogram (EOG)
and control system disruptions, making it hard for EEG brain
function to study. EEG signals in the 0–16 Hz frequency
band in microvolts, with a 0–64 Hz frequency range, are
affected by electrooculogram (EOG). Such an undesirable
blend should be removed from the EEG. Electrooculogram
(EOG) is the out-of-control activity of the eye that parasitizes
the requisite brain-signal effects for the functionality of the
brain-computer interface [3].

Researchers have advanced sundry techniques over the
years to efficiently remove the artefact and noise. One of the
most commonly usedmethods to extract artefacts is the use of
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dependent variable variation, named independent component
analysis (ICA), where the original signals are decomposed
in a brand-new linear combination signal called independent
parts (ICs). ICA helps to classify the artefacts in the provided
brain signal. In comparison, Corradino et al. [4] suggested
a system that allows using regression ICA. The method can
avoid the loss of information by using a feedback control sys-
tem to test the consistency and recognize the artefacts residual
that reflect artefacts significantly. Subsequently, computa-
tional regression used to measure the association’s coefficient
between the recognized ICs artefacts and the original signal
to confirm the artefact components deletion correctly with-
out informational loss. The method was efficient, as it has
been shown that the purified ICs relate to a comparable data
signal in all bands. Applying ICA algorithms often causes a
problem of distortion of the raw EEG signal. To overthrow
this difficulty, Gauba et al. [5] have implemented an average
moving (MA) filter to enhance the signal by merely replacing
each data value by the average adjacent ICA values. The
original signal is smoothed after application of the MA filter.
It calculates the moving average by using the model:

y [i] =
1
M

∑M−1

j=0
x[i+ j] (1)

where y[i] is the output signal, x is the received signal, and M
is the point’s number utilized during the average computation.

To simultaneously extract muscle and ocular artefacts,
Chen et al. [6] introduced an expanded variant of ICA from
one or more datasets. It utilizes information theory principles
to divide each set of data into mutually independent sources,
while also using a dependency association between sets of
data to rely on similar sources across data sets. The suggested
approach employs simultaneous independent vector analy-
sis (IVA) for jointly used higher-order statistics (HOS) and
second-order statistics (SOS). IVAmakes use of HOS in com-
bination with SOS ensuring source statistical independence.
Whereas the different data sets are multichannel records time
delayed, IVA uses SOS to search the information of potential
sources’ temporal structure. IVA incorporates the strengths
of both HOS and SOS, that separate the EEG’s ocular and
muscle objects. Their analysis was performed with simulated
data and actual EEG data. The findings both show that their
approach has a successful signal and noise ratio (SNR).

In addition to the above methods, several researchers have
introduced wavelet transformation to distinguish artefacts
from EEG signals. However, the general way to remove
artefacts using wavelet transform may cause data loss, and
clean signals may be reconstructed incorrectly. Much work
is done that incorporates the wavelet transformation with
other approaches for further developing the general process.
Mammone et al. [7] suggested a system famed as automatic
wavelet independent component analysis (AWICA) for a
multichannel scalp EEG rejection of automated artefacts.

The EEG input is decomposed through the discrete wavelet
transforms (DWT) into four major brain function strips to
partition each initial data collection channel. A wavelet

component (WC) represents every rhythm of each chan-
nel. To concentrate the artefacts into a few ICs, the ICA
analytics will be channelled to each WCs. It automatically
detects and eliminates the resulting artefactual wavelet inde-
pendent components (WICs). The clean signal reconstruc-
tion subsequently includes two steps, which are the inverse
ICA and the inverse DWT. Study of Szibbo et al. [8],
Addresses a simple blink filtering system with a smoothing
filter of Savitzky-Golay (SG) and contrasts it with Indepen-
dent Component Analysis, an agreed blink removal system.
The SG-based blink filtering method arose from the need
for blink removal in EEG systems with a low number of
channels and low processing capacity, specifically reading
from the front position where the blink disruption is sig-
nificant, however, several disadvantages to the SG-based
approach, for example, difficult to detect blinking compo-
nents from channels situated further from the forehead, and
also the claim that the retraction of EOG operation in the
time or frequency domain necessarily requires the subtrac-
tion of a part of the EEG concerned. In [9], the author
proposes a system for classifying event-related potentials to
improve accurate classification and efficiency depends on
the required range of classifier parameters and features from
dense-array electroencephalography (EEG) signals. Using a
combination of a Fisher Discriminant Analysis (FDA) and
a multi-objective hybrid real-binary Particle Swarm Opti-
misation (MHPSO) algorithm, the proposed approach has
achieved higher classification accuracy than that achieved
by conventional approaches. Research in [10] using particle
swarm optimization (PSO) to remove ECG artefact from
simulated and real Electroencephalogram (EEG) data sets,
by tuning the parameters of adaptive neuro-fuzzy inference
system (ANFIS) individually, The performance of the tech-
niques is higher than the current traditional approaches.

Kaur and Singh [11], implemented a second-order blind
identifier (SOBI) based ICA using wavelet thresholding in
their work. Artefact based ICs were detected using SOBI
ICA, followed by thresholding for wavelets. Wavelet thresh-
olding is applied based on soft thresholding to DWT’s recov-
ered coefficients to distinguish the artefact ICs from any other
operation. The parameters of root mean square error (RMSE)
and peak signal-to-noise ratio (PSNR) is calculated for
assessing the efficiency of the proposed system. It indicates
that their behaviour renders artefacts better concealed.

Many of the previous research utilized ICA, that have
several drawbacks: an output components’ equal number
and results, source distortion, output component abnormal-
ities, and the amplitude information’s lack in the output
components.

The Stone BSS among the source separation methods, that
with no details on the source signals or the mixed matrix,
it can distinguish the source signals from the mixed sig-
nals. Abdullah and Zhu [12] proposed a modification of
Stone’s BSS based on the Fast Genetic Algorithm (FGA), and
hybridization was used to generate and modify the optimal
half-life (hL, hS) parameters that affect the stone system
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separation mechanism by using the reactions of two separate
linear scalar filters for the same set of signals. Fast genetic
algorithms are an effective method to improve the process
of segregation when hybridised with SBSS algorithms. This
hybridisation is for the purification of EEG brain signals
from multiple artefact forms. In this study, present a new
application for Stone’s Blind Source Separation method in
brain signal analysis to separate an EOG and power line
noise artefacts from electroencephalogram (EEG) mixtures
with PSO hybridization to enhance the separation process.
We consider the algorithm suggested by the authors M. A.
Ahmed, et al. in [13] to evaluate the efficiency of the sug-
gested method. The evolution of the method is based on the
rejection of other artefacts, such as electrooculogram (EOG)
and power line noise artefacts from the EEG mixture. The
real and simulated EEG used in this evolution; the real
EEG database contains 9 channels and 19 channels, and
simulated EEG data and artefacts were implemented using
MATLAB software 2018. Two methods used to assess the
separation process in the real EEG database are the sparsity
measure and the correlation between the artefact-reference
signal; in simulated data, an integral square error (ISE) and
carrier-to-interference ratio (CIR) are used to measure the
separation process. The contributions of this work validate
the reliability and robustness for electrooculogram (EOG)
and power line noise artefact removal by the suggested
algorithm in [10].

Therefore, further evolution of the suggested algorithm is
possible by applying the algorithm to clean EEG with other
artefacts such as electrocardiography (ECG) signals. Other
ways to improve the process of separation by hybridizing the
suggested system with soft computing techniques, such as
artificial bee colony algorithms (BCA) and the runner-root
algorithm (RRA).

The rest of this paper is organized as follows. Section II
presents the EEG database related to this work. Section III
presents a brief overview related to the suggested method
with a focus on the main process and equations that work in
conjunction between Stone BSS and PSO algorithms. This
is followed by section IV, which contains the results and
discussion, wherein the validation scheme for evaluating the
separation process is discussed, and the synthesis of EEG
artefacts and the experiment results are presented in this
section. The conclusion is drawn in section V.

II. PROPOSED WORK DATA SET
The EEG utilizes scalp-mounted sensors to transmit electrical
signals through the cortex. The sensors are placed using an
international 10-20 strategy. Two data sets are utilized in this
study, virtual (simulated) EEG data byMATLAB R2018, and
real EEG data.

A. REAL EEG DATA
The brain computerized interface (BCI) system is utilized to
calculate patients’ EEG signals. The system has nine-channel
sensors and 0-256 Hz sampling frequency [14]. Two forms

of real EEG data are registered on 9 and 19 channels; for
9-channel data, EEG signals are polluted with EOG and
50-Hz power line noise. The 19-channel data collection is
polluted with power line noises and EOG error registered
by computerized EEG devices at Al-Jomhori hospital, Taiz,
Yemen.

1) NINE-CHANNEL DATA SET
The BCI system’s obtained data was sampled at 256 Hz
with 2 minutes maximum length. The ISR tests the efficiency
of the algorithm by using simulated data but doesn’t accept
to the actual EEG data because of the unknown combin-
ing mechanism. Then correlation analysis utilized to assess
the removal process of the suggested methods. Nine chan-
nels have been utilized in this work, in which six sensors
(Fp1, Fp2, C3, C4, O1, and O2) are utilized according to the
(10-20 method) to measure the brain signals located on the
scalp: one sensor positioned at Cz (Figure 1) as a ground, and
two EOG sensors (vEOG and hEOG) mounted above and on
the left eye socket to start measuring EOG activity from the
eyes and the face.

FIGURE 1. The electrodes place.

Recording EEG signals are tainted with EOG artefacts and
(50 Hz) power line noise. The EOG artefact is present in the
frontal channels and frontopolar channels like Fp1, Fp2, F7,
and F8 and decreases when the spacing of the sensors from
the eye increases. All the EEG data are polluted with 50-Hz
power line noise but are heavily contaminated differently.
Power line noise is prevalent on the central (C3 & C4) and
occipital (O1 & O2) channels, as shown in Figure 2 [15].

2) NINETEEN-CHANNEL DATA SET
Real EEG 19-channel data were distorted by power line
noise interference and EOG interference captured by
computer-based EEG systems at Al-Jomhori hospital, Taiz,
Yemen. Computer-based EEG is a PCI data capture card
computer that receives input from the scalp viamacro sensors.
One normal person, a 32-year-old male, partake in the study.
EEG signals captured using 19 electrodes mounted on the
scalp according to the 10-20 system used to measure brain
signals. Based on the design of the computer-based EEG
system, the measured signals are digitized at 256 Hz with a
trail duration of 10 sec (10 sec×256 Hz = 2560 specimens),
in which the participant was enabled to produce EOG arte-
facts (eye blinking & eye movement).

If the EEG report has been finished, it can be stored as
an ASCII code; this ASCII document can be viewed via
notepad software. The data are imported intoMicrosoft Excel
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FIGURE 2. Set of data I with zero mean and unit variance.

to delete the first column containing the timing information
and removing the channel name, and then data are imported
into MATLAB. Figure 3 indicates polluted signals; these
signals are pre-processed (centralizing and whitening) for
simplification, as seen in Figure 4.

B. SIMULATED EEG DATA SET
In the MATLAB as shown in Figure 5, artificial EEG, EOG
and power lines are created. Multiple artefact forms and
EEG signal emulation are carried out based on each signal’s
specification.

According to Abdullah and Zhu [12], the generation of
artificial EEG signals is polluted with EOG and power line
noise using classical event-related potentials (ERP) theory.
The additional signal and noise components produce the sim-
ulated data. The two functions: peak and noise can generate
two components. The noise function in MATLAB is created
in such a way that the power spectrum matching the power
spectrum of the human’s EEG. In general, the noise function
has three parameters: the first to describe the length of a single
signal test by the number of samples, the second to describe
the number of tests, and the third to describe the sampling
frequency [16]. Therefore, for one test generation of 0.8 s of
noise with a sampling frequency of 250 Hz, one trial can be
typed in MATLAB as Mynoise = noise (200, 1, 250).

The value of the first parameter representing the number
of samples was determined by multiplying the noise length
by the sampling frequency, i.e., 0.8∗250 = 200. The func-
tion produces a sample-containing vector. This can now be
visualized by typing: plot (Mynoise).

The function peak is somewhat close in form, but it has
other parameters, including a 4th and 5th parameters defining
the peak frequency and the middle location of the peak,

FIGURE 3. The measured signals by a computerized EEG device.

respectively. It can type Mypeak= Peak (200, 1, 250, 5, 115)
if, for example, want to produce and show a peak at a fre-
quency of 5 Hz and a centre in the 115th sample.
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FIGURE 4. Measured signals with the unit (mean and variance).

Once both the signal and noise are created, then they
can be combined. If the peak wants to be (−ve), it can be
multiplied by −1 before adding, and the amplitudes of the
signal and noise can be determined bymultiplying the vectors
that represent them before adding, such as Mysignal = (−5)
∗Mypeak + 3 ∗Mynoise.

To produce multiple trials of signal, the number of trials
needs to be defined in the second parameter of the peak and
noise of the function. The resulting data structure would be
a vector of concatenated signals. When generating multiple

FIGURE 5. The artificial sources.

trials, the 6th parameter can be defined in the function peak
that defines the time jitter of the peak during the trials.
To produce data from multiple electrodes, you can build a
multi-row matrix with the same number of electrodes for
each electrode separately and each row can be the same as
the signal of an electrode. Furthermore, it should be noted
that the peaks in various electrodes have various amplitudes,
so the coefficients of the dipole model should be scaled. The
pseudo-code for the simulation of EEG data (973 studies
and 31 electrodes) is as follows:

Algorithm 1 The Steps to Generate Simulated EEG Signals
Required:MATLAB EEG toolbox.
Output: The resulting data structure is a vector of concate-
nated signals
Steps:

1. Initialize the general parameters of the EEG signal
Frames, Trials, Srate.

2. Initialization Noise parameters Neamp, Nefreo,
Nepos.

3. Initialization Peak parameters PeAmp, PeFreq,
PePos.

4. Generating multiple trials, and defined it in the func-
tion peak that initializes the time jitter of the peak
during the trials and amplitude of noise NoiseAmp.

5. Calculate the NE bymultiplying theNeAmpwith the
output from the peak.

6. Calculate the PE by multiplying the PeAmp with the
output from the peak.

7. Generate EEG data for every electrode separately
and create a multi-row matrix equivalent to the num-
ber of electrodes where each row meets a one elec-
trode signal by multiply Ne and Pe with the dipole
model and adding the results.

8. Scaled the coefficients of the dipole model to gener-
ate peaks with different amplitude in different elec-
trodes.
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FIGURE 6. The artificial source with the zero mean and unit variance.

EOG is generated through a sine function and is randomly
intersected by a combination of signal to build a mixed-signal
(Figure 5). Artificial sources are simplified by pre-processing
(centralizing andwhitening) to obtain sources with zeromean
and unit variance, as shown in Figure 6. Signals are randomly
combined by adding the ‘‘A’’ matrix to produce the ‘‘X’’
mixture.

The mixing process has all the possibilities are used to con-
tain all the planned mixtures and to generate various mixture
styles, as shown in Figure 7 to Figure 9. The artificial EEG
signals and power line noise interference (LN) are combined
randomly to generate combinations as shown in Figure 7.

FIGURE 7. Mixture 1 signals (EEG contaminated by LN).

Figure 8 shows the mixing between the simulate EEG
signal and electrooculogram (EOG) artefact; the sources are
mixed randomly to produce the mixture.

FIGURE 8. The mixture 2 signals (EEG contaminated by EOG).

Figure 9 shows the mixing between the simulated EEG
signal with electrooculogram (EOG) and power line noise
interference (LN). The random mixing process with the ran-
dom mixing matrix was used to produce these mixtures.

FIGURE 9. Mixture 3 (EEG contaminated by EOG and LN).

III. PROPOSED METHOD
It uses the PSO algorithm for gradual calculation of the opti-
mal half-life value (hshort, hlong) to perform the segregation
method. The value of (hshort, hlong) is set in the original
Stone’s BSS, usually (hlong ≥ 100hshort). PSO alone has a few
drawbacks in the solution of BSS, like the accuracy of the W
segregation vector, which is related to the random generation
of main parameters, and the sluggish rate of extraction caused
by the magnitude increase of the solution space.

In the suggested method, the (hshort, hlong) value is pro-
gressively developed to improve the separation process. The
signal mix will be mutually independent when (hshort → 0)
and (hlong→∞) is specified. Stone’s blind source separation
used to transform the X signal to an isolated independent,
that is statistically not fully independent signal. It uses the
PSO rather than a fixed value to establish random optimum
(hshort and hlong) parameters and to change these parameters
until it has fulfilled the last conditions. The suggested method
comprises 2 steps: first, get the initial splitting matrix WInitial
using the original Stone’s BSS with the random parameters
of (hshort and hlong) that adjusted by the PSO algorithm until
we have met the stop requirements.; second, get the optimum
split WRefine matrix by harmonized WInitial using the PSO as
a refinement process for the coefficients of WInitial to create
WRefineas explains in Algorithm 2.
Stone’s BSS is used as a temporal predictability measure-

ment (TPM) to distinguish data from the key data, combining,
and speculation. For the signal y(k), The following specifies
the TPM [17]:

F (y) = log
Vy

Uy

= log

∑N
K=1 (ylong (k)− y(k))2∑N
k=1 (yshort (k)− y(k))2

(2)

yshort (k) = βsyshort (k− 1) (1− βs) y (k− 1) (3)
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Algorithm 2 The Major Steps for PSO to Generate Random
Parameters and Tune to Stone’s BSS
Required: EEG Signals.
Steps:

1. Initialization of the parameters ω, α1, α2, n.
2. Generatehlong, hshortandWInitial randomly.
3. Run the traditional Stone’s BSS.
4. Re-arrange and measure the fitness function to assess

the expense of the proposed plan (Particle X(i)).
5. Calculate X(i) costs when it is less than lbest(i) costs,

then proceed to step 6; otherwise, proceed to step 7.
6. Updates local bests (lbest(i) = X(i)), updates global

bests, and updates velocities and positions.
7. Meet the stopping requirement for a maximum gener-

ations number >25 and proceed to step 8; otherwise,
proceed to step 3.

8. Obtain the optimal solution of hlong, hshort and WISBSS.
9. Gain the EEG signals.

10. End.

ylong (k) = βLylong (k− 1)+ (1− βL) y (k− 1) (4)

where the total data for y (k) is N, βs = 2−1/hshort ,
βL = 2−1/hlong , and hshort, hlong are the variables of half-life.
The half-life (hshort) of βs are 100 periods shorter than the
half-life (hlong) of βL. These values are determined by Eqs.
(5&6) using the suggested method:

hlong i+1 = hlong i + γ (5)

hshort i+1 = hshort i + γ (6)

where the random value is γ , the new hlong value is hlong i+1,
and hshort i+1 is the new hshort value. According to Eq.5 and
Eq.6, if y(k) = wTi x(k), and W = [w1,w2, . . . − wn], Eq.2
will be rewritten as follows [18]:

F (yi) = log
wic

long
xx wTi

wicshortxx wTi
(7)

where C long
xx is a long-range covariance array (N × N )

among the signal combinations, and C long
xixj and Cshort

xixj among
the ith and jth blends, respectively, are defined as follows:

Cshort
xixj =

∑
t

(
xit − xshortit

) (
xjt − xshortjt

)
(8)

C long
xixj =

∑
t

(
xit − x

long
it

) (
xjt − x

long
jt

)
(9)

Using the Stone method, S fromX is retrieved without ‘‘A’’
identification. The collected signals are determined according
to the extraction model as follows:

Y (k) = WX (k) (10)

where Y (k) = [y1(k), . . . , yn(k)]T is the system or sensing
factor blend data (known), X (k) = [x1(k), . . . , xn(k)]T is
the (unknown) source data, T corresponds to the operator for
transposition, W ∈ R(n×n) is the (unknown) mixture of data
and k is an indicator of time. Stone’s system starts with the

quest for the originalWInitial separatormatrix. For the (WInitial
and WRefine) coefficients’ acquisition, it uses the PSO as an
optimization tool. As an initial parameter, PSO algorithms
use WInitial to render an independent X signal variable with
the fitness function.

The fitness function parameter (Fit) definition is the PSO
algorithm’s key to success. The PSO aims to improve the
fitness function by reducing shared information I (y) between
the elements. Start the fitness function:

Fit (y) =
1

I (y)+ ε

=
1∑n

i=1H (yi)− H
(
y1, y2, . . . , yn

) (11)

where y1, ..., yn is a separated signal, H is signal entropy,
I (y) is the definition of the difference between n signals
entropy computed for the shared information, and ε is a
constant value (0.0001). The initialisation configurationsof
PSO are as follows:

f : Rm→ úR; fitness function
n = 20 . . .− 200; particle’s number
xi ∈ Rm, i = 1 . . .− n; particle positions
vi ∈ Rm, i = 1 . . .− n; particle velocities
x̂i; current best of each particle
ĝ, global best and ω, α1, α2

constants

For each particle i = 1 . . .− n,
• Create random vectors r1, r2 with components in
U [0, 1];

• Update velocities vi← ωvi+α1r1◦ (x̂i−xi)+α2r2◦ (ĝ−
xi);

• Update positions xi← xi + vi;
• Update local bests x̂i← xiiff (xi) < f (x̂i);
• Update global best ĝ← xiiff (xi) < f (ĝ);
• Initialize the positions of particles and their velocities
accordingly:

X = lower limit +
(
upper limit − lower limit

)
× rand

(
nparticles,mdimensions

)
(12)

PSO attempts to improve the fitness function by decreas-
ing the reciprocal knowledge I(y) between the components,
as expressed in Equation (13):

I
(
yi, yj

)
=

∑
i6=j

p
(
yi, yj

)
log(

p
(
yi, yj

)
p (yi) p

(
yj
)

∑
i6=j

p
(
Wx i,Wx j

)
log(

p
(
Wx i,Wx j

)
p (Wx i) p

(
Wxj

) ) (13)

If I (yi, yj) = 0, then yi, yj can be set independently and
separately, and the fitness function defined as the following:

Fit (y) = I
(
yi, yj

)
, yi, yj ∈ y, i 6= j (14)

Moreover, the maximization of entropy implies a higher
level of independence between signals in respect of
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FIGURE 10. Flowchart of the proposed algorithm.

the principle of maximization of mixed-signal entropy
because I

(
yi, yj

)
is non-negative and, thus, H (yi) ≥

H
(
y1, y2, . . . , yn

)
. The optimal solution and distinct signals

can be obtained with the rewriting Equation (9) in addition to
the PSO algorithm:

y (k) =WRefinex (k) (15)

Prior to each generation, symmetric orthogonalization is
used to ensure independence amongst separate, applica-
ble sources. The symmetric orthogonalization is obtained

by [19]:

W =W× real
((

WWT
)− 1

2
)

(16)

where w is the separating matrix which generated and tuned
from PSO. The flow diagram of the suggested algorithm
in Figure 10 is seen in a simple comparison. The last step
after the EEG artefact removing is to recreate the EEG data,
as illustrated by Figure 11. The reconstruction algorithm can
be used to evaluate the temporal structure of S(t) components
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FIGURE 11. Reconstruction process based on the classical way.

and classify components of artefacts. On the standard basis,
the artifact-specific components are set to zero, Sartf(t) = 0
(i.e., IC6 = 0), and the EEG-data are stated as follows:

x̂ (t) = A ŝ (t) (17)

where x̂ (t) expresses the data free of the artefact, A is the
fusing matrix A = W−1, W is the non-mixing matrix and
Ŝ (t) is a new component matrix. To check the rejection effi-
ciency of electrooculogram (EOG) and power line artefacts,
the separation process is calculated by the simulated data
through the interference signal ratio (ISR) in [20]. However,
in the real EEG data, the ISR calculation is not valid since no
information on sources is available.

IV. RESULTS AND DISCUSSION
In order to check their performance, ISBSS is being compared
with the original SBSS, EFICA, FastICA, and JADE. The
current technique yields quite effective insulation in the real
9-channel data set of power line noise and EOG artefacts,
where the power line noise interference is located and seg-
regated in IC1 by the ISBSS algorithm; the EOG artefact is
precisely isolated in IC6, as shown in Figure 12.

The mixture detection is based on the non-complex system
of measurements described in the equation of the sparsity
measure (17), as follows. [21]:

Sparsity
(
y(j)
)
=

max
[∣∣∣y(j)i ∣∣∣]

std
[
y(j)i
] log

 std
[
y(j)i
]

median
[∣∣∣y(j)i ∣∣∣]


(18)

where the jth ingredient is y(i) =
[
y(j)1 , . . . , y

(j)
N

]
, the sample

size in the framework is N , the ideal perversion is std, and
the period indicator is i. Very strong rejection is achieved
by the proposed artefact algorithms, which display simple
EOG artefact separation by IC6, and the power line noise
interference located in IC1 (see Figure 12 and Table 1).

Figure 13 describes the correlation between both the
artefact-reference signal and the extracted EOG artefact. The
correlation result shows that the ISBSS approach is more

FIGURE 12. Separated signals of the real EEG 9-channel data set by ISBSS.

TABLE 1. Sparsity measure description of the separated signals.

effective than other BSS methods for eliminating the EOG
artefact.

The power spectra of the mixed signals and the extracted
components are shown in Figures 14 and 15. All channels,
as described above, are 50-Hz power line noise intrusion,
in particular O1, O2, C3, and C4.

We applied the proposed algorithms and various BSS
algorithms to 19 channels of 10-second data to remove
50-Hz power line noise and EOG artefacts. Figure 16 shows
the excluded components based on ISBSS. The power line
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FIGURE 13. The correlation between the artefact-reference signal and the
EOG extracted artefact.

FIGURE 14. Frequency components of the recorded EEG (data set I)
approximately 50 Hz.

FIGURE 15. Frequency components of the ISBSS extracted components
in 50 Hz.

noise interference was successfully separated in IC7 and
the EOG artefact was isolated in IC1. The correlation
measure between artefact-reference signal and the esti-
mated artefacts (EOG, LN) component can test the per-
formance of the proposed algorithms. The results obtained
by the proposed algorithm (ISBSS) are better than those
of the other BSS techniques, where the best correlation is
obtained by ISBSS, and the JADE technique gets the worse
value.

Figure 17 shows the signals of mixture 1 (EEG with
LN-Figure 7) separated by the ISBSS algorithm. The col-
lected signals are placed vertically for display purposes (on
the top), and the corresponding recovered signal is on the
bottom.

FIGURE 16. Separated signals by ISBSS algorithm.

Figure 18 shows the signals of mixture 2 (EEG with
EOG- Figure 8) separated by the ISBSS algorithm; the
processed signal is placed vertically for display purposes
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FIGURE 17. Original and separated signals by ISBSS for mixture 1.

FIGURE 18. Sources and separated signals by ISBSS for mixture 2.

(on the top), and the corresponding extracted signal is on the
bottom.

Figure 19 shows the recovered signals of mixture 3 (EEG,
LN, and EOG- Figure 9) by the ISBSS algorithm. The
extracted signal is vertically shifted for show purposes (on
the top), and the corresponding recovered signal is on the
bottom.

FIGURE 19. Sources and separated signals by ISBSS for mixture 3.

Two indices are utilized to verify efficacy: the CIR and
the integrated square error. CIR [20] uses equation (18)

for estimating the execution of simulated results, where
s(k) refers to the original signals, y(k) refers to the signals
retrieved, and k to the time or sample index:

CIRi = 10 log
E
[(
si (k)− yi(k))2

)]
E
[
(si(k))2

] (19)

The success of the separating procedure is better when the
CIR measure is small, as shown in Figure 20 to Figure 22.
These figures show the comparison of CIRmeasures between
different BSS algorithms. The average value of the perfor-
mance indices for the proposed algorithm ISBSS is signifi-
cantly surpassed for other BSS algorithms. Figure 20 shows
the performance index compression for separating signals
from mixture 1. The effects of the phase of separation are
higher because of the reduction in CIR estimation. ISBSS
(−60.5738 dB) displays the performance and the worst value
is found by SOBI (−42.0495 dB).

FIGURE 20. The compression of the performance index for separating
signals from mixture 1.

FIGURE 21. The compression of the performance index for separating
signals from mixture 2.

An integral square error (ISE) is the second index that is
used to track performance, as follows:

ISE =
T∑

K=0

(Si (k)− yi (k))2 (20)
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FIGURE 22. The compression of the performance index for separating
signals from mixture 3.

The success of the separating procedure is better when the
ISE measure is small, as shown in Figure 23 to Figure 25.
These tables show the comparison of ISE measures between
different BSS algorithms. The average value of the perfor-
mance indices for the proposed algorithm is significantly
surpassed for other BSS algorithms.

FIGURE 23. Performance index compression for separating signals from
mixture 1.

FIGURE 24. Performance index compression for separating signals from
mixture 2.

Figure 25 shows the integral square error (ISE), value for
the EEG, EOG, and LN signal, as well as three well-known

BSS algorithms (JADE, EFICA, SOBI) and two Stone’s BSS
algorithms (Stone BSS, ESBSS), of which ESBSS refers
to the evolutionary Stone’s BSS algorithm as presented by
in [22], which is based on a hybridization of Stone’s BSS
andmetaheuristic algorithm called genetic algorithm for elec-
troencephalogram (EEG) artefact extraction.

FIGURE 25. Performance ISE index compression for separating signals
from mixture 3.

Table 2 displays the spectral density estimation (SDE)
value for the raw EEG signal to determine the effectiveness,
as well as two single-channel techniques for EOG extraction
and removal such as (ECR) and (SG), of which ECR refers
to the Enhanced Channel-Reference algorithm, is discussed
and presented by Zhu and Abdullah [23], and SG refers to the
Savitzky-Golay algorithm which is discussed and presented
by Szibbo et al. [8].

TABLE 2. Spectral density estimation (SDE).

Welch’s method used to determine the SDE value in the
suggested system, which is less than that of other algorithms.

V. CONCLUSION
In this study, present a new application for Stone’s
Blind Source Separation method in brain signal analysis
to separate an Electrooculogram (EOG) and Power Line
Noise Artefacts from Electroencephalogram (EEG) Mix-
tures with PSO hybridization to enhance the separation
process.

The proposed algorithm is shown to be an efficient tech-
nique for extracting EOG and LN artefacts from EEG brain
mixtures compared to other algorithms, such as the original
SBSS, EFICA, SOBI, and JADE. The performance of the
ISBSS is better than the various types of BSS algorithms,
as shown in the simulated and real EEG data.
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The efficacy assessment proves that Stone’s BSS algorithm
is a valuable medical technique to distinguish various arte-
fact forms from EEG information. In this study, ISBSS was
demonstrated to reject and remove electrooculogram (EOG)
and power line noise artefacts from electroencephalogram
(EEG) mixtures.

Other artefacts such as ballistocardiogram (BCG) and elec-
tromyogram (EMG) artefacts can occur in EEG signals for
future work. ISBSS should be a valuable algorithm to reject
these artefacts. This research can now be expanded to reject
new kinds of artefacts, such as BCG and EMG and can
be expanded with a further machine learning algorithm or
soft computing techniques to hybridize Stone’s BSS, such as
artificial bee colony algorithms (BCA), and the runner-root
algorithm (RRA).

To check the effectiveness and feasibility of this method
when the EEG signals have changes need to apply in real-time
application.

Recently, the world directed toward wireless EEG instead
of wire EEG system for easy and more flexible in different
applications particularly for Brain-computer interface system
BCI, but the measured EEG signals are subject to heavy
motion and vibration artefacts. The conventional methods to
separate these artefacts unsuccessful, therefore we recom-
mended using blind source separation techniques for artefact
extraction and then removing. Wireless EEG systems elimi-
nate the wire connection between the signal acquisition and
the translation part, with a wireless transmission unit such as
Bluetooth.
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