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ABSTRACT A positive-feedback (PF) neuron device capable of threshold tuning and simultaneously pro-
cessing excitatory (G+) and inhibitory (G−) signals is experimentally demonstrated to replace conventional
neuron circuits, for the first time. Thanks to the PF operation, the PF neuron device with steep switching
characteristics can implement integrate-and-fire (IF) function of neurons with low-energy consumption. The
structure of the PF neuron device efficiently merges a gated PNPN diode and a single MOSFET. Integrate-
and-fire (IF) operation with steep subthreshold swing (SS < 1 mV/dec) is experimentally implemented
by carriers accumulated in an n floating body of the PF neuron device. The carriers accumulated in the
n floating body are discharged by an inhibitory signal applied to the merged FET. Moreover, the threshold
voltage (Vth) of the proposed PF neuron is controlled by using a charge storage layer. The low-energy
consuming PF neuron circuit (∼0.62 pJ/spike) consists of one PF device and only five MOSFETs for the
IF and reset operation. In a high-level system simulation, a deep-spiking neural network (D-SNN) based on
PF neurons with four hidden layers (1024 neurons in each layer) shows high-accuracy (98.55%) during a
MNIST classification task. The PF neuron device provides a viable solution for high-density and low-energy
neuromorphic systems.

INDEX TERMS Neuron device, positive-feedback (PF) device, hardware-based neural networks, semicon-
ductor device reliability, silicon-on-insulator (SOI) technology.

I. INTRODUCTION
Recently, hardware-based neural networks (HNNs) have
emerged for use in neuromorphic systems to compute com-
plex data efficiently [1]–[3]. For high performance in HNNs,
various synaptic arrays and neuron circuits suitable for
efficient architectures and learning algorithms have been
researched [4]–[8]. Specifically, both excitatory (G+) and
inhibitory (G−) synaptic arrays are important to improve the
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accuracy of HNNs [9]–[11]. Neuron circuits that use large
capacitors (≥0.1 pF) and many transistors (≥11 MOSFETs)
to process simultaneously signals from these two types of
synapses have been reported [11]–[13], resulting in increased
power consumption and a larger area. Note that processing
these signals simultaneously can reduce memory usage and
simplify the peripheral circuitry. To alleviate these hardware
burdens, memristor-based [14]–[16] and FET-based neuron
devices [18]–[23] with memory functionalities have been
studied to mimic neurons. Memristor-based neuron devices
with two terminals replace membrane capacitors in neuron
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circuits and have the advantage of high density over mem-
brane capacitor and FET-based neuronal devices. Neuron
circuits require infinite endurance to generate spikes dur-
ing integrate-and-fire operation. Existing memristor-based
neuron devices are being studied to improve endurance
during integrate-and-fire operations [16], [17]. In addition,
memristor-based neuron devices require additional circuits
such as a differential amplifier to compare the resistance of
the memristor to a reference resistance and a circuit so as
to reset the memristor after the integrate-and-fire operation.
On the other hand, FET-based neuron devices, capable of
resolving these issues, can process signals from two types
(G+ and G−) of synapses sequentially or only one type of
signals [18]–[23]. However, FET-based neuron devices pro-
cessing only one type of signals are paired for excitatory and
inhibitory signals, and require additional circuits for logic
operation in the neural networks. In neural networks based
on neuron devices that process signals from two types of
synapses sequentially, the learning and computing speeds can
also be slower than conventional neuron circuits. It is also
difficult or impossible for the reported neuron devices to tune
the threshold voltage to reduce threshold fluctuations of the
neuron devices.

In this work, we propose a neuron device capable of steep
switching with positive-feedback (PF) and investigate the
integrate-and-fire (IF) function of the PF neuron device dur-
ing the simultaneous processing of excitatory and inhibitory
signals. The PF neuron device can implement the IF function
of neurons by accumulating (or discharging) electrons into
an n floating body by excitatory (or inhibitory) signal and
replace a large membrane capacitor in conventional neu-
ron circuits. Moreover, the threshold voltage (Vth) of the
PF neuron device with a charge storage layer is changed by
program and erase state, which then changes the threshold
of neurons in neural networks. The threshold tuning ability
of the PF neuron device with the charge storage layer is
examined to alleviate the degradation of the recognition rate
caused by device variations in neural networks using a python
simulator.

II. METHODS
A. FABRICATION AND IF OPERATION OF THE PF NEURON
DEVICE
Fig. 1 shows 3-D schematic and top views of the PF neuron
device and a TEM image of the fabricated PF neuron device.
The PF neuron device has a structure that efficiently merges
a gated PNPN diode and one FET. The PF neuron device
consists of three gates (G1, G2 and G3), an anode, a cathode
and a drain. G1 and G2 receive excitatory and inhibitory
signals, respectively. By applying program or erase pulse to
G3 with the charge storage layer, the Vth of the PF neuron
device can be controlled. The thicknesses of the gate oxide
(Tox) and the SiO2/Si3N4/SiO2 stack are 10 nm and 3/6/9 nm,
respectively. The channel width (W ), p length (Lp), n length
(Ln), and the thickness of the Si body (TSi) are 1 µm,
0.7 µm, 1.1 µm, and 100 nm, respectively.

FIGURE 1. (a) 3-D schematic and (b) top views of the neuron device.
(c) Cross-sectional TEM image of the fabricated neuron device.

Doping concentrations of p/n floating body (p/n regions) are
1×1018 cm−3 and 2×1017 cm−3, respectively. Fig. 2 shows
schematic cross-sectional views of the key fabrication pro-
cess steps of the proposed PF neuron device. The PF neuron
device was fabricated on a silicon on insulator (SOI) wafer.
The Si film was patterned as an active region, and boron
and phosphorus ions were implanted for the p/n regions,
respectively. A SiO2 layer of 10 nm was deposited as the
gate oxide. An n-doped poly Si was deposited and patterned
for the gates (G1 and G2) that receive the signals trans-
mitted from the excitatory and inhibitory synaptic devices,
respectively. For the memory function, a SiO2/Si3N4/SiO2
stack containing a 6 nm thick Si3N4 charge storage layer was
deposited. The n+ poly Si was deposited and patterned on
an n region for G3. Boron and arsenic ions were implanted,
followed by rapid temperature processing for activation of
the anode and cathode. Finally, the back-end process was
conducted. Fig. 3 (a) shows an energy band diagram cut along
the anode from the cathode in the PF neuron device to explain
the PF mechanism. As VG1 increases, the electron-injection
barrier (Ve1) decreases (¬) and electrons from the n+ cathode
go into the n region (­). The height of the hole-injection
barrier (Vh) in the n region decreases due to the injected
electrons (®). Then, holes from the p+ anode are easily
injected into the p region, which further decreases the height
of the electron-injection barrier (¯). The repeated positive
feedback operation enables steep switching characteristics of

FIGURE 2. Schematic cross-sectional views of the key fabrication process
steps of the proposed neuron device.
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the PF neuron device. Charges are accumulated in the n region
by VG1 from the excitatory synapse during the processes (­)
and (®). On the other hand, electrons accumulated in the
n region can escape to the drain when the energy barrier
(Ve2) decreases depending on the VG2 voltage, as shown
in Fig. 3 (b), which means that the charges are discharged
from the neuron by the inhibitory synapses. Note that during
the inhibitory operation, the n region acts as the source.
By charging and discharging electrons in the n region, the
IF operation of the PF neuron device can simultaneously
process the excitatory and inhibitory signals. When the
PF neuron device turns off, the electrons accumulated in
the n region are reduced over time by recombination, which
shows a leaky integration. The reduction is related to the
retention time, which can be controlled by G3 over the long-
term [21], [24]. TheVh is modulated byVG3 as shown in Fig. 3
(c), which allows control of the Vth of the PF neuron device.
Additionally, the Vh can be controlled by the amount of
charges in the charge storage layer (Si3N4).

FIGURE 3. Simulated energy band diagrams of the positive feedback (PF)
device along the channel direction: (a), (b) IF operation by processing
excitatory and inhibitory signals simultaneously. (c) VG3 controls the
potential well under G3, modulating Vth of the neuron device.

III. RESULTS AND DISCUSSION
A. MEASUREMENT OF THE PF NEURON DEVICE FOR IF
OPERATION WITH EXCITATORY AND INHIBITORY SIGNALS
Fig. 4 shows the measured IA-VG1 and ID-VG1 curves of the
PF neuron device as a parameter of VG2. As VG1 increases
at a VG2 of 0 V, IA increases sharply by the PF operation,
and the subthreshold swing (SS) is very steep (<1 mV/dec) as
shown in Fig. 4 (a). As VG1 increases after the PF operation,
IA remains constant because of diode current flowing from

FIGURE 4. (a) Measured IA-VG1 and (b) ID-VG1 curves of the PF neuron
device as a parameter of VG2, respectively.

the anode to the cathode region in the PF neuron device at a
fixed VA. As VG2 increases, ID is higher than IA just before
the PF action of electrons and holes in the PF neuron device
occurs. The Vth of the PF neuron device increases, preventing
electrons from accumulating in the n region. Fig. 5 shows the
measured IA-VG2 and ID-VG2 curves of the PF neuron device
as a parameter of VG1. Although VG2 increases, IA and ID
are in an off state at a VG1 of 0 V. As VG2 increases at a
VG1 of 0.4 V, IA decreases and ID increases because electrons
accumulated in the n region are discharged to the drain.When
IA and ID are an on state at a VG1 of 0.5 V, the energy band
of the PF neuron device is nearly flat due to the PF operation.
As VG2 increases, electrons accumulated in the n region flow
to the drain. As a result, the Vh increases, and IA decreases
rapidly by suppressing the PF operation. At the same time,
a large amount of current flows instantaneously to the drain.
Then, ID decreases by the increased Ve1, which shows a
negative resistance at a VG1 of 0.5 V as shown in Fig. 5 (b).
When theVD of 1.5V is higher than theVA of 1V, reverse bias
is applied between the p+ anode and n+ drain. Thus, current
cannot flow from the anode to the drain. Fig. 6 (a) and (b)
show the measured IA-VG1 curves of the PF neuron device
as parameters of VG3 and the program/erase (PGM/ERS)
operation, respectively. As VG3 increases, the hole-injection
barrier increases in the n region, and the Vth of the PF neu-
ron device increases as shown in Fig. 6 (a). When VPGM

FIGURE 5. (a) Measured IA-VG2 and (b) ID-VG2 curves of the PF neuron
device as a parameter of VG1, respectively.
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FIGURE 6. (a) Measured IA-VG1 curves of the PF neuron device as a
parameter of VG3. (b) Measured IA-VG1 curves of the PF neuron device in
program and erase states. (c) Vth retention of the PF neuron device in
high and low Vth states. (d) The number of dies showing the Vth
difference (1Vth) between two PF neuron devices on the same die.

(9 V, 100 µs) is applied to the G3 to store electrons in
the charge storage layer, the Vth of the PF neuron device
decreases. Conversely, the Vth of the PF neuron device
increases by applyingVERS (−8.5 V, 1ms) to the G3 as shown
in Fig. 6 (b). Fig. 6 (c) shows the Vth retention characteristic
of the PF neuron device in PGM (solid circle symbols) and
ERS (solid square symbols) states. The PF neuron device
maintains the nonvolatile of two Vths. The G variation of
synaptic devices and the Vth variation of neuron circuits can
affect the spike rate of target neurons, which can degrade
the performance of HNNs [25], [26]. Fig. 6 (d) presents the
number of dies, showing the difference in the Vth of two PF
neuron devices on the same die. The Vth difference of the
two PF neuron devices on the same die is less than 0.04 V.
By adjusting the Vth of the PF neuron by means of a VG3
control strategy or PGM/ERS operation, the Vth variation of
neurons can be reduced and the accuracy of the spike rate
of the target neuron can be improved. Also, it is possible
to mimic the homeostasis function of biological neurons,
which is essential in spiking neural networks (SNNs) based
on spike-timing-dependent-plasticity (STDP) to improve per-
formances [25], [26].

Fig. 7 shows the measured (a) step pulse and (b) pulse
transients of the PF neuron device as a parameter of VG1.
As VG1 increases, the amount of electrons that accumulate
in the n region increases. As a result, the turn-on time (ton) is
shorter and the PF neuron device fires more rapidly as shown
in Fig. 7 (a). In the pulse transients of the PF neuron device,

FIGURE 7. Measured I-t plots of the PF neuron device for IF function as a
parameter of VG1. (a) step and (b) pulse transient. tpulse, trise and tfall
are 1 µs, 500 ns and 500 ns, respectively.

the pulse width (tpulse), rise time (trise) and fall time (tfall)
applied to G1 are 1 µs, 500 ns and 500 ns, respectively.
As VG1 increases, the PF neuron device fires upon fewer
pulses of VG1. Fig. 8 (a) and (b) show the measured I -t
plot of the PF neuron device as parameters of VG2 and VG3,
respectively. As VG2 increases, the amount of electrons that
escape from the n region to the drain increases, resulting
in a longer ton as shown in Fig. 8 (a). Increasing VG3 posi-
tively deepens the potential well (hole-injection barrier in the
PF neuron device), resulting in a longer ton because more
electrons should be accumulated in the n region for fire as
shown in Fig. 8 (b). Thus, the amount of accumulated elec-
trons depends on ton at a fixed VG1, and ton becomes longer as
VG3 increases. Fig. 9 shows the tons of the PF neuron device
for the IF function as parameters of (a) VG1 and (b) VG2,
respectively. Though a high VG is applied to the PF neuron
device, the ton of the PF neuron device can be delayed due
to parasitic capacitors of metal pads and measuring equip-
ment. [27]. In this case, the tons of the PF neuron device
in Fig. 9 was excluded by the delay time (about 500 ns).
As VG1 (excitatory) increases, the ton becomes exponentially

FIGURE 8. Measured I-t plots of the PF neuron device for inhibitory
synapse and controllability of Vth as parameters of (a) VG2 and (b) VG3,
respectively.
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FIGURE 9. Measured turn-on time (ton) of the PF neuron device for
integrate-and-fire function as parameters of (a) VG1 and (b) VG2,
respectively.

short. As VG1 (excitatory) increases, the amount of electrons
accumulated in the n region increases exponentially, causing
the ton to short exponentially. Conversely, as VG2 (inhibitory)
increases, the amount of electrons accumulated in the n region
decreases exponentially, causing the ton to long exponentially.

B. NEURON CIRCUIT BASED ON PF NEURON
DEVICE FOR HNNs
Fig. 10 shows a neuron circuit consisting of the proposed
PF neuron device, p/nMOSFETs, and one invertor. The PF
neuron device is represented by two merged nMOSFET
(MExc andMInh) and one diode. Current pulses (IExc and IInh)
from excitatory and inhibitory synaptic arrays are reflected
in G1 and G2, respectively. Note that IExc is linear with a
current flowing throughMExc becauseMR andMExc have the
same Vth and operate as a current mirror. Just after the PF
neuron device fires, VA becomes 0 V by the invertor andM1.
Electrons in the n region are discharged, and the PF neuron
device becomes initial state. When VG1 is 0 V, VA becomes
high state by theM2. Also, a current flowing through theMInh
from the drain is determined by IInh. When IInh is reflected
in G2, electrons integrated in the n region are drained byMInh.
Fig. 11 shows simulated V -t plots of the PF neuron circuit as
parameters of (a) VG1 and (b) VG2. The neuron circuit based
on the PF neuron device is simulated using a mixed-mode
option in a TCAD simulator (Sentaurus of Synopsys). In the
TCAD simulation, IF and reset operations in the PF neu-
ron circuit are verified. VD and VDD are 1.5 V and 1.1 V,
respectively. As the amplitude of the VG1 pulse increases,
the spike rate of the PF neuron circuit increases at a fixed VG2
of 0.5 V as shown in Fig. 11 (a). As VG2 decreases, the firing
rate of the PF neuron circuit increases at a fixed amplitude
(0.48 V) of the VG1 pulse. Fig. 12 shows circuit diagrams
and simulated I -t plots for a comparison of the energy
consumption (J/spike) between a conventional neuron circuit
and the PF neuron circuit [13]. The conventional neuron
circuit consists of capacitors (membrane and refractory) and
minimum number of FETs to implement the IF function of
neurons. M1 is used to fully discharge the input node of the
invertor, andMRESET is used to reset the membrane potential.

FIGURE 10. A neuron circuit consisting of the proposed PF neuron device,
p/nMOSFETs (M1 and M2), and one invertor. Spikes from excitatory and
inhibitory synapses are applied to G1 and G2, respectively.

FIGURE 11. Simulated V -t plot of the PF neuron circuit for IF behavior as
parameters of (a) VG1 and (b) VG2. Here, VD and VDD are 1.5 V and 1.1 V,
respectively.

In the conventional neuron circuit, the current supplied from
synaptic devices flows into the membrane capacitor (Cmem),
resulting in a change in a membrane potential (Vmem). When
the Vmem exceeds the Vth of the neuron circuit, the neuron
circuit fires and generates an output spike. A leakage cur-
rent flows in the neuron circuit by the relatively slower SS
(>60mV/dec) of conventional CMOS until theVmem exceeds
the Vth of the neuron circuit, as shown in Fig. 12 (a). On the
other hand, in a new neuron circuit based on the proposed
PF neuron device, low leakage current (<1 nA) flows in
the PF neuron circuit due to steep switching characteristics
(SS< 1 mv/dec) before the PF neuron device turns on. Thus,
in the PF neuron circuit, the current flows only when the
state of Vout changes by the fire and reset operation as shown
in Fig. 12 (b). The proposed PF neuron circuit (∼0.62 pJ/spike)
can reduce energy consumption per spike by about
10 times compared to the conventional neuron circuit
(∼6.14 pJ/spike). To implement a stable IF operation, neuron
circuits composed of conventional FETs have been inves-
tigated [28], [29]. For input spike integration and output
spike firing, a dual mode neuron circuit was reported [28].
Energy consumption of the dual-mode neuron circuit
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FIGURE 12. Circuit diagrams and simulated I-t plots for the comparison
of energy consumption between (a) a conventional neuron circuit and
(b) PF neuron circuit, respectively.

is 9.6 pJ/spike/synapse when the load resistance of the
dual-neuron circuit is 1 M�. The dual-neuron circuit con-
sumed the static current (13 µA) in the integration mode.
An improved neuronal circuit consisting of 10 FETs and
2 capacitors (membrane and refractory) has been reported to
reduce power consumption [29]. Energy consumption of the
improved neuron circuit was reported as 4.2 pJ/spike.

We evaluate the performance of deep-spiking neural net-
works (D-SNNs) using PF neurons through the MNIST
dataset classification accuracy. Fig. 13 shows a block dia-
gram of D-SNN for MNIST classification. Two devices are
paired to express the excitatory and inhibitory properties of
one synapse. Excitatory and inhibitory synaptic currents are
summed through the source or bit-line in the synaptic array.
The input of the D-SNN is converted to a Poisson-distributed
spike train within 256 steps. The popular model of a leaky
integrate-and-fire (LIF) neuron [30] is simply expressed as
follows:

τ
dVmem (t)

dt
= −Vmem (t)+ IExc(t)− IInh(t), (1)

where Vmem(t) is the membrane potential at time t and τ
is the time constant of the neuron. IExc(t) and IInh(t) are
the excitatory and inhibitory currents from the pre-synaptic
arrays, respectively. Note that the conductance of the synaptic
devices plays a role of the weight in the D-SNN. The inputs
in the form of voltage spikes are applied to the pre-synaptic
arrays and the currents from the arrays flow to the neu-
rons. Solving the linear differential equation (1), Vmem(t) is
obtained as

V j
mem (t) = V j

mem (t −1t) exp(−
1t
τ
)

+

∑Ni
i=1

(
Gi,jExc − G

i,j
Inh

)
S i (t) tw

Cmem
, (2)

whereGi,jExc andG
i,j
Inh are the conductances of synaptic devices

representing the excitatory and inhibitory weights respec-
tively, from the i-th pre-neuron to the j-th post-neuron.

FIGURE 13. A block diagram of deep-spiking neural networks (D-SNNs)
for MNIST classification.

In addition, tw is the width of the voltage spike and the
exponential term determines the ratio of the potential that
remains after one time step (1t). The Cmem is a membrane
capacitor of the neuron and the S(t) is a voltage spike at time t .
If Vmem of the neuron exceeds Vth, the neuron generates a
spike as follows:

S i (t) = g(V i
mem(t)), (3)

g (x) =

{
Vread, x > Vth
0, else

(4)

A spike is generated in the form of a voltage pulse with
an amplitude of Vread and a pulse width of tw. When the
neuron generates a spike, Vth of the neuron is reset to zero.
The amount of charge accumulated in theCmem is determined
by the synaptic current (GVread) and the pulse width. Here, the
n region of the PF neuron device accumulates electrons,
acting as the Cmem in the LIF model. The excitatory current
from the GExc array flows into MR, then the drain voltage
of MR is applied to VG1, which can copy the excitatory
signal through a current mirror circuit consisting of MR
andMExc. Similarly, the inhibitory signal can be copied when
a pMOSFET mirror circuit is connected toMInh. The amount
of accumulated electrons in the n region is modulated by
the excitatory and inhibitory currents, and the accumulated
electrons modulate the height of hole-injection barrier (Vh)
between the n region and p+ anode. If the Vh is lower than
a certain potential (Vth in conventional LIF neuron), the
PF device turns on due to the PF operation and the neuron
circuit generates a spike. In addition, the depth of the potential
well in the n region affects the time constant (τ ) of the
retention time of the accumulated electrons, and VG3 can
control the depth of the potential well [21], [24]. As a result,
the proposed neuron circuit based on the PF device plays
a role of the conventional LIF neuron with functionality of
adjusting the time constant.
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FIGURE 14. (a) Accuracy of MNIST classification in the D-SNN based on
the proposed PF neuron and software-based NN. (b) Recovery of accuracy
loss by Vth turning using G3 of the PF neuron devices in the D-SNN with
4 hidden layers.

To investigate the performance of the D-SNN based on
the PF device, synaptic weights are trained with the rec-
tified linear unit (ReLU) activation function using Adam
optimizer in Pytorch framework with floating-point opera-
tion (software-based networks). In software-based networks,
the accuracy rates are 98.15% in a network with 1 hidden
layer (256 neurons), and 98.58% in a network with 4 hidden
layers (1024 neurons in each layer). Then, trained weights
are transferred to the conductance of synaptic devices in the
D-SNN [31]. To evaluate the impact of the PF neuron on the
performance of D-SNNs, we assume that the trained weights
are ideally transferred to the conductance considering Vread,
tw, and Cmem as follows:

twV read

Cmem
(Gi,jexc − G

i,j
inh) = wi,jtrain, (5)

where wtrain is the trained weight in the software-based net-
works. Whatever the value of the membrane capacitor of PF
device is, various type of synaptic devices which meet the
range of conductance value can be used. We set τ to 20 µs
and 1t to 1 µs; thus, approximately 95% of the membrane
potential remains after one time step. The Vth is set to 0.5 V
in the D-SNNs. The accuracy rates of D-SNNs are 97.61%
with 1 hidden layer and 98.55 % with 4 hidden layers, which
shows very slight accuracy loss compared to the accuracy
rate of software-based networks as shown in Fig. 14 (a).
Also, the accuracy degradation caused by the Vth variation
of PF device is investigated. As shown in Fig. 14 (b), the Vth
variation of LIF neurons can degrade the accuracy of D-SNN
(∼75% at σ /µ of 50 %). By applying bias or pulses (VPGM or
VERS) to the G3 of the PF neuron device, the Vth of PF neuron
circuits can be tuned within 5% error by applying the incre-
mental step pulse programming method used in NAND flash
memory technology [32], restoring the accuracy of D-SNN
to 98.51% as shown in Fig. 14 (b). Since the existing neuron
circuit includes many transistors (>11) and a large Cmem
(0.5 pF) with a footprint of 100 µm2 for 0.35 µm CMOS
technology [12], the proposed neuron circuit (no capacitor,
1 PF device, and 5 MOSFETs) contains much smaller
components, so the area occupied is greatly reduced.

TABLE 1. Comparison of key characteristics of the proposed PF neuron
and other neuron devices reported for implementing IF function.

Table 1 compares the key features our PF device and prior
neuron devices. Compared to conventional neuron devices,
the proposed neuron devices can simultaneously process
excitatory and inhibitory signals by accumulating or dis-
charging electrons and control the threshold of neurons.

IV. CONCLUSION
We have successfully demonstrated that a capacitor-less
PF neuron device enables the simultaneous processing of
excitatory and inhibitory signals with a small footprint.
Thanks to steep switching characteristics (SS < 1 mV/dec)
of the PF neuron device, the neuron circuit in this work
consumes 0.62 pJ of energy per spike, which is about 10 times
less than that of a conventional neuron circuit to implement
the IF function. Moreover, the threshold voltage (Vth) of the
proposed PF neuron device is modulated by adjusting the
potential barrier of the n region of the PF device (VG3 control
or modulating the amount of charge stored in the charge
storage layer by the program/erase operation), which controls
the firing rate of neurons. The threshold tuning ability of the
PF neuron device can implement the homeostasis function
of biological neurons and compensate for the Vth variation
of neurons in HNNs. The high-accuracy (98.55%) of the
D-SNN based on the PF neuron device with 4 hidden layers
(1024 neurons in each layer) was achieved. The proposed
PF neuron device can be a promising solution to replace
conventional neuron circuits for high-density and low-power
neuromorphic systems.
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