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ABSTRACT Mobility prediction is a powerful tool for network operators to optimize network performance.
From cell level, if network operators know the cells to which the users will be connected in advance, wireless
resources can be pre-allocated to improve network performance and better user experience can be provided
in location-based services. Many next-cell prediction models and methods have been suggested and imple-
mented. This article is devoted to next-cell prediction (cell level mobility prediction) in cellular networks, and
provides a thorough survey of the prediction schemes and applications. Particularly, a two-level classification
methodology was proposed and applied. We first divided the prediction schemes into three categories based
on the mobility data used for prediction, i.e. Current Movement State based Approaches (CMSA), Historical
Movement Pattern based Approaches (HMPA), and HybriD Approaches (HDA). Prediction schemes in each
category were further classified based on the used predictionmethods. The typical application scenarios were
introduced as well, including handover management, resource allocation, etc. Finally, current challenges and
potential trends in the near future were further discussed.

INDEX TERMS Next-cell prediction, mobility prediction, handover management, resource allocation,
location-based service.

I. INTRODUCTION
Recently, new frequency in mid- and high-bands has been
allocated for fifth generation mobile network (5G). To deal
with the coverage problem caused by shorter signal pene-
tration and range, smaller cells have to be densely deployed
for 5G cellular networks. Smaller cell coverage implies more
frequent handover for mobile users, which poses great chal-
lenges for radio resource management among cells.

To avoid connection termination during handover, one con-
ventional scheme is to make each base station (BS) reserve
a fixed amount of resources for new coming users in the
future. However, if resources are not reserved properly, it may
cause resource waste or bad user experience. To alleviate
this negative impact of user mobility, an efficient way is the
implementation of mobility prediction [1]. If user mobility
can be successfully forecasted, network operators can adopt
a passive (or in-advance) reservation policy [2] to ensure ser-
vice continuity without wasting huge amounts of resources.

The key to the successful implementation of passive
reservation is the capability of user mobility prediction. The
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accuracy of prediction will have a direct impact on the perfor-
mance of resource allocation in wireless networks. It is well
known that humans tend to have similar patterns of cyclic
behavior, which makes it possible to predict individual move-
ment from previous historical location information. It has
been shown that the predictability of user mobility can be
reached at 93% [3]. However, such a high precision prediction
has many limitations, such as sufficient context data and
special movement patterns, which makes it hard to achieve.
Fortunately, to the best of our knowledge, cell level prediction
is sufficient to achieve continuous connection during han-
dover, instead of accurate position prediction. Therefore, this
article concentrates on the problem of next-cell prediction
and provides a systematic survey on prediction schemes and
applications.

II. RELATED WORKS
From the perspective of mobility big data analytics,
the authors of [4] review geolocation prediction meth-
ods. They mainly focus on three topics: methods for
mining popular geological regions (such as home and
workplaces) from raw geological data collected by smart
mobile devices, methods for mining personal trajectories that
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consist of popular geological regions, and geolocation pre-
diction models. Four types of geolocation prediction methods
are explained, enveloping Markov-based methods, Bayesian
network-based methods, regression-based methods, and neu-
ral network-based methods. However, the survey mainly con-
siders how to deal with mobility big data and mine useful
information for movement prediction, and a few prediction
approaches are introduced. Besides, application scenarios are
not introduced.

More comprehensive mobility prediction surveys have
been made in [5]–[7]. The authors of [5] present a thor-
ough survey of anticipatory mobile networking. They intro-
duce and classify different types of mobile context that
can be predicted and exploited, including geographic con-
text, link context, traffic context, and social context. Some
selected prediction methods are explained for these contexts
in four main categories: time series methods, similarity-based
classification, regression analysis, and statistical methods
for probabilistic modeling. Optimization techniques adopted
by anticipatory networking solutions are also introduced.
In [7], the authors provide an overview of location pre-
diction, including basic concepts, data sources, and trajec-
tory pre-processing approaches (i.e. data cleaning, noise
removal, trajectory compression, and feature extraction), and
applications. From the perspective of prediction methods,
the paper focuses on deep learning, pattern-based, semantic-
based, distributive big data, social network, representative,
and content-based approaches. Additionally, a survey based
on geo-social networking data is discussed in [6], which
is expanded from the following five aspects: problem cate-
gories, data sources, feature extraction, mathematical models,
and evaluation metrics. Except for mobility data, the arti-
cle mainly describes an investigation on social informa-
tion, such as check-in data and social relations. From the
view of prediction model and approaches, matrix factoriza-
tion, Markov chain, neighborhood model, statistical learning
model, ranking-based model, and embedding techniques are
described. However, these articles did not consider the impact
of user mobility on network performance and did not provide
a detailed overview of mobility prediction based applications.

Some cell level surveys have been presented in [8], [9].
The authors in [8] describe the latest cellular technologies
which can be optimized with mobility prediction, includ-
ing heterogeneous networks and femto-cells with 3G, 4G,
4G+, 5G, and IEEE 802.11ac wireless local area network
(WLAN). Signaling and reservation protocols for resource
management are presented as well. Various mobility predic-
tion approaches are surveyed in detail, including Markov
processes, Kalman filters, neural networks, data mining,
time series and bio-inspired approaches. In [9], the authors
describe in detail on mobility prediction, such as how to
obtain user’s position information, prediction methods, and
prediction outputs. Prediction schemes with different meth-
ods are surveyed, including Markov chain, Hidden Markov
Model (HMM), Artificial Neural Network (ANN), Bayesian
network, and datamining. However, these two surveysmainly

deal with prediction methods and pay less attention to types
of mobility data used for prediction in separate schemes.

In the existing literature, numerous prediction approaches
have been suggested, with different types of mobility infor-
mation have been utilized. To better understand the advan-
tages and disadvantages of these methods, an appropriate
classification methodology needs to be implemented to clas-
sify these works. In [10], mobility prediction schemes are
mainly classified into two categories according to the mobil-
ity pattern used for prediction, i.e. individual user mobility
information and group mobility patterns.

In this survey, we focus on cell-level mobility prediction
in cellular networks. We propose a two-level classification
methodology, which first divides the prediction methods
into three categories based on the mobility data used for
prediction, i.e. Current Movement State based Approaches
(CMSA), Historical Movement Pattern based Approaches
(HMPA), and HybriD Approaches (HDA). Prediction meth-
ods in each category are further classified based on the used
prediction methods. Specifically, angle-based algorithms,
distance-based algorithms, angle-distance combined algo-
rithms, Markov chain, HMM, Bayesian network, Support
Vector Machine (SVM), ANN, and data mining are discussed
in detail. Considering cell structure is an important attribute
while not discussed in detail in the aforementioned articles,
we also pay special attention to the utilization of cell structure
in prediction. The main contributions of this survey are listed
as follows:

• The predictability of cell-level mobility prediction is
discussed;

• A two-level classification methodology is proposed and
applied;

• The works on next-cell prediction are classified and
overviewed;

• Next-cell prediction based applications are reviewed;
• Current challenges and future potential trends on
next-cell prediction are discussed.

The rest of this article is organized as follows. Section III
provides an outline of basic concepts and characteristics
of mobility prediction. Then, next-cell prediction schemes
based on current movement state and historical movement
pattern separately are introduced in Section IV and Section V,
respectively. Hybrid prediction approaches that utilize both
current and historical movement information are introduced
in Section VI. After that, next-cell prediction based appli-
cations, current challenges, and future potential trends are
presented in Section VII. Finally, Section VIII concludes the
paper.

III. NEXT-CELL PREDICTION: CONCERNS AND
CHARACTERISTICS
In this section, we discuss the related issues and characteris-
tics of next-cell prediction, including predictability of next-
cell, the types of commonly used mobility data, and how to
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FIGURE 1. Cell structures.

obtain the important mobility parameters (i.e. current position
and moving direction).

A. PREDICTABILITY OF NEXT-CELL
1) REGULARITY OF USER MOBILITY
In daily lives, our movement is not completely random, but
directed or destination oriented. People often move along a
specific route and move regularly where they live for a long
time. For instance, students go to school usually follow a
particular route, also the commute route of office workers on
weekdays will hardly change. In these trajectories, the cells to
which the mobile users will be connected are fixed with high
probabilities. By observing these users’ mobility patterns for
a certain period, it is possible to obtain the regularity of their
movements and further to predict the succeeding cells while
they are moving. The work of [3] analyzes the extent to which
human behavior is predictable. By measuring the entropy
of numerous trajectories of mobile phone users, they found
that the potential predictability of user mobility could be up
to 93% and the predictability is lack of variability. In other
words, there exists strong regularity in human mobility, and
it is theoretically possible to develop accurate prediction
models. The predictability of vehicular mobility has also been
investigated in [11], which shows that about 78% - 99% of the
location and above 70% of the staying time are predictable,
respectively. They also revealed that there is strong regularity
in everyday vehicular mobility, which can be exploited in the
development of practical prediction algorithms.

Actually, user movement can be regarded as a combination
of regular movement and random movement [12]. For the
regular movement, the regularity can be discovered through
users’ long-term (weeks or months) historical trajectories.
Numerous prediction approaches have been suggested to dis-
cover the regularity for next-cell prediction in literature, such
as Markov chain [13], HMM [14], Bayesian network [15],
SVM [16] and ANN [17]. These methods will be discussed
in detail in later sections. However, when a user comes to
a new place, there is no sufficient historical data to mine
its mobility pattern, and its movement shows irregularity.
Though the prediction of random movements is relatively

more difficult due to irregularity, next cell can also be deter-
mined to some extent by various strategies, such as real-time
monitoring [18]. Approaches for predicting random move-
ments will be introduced in later sections as well.

2) COARSE LOCATION PREDICTION
From the perspective of space granularity, unlike position and
trajectory predictions, next-cell prediction is a coarse location
prediction. It only needs to determine to which cells users will
be connected, instead of accurate locations. Therefore, it is
generally easier to predict a cell or cell sequence than a fine
position or trajectory.

3) CELL STRUCTURE
For wireless networks, the coverage of BSs is modeled as
regular hexagons generally. Therefore, researchers can inves-
tigate cell geometry with various cell structures to assist fore-
casting the next cell. The most commonly used cell structures
are illustrated in Fig. 1, including ideal hexagonal cells [19],
[20], 6-sector cell [21], and multi-tier cell [22].

Hexagonal cells can ensure that the minimum number
of BSs are deployed to cover a certain region. By equally
dividing a hexagonal cell into 6 parts, 6-sector cell structure
further improves the granularity of prediction and increases
the length of mobility data. Based on multi-tier cell structure,
the timing of prediction can be better managed. If predict-
ing users’ next cell while they enter high-handover region,
the forecast cost can be substantially reduced.

B. OBTAINING USER MOBILITY INFORMATION
User mobility information of both intra-cell and inter-cell
movement can be utilized for next-cell prediction. The com-
monly used mobility data includes current and historical
position, moving direction, speed, acceleration, and traverse
history. Since historical information is accumulated from
current mobility information, so we only consider how to
obtain current mobility information in this article. The most
important parameters are current position and moving direc-
tion, which can directly affect related next cell. Whereas the
additional parameters, such as speed and acceleration, can be
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calculated by a series of positions [23]. Now, we are going
to introduce how to obtain the current position and moving
direction.

1) CURRENT POSITION
In cellular networks, each BS has been assigned a Cell Iden-
tity (Cell-ID), and the corresponding location is known to
the network operator. The Cell-ID can be used to identify to
which cell a user is connected. It can also be used as a coarse
positioning method, which can achieve a precision of sev-
eral hundred meters, instead of specific location coordinates.
It is convenient to get users’ Cell-ID for network operators
without setting any extra devices on User Equipment (UE).
Since Cell-ID history reflects users’ inter-cell movements,
it is useful for determining future cell sequence.

Although Cell-ID can provide rough location information,
many prediction applications need a more accurate position
to investigate intra-cell movements. The Received Signal
Strength (RSS) based positioning method can provide a more
precise location. Based on RSS, it can determine the distance
between a user and a BS based on signal propagation mod-
els [24]. When the distances from a user to multiple BSs
are obtained, user position can be calculated by cell tower
trilateration [25]. The authors of [26] introduce a method to
determine the position, speed, and direction of users based on
measured RSS.

Furthermore, with the wide application of Global Position-
ing System (GPS), most smart UEs are equipped with GPS
because of its convenience and high accuracy. By periodi-
cally reporting GPS information from UE to BSs, network
operators can collect user position with an accuracy of several
meters [27].

There also exist some additional methods to determine user
locations, such as positioning with APP check-in or social
dynamics [28]. Additionally, indoor positioning mechanisms
such as WLAN, Radio Frequency Identification (RFID), and
Bluetooth, will not be introduced in this article, we refer the
interested readers to [9].

2) MOVING DIRECTION
Once user positions have been determined, the moving direc-
tion can be obtained by various methods. The simplest way is
to get the vector of two consecutive positions measured over
a short time [29].

Additionally, the authors in [30] introduce different direc-
tion estimation methods as depicted in Fig. 2. A virtual circle
is established in the cell, and user position will be recorded
within the circle at a fixed time interval. Based on the col-
lected position, the direction of motion can be determined by
various algorithms. Method 1 first determines direction angle
between every two consecutive positions, then calculates the
average of all angles to estimate the direction of movement.
Method 2 sets another small circle within the big circle, and
only considers the average of user angles recorded within
the circular strip. Method 3 performs exponential moving
average on the user angles recorded in the circle, which gives

FIGURE 2. Direction estimation methods.

higher weight to later angles and then makes the average,
as the later positions are theoretically more decisive to future
direction. Method 4 uses only instantaneous angle of users
before leaving the virtual circle.

The moving direction can also be predicted by Lagrange
interpolation. The position reported by a user is a series
of discrete coordinates stored in the cache, then Lagrange
polynomials are established by fitting these co-ordinates
to represent the trajectory. The moving direction can be
predicted by analyzing the slope of the corresponding
trajectory [18].

Except for mobility data, there also exists some works
using other types of information, such as social relation [6],
Channel State Information (CSI) [31], road topology [32],
user behavior [33], and so on, which will not be expanded
in this article.

C. CLASSIFICATION OF MOBILITY DATA
Mobility data are commonly divided into two classes: indi-
vidual mobility information and group mobility pattern [10].
However, this classification cannot reflect the relationship
between movements and time series well. To forecast the
next cell and future crossing cells, both short- and long-term
patterns should be taken into consideration. In this survey,
based on time attributes, mobility data for next-cell prediction
is mainly classified into two categories: users’ Current Move-
ment State (CMS), and Historical Movement Pattern (HMP).

1) CURRENT MOVEMENT STATE (CMS)
CMS is defined as the information related to real-time move-
ment, including the current position, moving direction, speed,
acceleration, etc., where position and direction are most
commonly used. CMS can be obtained by monitoring user
position in real-time via some methods. For example, UEs
can periodically report their location coordinates to BS, and
BS can further calculate other CMS parameters, e.g. speed,
direction, and acceleration, based on positions. Once the
CMS is obtained, both regular and random movements in the
near future can be predicted.
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2) HISTORICAL MOVEMENT PATTERN (HMP)
HMP information includes Cell-ID with CMS history, tra-
versed cell sequence, handover history, historical sectors, and
so on. By observing users’ long-term (in weeks or months)
movements, HMP can be obtained and stored in a database.
Besides, periodically reported CMS will also be stored in the
database to update HMP. By analyzing large volumes of HMP
data via some tools, such as machine learning or data mining,
the relationship between connected Cell-ID and movement
parameters or cell transitions of users can be discovered,
which are known as movement patterns or mobility rules.
Based on these patterns or rules, the cells that a user will cross
in the near future can be predicted.

D. CLASSIFICATION OF PREDICTION METHODS
Based on mobility information, a detailed survey of next-cell
prediction algorithms for the last two decades are given in this
article. For better understanding and management of these
methods, we propose a classification methodology based on
the types of mobility data used by prediction. All prediction
approaches can be divided into three categories: CMSA,
HMPA, and HDA.

Particularly, CMSA exploits users’ real-time movement
states to calculate the most possible adjacent cell that will
be connected to. Whereas HMPA analyzes users’ movement
history to construct mathematical models, and further mines
movement patterns or mobility rules to predict future crossing
cells. Considering both current movement state and histor-
ical movement pattern, HDA is a kind of complementary
approaches. It is worth noting that HMPA also needs to take
CMS as the input of prediction models.

IV. CURRENT MOVEMENT STATE BASED
APPROACHES (CMSA)
Bymonitoring a user’s position constantly, network operators
can calculate that user’s speed, moving direction, etc., so as to
obtain the full CMS information. Many next-cell prediction
approaches have been proposed by exploiting CMS. In order
to predict the next cell, context information, such as cell
geometry, is also considered in general. Based on different
determining factors (i.e. angle and distance), we divided
CMSA into three categories: angle-based, distance-based and
angle-distance combined ways.

A. ANGLE-BASED APPROACHES
It is expected that users’ movements are directed to their
intended future cells. Consequently, the subsequent cell can
be determined by investigating moving direction. In this
subsection, we introduce angle-based approaches that utilize
angles between the target user and neighboring BSs or Access
Points (APs) to determine the adjacent cell intowhich the user
will enter, as shown in Fig. 3.

The work of [20] consider 6-sector cells where each BS is
equippedwith six 60-degree directional antennas. Each sector
is adjacent to only one neighboring cell. In this way, the next

FIGURE 3. Angle-based approach.

cell(s) that a mobile user will move into is limited by the
last sector that user passed, which makes it easy to predict.
At the same time, the concepts of non-critical region (han-
dover probability is fairly low) and critical region (handover
probability is fairly high) are introduced to further divide
each sector into 2-tier-like structures. The critical region is
dynamic and determined by historical handover points. If a
user enters the critical region, the system determines his/her
next cell based on moving direction by tracking his move-
ments within the sector.

In [22], the authors introduce 6-sector and 3-tier based
cell structures. Each cell is divided into reservation zone,
handoff zone, and non-reservation-zone based on RSS level
from the BS to users. In the proposed scheme, the next cell is
predicted according to the RSSmeasurement from the current
position and extrapolation of the UE direction when the users
in the reservation zone, handoff zone, and leaving the non-
reservation-zone, respectively.

Whereas, the authors in [18] explicitly propose a scheme
that predicts mobile direction by fitting a polynomial equa-
tion along the trajectory based on Lagrange’s interpola-
tion. Similarly, the paper considers hexagonal cells within
two-region structures. Within the incircle of the cell, han-
dover will not be considered, while the circumcircle is
regarded as a handover region. When a user moves from
the incircle to the handover region, the motion direction at
the handover region is predicted by calculating the slope of
the trajectory at the starting point of handover based on a
polynomial equation. Finally, the next cell is determined by
investigating the relationship between the angular range and
neighboring cells.

B. DISTANCE-BASED APPROACHES
Except for angle, the distance between a user and neighboring
BSs can also be utilized to predict the next cell, as shown
in Fig. 4. The distances are generally calculated by laws of
signal propagation. The larger the distance between a user
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FIGURE 4. Distance-based approach.

and a cell is, the smaller probability that the user comes into
that cell will be [19].

Assuming that the wireless propagation condition is homo-
geneous over the service area of the system, the authors
of [19] consider a uniform grid of hexagonal cells system
model, and present an adaptive fuzzy inference prediction
system to predict the next cells based on the distance. The
system consists of two parts, a fuzzy inference system and
a recursive least square predictor. Particularly, the fuzzy
inference system estimates the probability that a mobile user
will be active at the moment based on real-time measured
pilot signal power. Then the recursive least square predictor
predicts the probability in the future.

C. ANGLE-DISTANCE COMBINED APPROACHES
Considering both angle and distance information, combined
prediction methods were invented. The authors of [30] intro-
duce an angle-distance combined approach to predict cell
transition. Specifically, they propose a probability equation,
which is determined by both moving angle and distance,
to predict the succeeding cell. Considering Ultra-Dense Net-
works (UDNs) have small diameters and the network envi-
ronment is more complex, which makes the conventional
prediction schemes cannot play an effective role, the authors
of [34] present a combined approach to predict Transmission
Points (TPs) in UDNs. Similar to [18], the paper exploits
Lagrange’s interpolation to estimate moving direction. But
it considers not only angle but also the distance between a
user and adjacent TPs. It first determines a group of possible
TPs whose angle with user moving direction is less than a
threshold, then calculates the transition probabilities based on
the distance between TPs and users to determine a target TP.

In summary, for the determining factors, distance is more
important. Because the closer to a BS, the more likely it
is to enter the corresponding cell. On the other hand, The
users may also change their directions and enter other cells.
Therefore, both angle and distance should be considered
when predicting.

V. HISTORICAL MOVEMENT PATTERN BASED
APPROACHES (HMPA)
Being different fromCMSA, HMPA constructs mathematical
models or mines the relationships of cell transitions to predict
future crossing cells, based on a large volume of histori-
cal movement patterns. In this article, we mainly explain
three categories of HMPA: probabilistic models, discrimi-
native models, and data mining. Specifically, we introduce
Markov chain, HMM, Bayesian network, SVM, ANN, and
association rules. HMPA can predict next cell, especially for
regular movements, with relatively high accuracy based on
user mobility pattern.

A. PROBABILISTIC MODELS
A probabilistic model is based on the theory of probabil-
ity and statistics, which incorporates random variables and
probability distributions into the model of an event or phe-
nomenon. Prediction methods have the advantages of high
efficiency and flexibility in dealing with large-scale sample
classification and linear system learning. Commonly used
models are Markov chain, HMM, and Bayesian network.
By calculating the joint probability, the possible next cell can
be predicted.

1) MARKOV CHAIN
A Markov chain is a discrete stochastic process with the
Markov property (also called memoryless property) which
means that the next state is only related to the current state,
but not to previous states. Markov chains greatly simplify the
complexity of stochastic models, reduces the difficulty of cal-
culation, and are commonly used in mobility prediction [35].

The work of [36] applies Markov chains to predict the next
cell for both simple and complex environments. Specifically,
for simple scenarios (e.g. highway or street, the user mainly
moves in one direction), the model divides the next possible
cells around a user into two parts: left and right. Then use
a three-state Markov chain to predict the next cell, in which
stationary, left move and the right move states are used. For
complex urban environments, a seven-state (i.e. the current
cell and six adjacent cells) Markov chain is proposed for
next-cell prediction. The transition probability matrix can be
calculated by fitting historical data. Based on the initial distri-
bution and transition probability matrix, next cell distribution
can be forecasted.

In IEEE 802.16m networks, the authors of [37] consider
the case of three BSs to establish Markov chains. Each cell
is regarded as a state, and user movement between cells is
regarded as state transitions. The most likely next cell can
also be determined according to the initial distribution and
probability transition matrix.

Considering a system with 4 APs, a second-order Markov
chain is created in [38]. Target AP is predicted based on the
current state and the previous states. A simulation with the
data trace of CRAWDAD database is also performed to verify
the model.
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Although the Markov chains are applicable to those users
moving regularly in a region, it is difficult to predict themove-
ments of newly entered users. To solve this problem, the work
of [39] introduces the concept of visit frequency. Given a
particular neighboring cell, the visit frequency is defined as
the ratio of the total visited number of this cell to the total
visited number of all adjacent cells that appeared in historical
data. When the historical data is sufficient, a second-order
Markov chain is utilized. Otherwise, a first-order Markov
chain is employed for prediction. If there is no available
historical data (such as new users in the region), Markov
chains is not available and the visit frequency is used for
prediction.

The authors of [13] use a Markov chain to predict move-
ments of vehicles between APs under vehicular networks.
When building the model, the initial distribution takes vehicle
positions and speed into account. They also use data mining
to analyze and process the historical data, and then establish
a transactional database from collected historical data, so as
to obtain the transmission probability matrix.

2) HIDDEN MARKOV MODEL
HiddenMarkovModel (HMM) is a doubly stochastic process
with an underlying stochastic process that is not observable
(which is hidden), but can only be observed through another
set of stochastic processes that produce the sequence of
observed symbols [40]. Different fromMarkov chains, HMM
contains two state sequences: a hidden state sequence S and
an observable one O. For normal Markov chains, we can
only see one state, and cannot make full use of user infor-
mation. While in HMM based schemes, two kinds of context
information (e.g. traversed cell sequence and geographical
location) can be taken into consideration simultaneously to
achieve better prediction accuracy. There is also a Markov
chain between the hidden states S. The next state is only
related to the current state, but not to the previous states.
At the same time, hidden states S determine the distribution
of observable states O. An HMM has three parts, including
initial distribution π , transition probability matrix A among
hidden states S, and observation transition probability matrix
B from hidden states S to observable states O. A and B can
be obtained by fitting history movement data. Accordingly,
an HMM can be represented as λ = {A,B, π} [40]. In HMM,
there exist three key problems: evaluation, decoding, and
learning. To achieve different purposes, we can solve the
corresponding problems.

a) Evaluation
Given the observation sequenceO = {O1,O2, . . . ,OT }
and model λ = {A,B, π}, where T is the time
index, computing the probability of the observation
sequence Pr(O|λ). This problem can be solved by the
forward-backward algorithm [40].

b) Decoding
Given the observation sequenceO={O1,O2, . . . ,OT },
determining optimal hidden state sequence S in some

meaningful sense. This problem can be solved by the
Viterbi algorithm [40].

c) Learning
Adjusting the model parameters λ = {A,B, π} to
maximize Pr(O|λ). The Baum-Welch algorithm can be
utilized to solve this problem [40].

In HMM based next-cell prediction approaches, one of
the key issues is to choose appropriate hidden states and
observable states. Considering cells and call duration time as
hidden states and observable states, respectively, the authors
of [41] propose an HMM based next-cell prediction method.
Call duration time is decomposed into a sequence by the
channel holding time, which dominates the number of visited
cells and the cell dwell time during a call duration life. Given
the call duration time distribution, HMM can be used to
calculate the cell distribution, so as to determine the target
next cell. This is an optimal state sequence problem (decoding
problem), which can be solved by the Viterbi algorithm [40].
The work of [42] regards femtocell AP as hidden states and
users’ geographical location as observable states, the next
cell is predicted by solving the decoding problem. Similarly,
regarding cells as hidden states, and the cell distribution
can be established by solving the decoding problem. The
interested readers can refer to [43], [44].
HMM can also be combined with other algorithms for

next-cell prediction. The work of [45] proposes a vehicle
network movement prediction approach based on the com-
bination of HMM with Kalman filtering. The authors take
the mobility information of vehicles as the observable states
and the connected AP as the hidden states. A Kalman filter is
used to predict the direction, speed, and position of vehicles,
which will be used as observable states for HMM to predict
possible next cell. Definitely, an HMM can combine another
HMM as well. Dual HMM is utilized for optimal Wi-Fi AP
prediction in [46], which two hidden states and two observ-
able states. Users’ current locations are input into the first
HMM to get predicted locations, which will be the input of
the second HMM to determine the next AP. In particular,
the first HMM takes the future geographical coordinates of
the mobile user as hidden states, and current geographical
coordinates as observable states, respectively. This HMM is
used to predict the user location. While in the second HMM,
optimal Wi-Fi AP and geographic location represent hidden
states and observable states respectively, which is applied to
predict the next Wi-Fi AP.
Except for predicting the next cell by solving the decoding

problem, from another perspective, cells can also be regarded
as observable states for prediction by solving the evaluation
problem [14], [47]–[49]. From the perspective of AP con-
troller, the work of [47] designs an HMM based algorithm by
taking APs as observable states and users’ real geographical
locations as hidden states. The cell distribution is obtained by
solving the evaluation problem. The works of [48], [49] intro-
duce the method of HMM to predict the target cell and treat
the prediction as an evaluation problem. Forward-backward
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algorithm is used to solve the problem and target next cell
is predicted. The authors in [14] introduce the method of
transforming both regular and irregular arrangemented cell
networks into an undirected graph to build HMMs. They
divided the prediction into two parts, learning and prediction.
First, fitting historical data obtains the optimal parameters
to complete learning. Then the prediction is completed in
three steps: 1) according to the observable states (i.e. the
cells at the current time), the distribution of hidden states
at the current time is calculated by solving the decoding
problem; 2) according to the hidden states at the current
time, the distribution of the hidden state at the next time is
calculated; 3) according to the distribution of hidden states at
the next time, the observable states are determined by solv-
ing the evaluation problem (i.e. cell distribution at the next
moment). Furthermore, they also introduce two improved
schemes, normalized probability distribution and logarithmic
summary, to improve the prediction accuracy.

3) BAYESIAN NETWORK
A Bayesian network is a directed acyclic graph probabil-
ity model [8], where nodes represent random vectors and
directed edges between nodes represent the relationship
between nodes. Bayesian networks are very friendly to the
modeling of complex environments with lots of impact fac-
tors. It can be used to predict the next cell by taking various
mobility related information as input.

A Bayesian network based on the current location, direc-
tion, and street structure of vehicles is proposed in [50] to
predict the next cell of vehicles. The established Bayesian
network includes five random variables: lane, street section,
GPS location, direction, and the next cell. In this Bayesian
network, the lane is the parent node, street section, direction,
and the next cell are its child nodes. GPS location is the child
node of street section. The Bayesian network predictor in [51]
considers many other factors, such as cell distribution, road
structure, user mobile information (i.e. position, velocity,
and acceleration), and random factors. The establishment of
Bayesian network is divided into four processes: 1) establish
Cell and Road Topology (CRT) based on cell environment,
2) establish Road State Transition (RST) via CRT, 3) estab-
lish Probability Distribution Network (PDN) via RST, and
4) finally establish Bayesian network model via PDN. At the
same time, the paper also analyzes the distribution of predic-
tion parameters, and predicted the residence time according to
the current position, speed, and predicted position. Based on
the next cell distribution, an adaptive paging scheme is pro-
posed in [52]. Because the location of specific user groups has
a strong correlation, the work of [33] introduces the collective
behavior patterns, and proposes a mobility prediction method
based on the collective behaviors, which uses the location of
other users to predict another user’s movement. Based on the
collective behaviors mobility model and Bayesian network,
the authors of the paper propose the collective behaviors
patterns-based Bayesian predictor and construct the hybrid
schemes with Markov based predictor. In [15], a user profile

prediction method is proposed, including user location and
service pattern prediction. Taking cells as the minimum units
of prediction, the posterior probability of user entering target
cell is calculated by using Bayesian theory.

Limited by the length of the article, some other approaches,
such as Markov Renewal Process [53]–[56], Kalman Filter
[57], [58] will not be described in detail.

B. DISCRIMINATIVE MODEL
Since the next-cell prediction is to choose one cell from
multiple possible cells, it can be regarded as a classification
problem that divides the candidate cells into two classes.
A discriminative model is based on the discriminant function
generated by limited samples to find the best discriminant
boundary or classification surface between different cate-
gories, reflecting the differences between different types of
data.

1) SUPPORT VECTOR MACHINE
A Support Vector Machine (SVM) is suitable for solving
small-sample, non-linear, and high-dimensional problems.
It has a strong anti-noise ability for data noise and can
reduce the influence of outliers on the models. The basic
idea of its classification is to transform the nonlinear input
space into a high-dimensional space by defining an appro-
priate kernel function and to find the support vector in the
high-dimensional space to form the optimal hyperplane.

In the scenario of next-cell prediction, since the predicted
location has many possibilities, it needs to use multi-value
SVM for prediction. Considering the constraints of geograph-
ical topology, the work of [59] considers a scenario with
an urban center, regular streets, and rail areas. In the paper,
mobility sequence, generated bymobility model of integrated
path follower, gravity, and random walk models, are fed into
multiple classes SVM for training and further to predict the
most likely next cell. Their simulation results show that the
prediction accuracy can exceed 90%. To improve prediction
accuracy, the authors of [12] proposed a multiclass SVM
method with considering regular and random movements
separately. Two different multiclass SVM location sample
vectors are designed to treat the two mobility patterns differ-
ently. In their models, heterogeneous network system model
of Long-Term Evolution (LTE) and WLAN is considered,
where each irregular LTE cell contains a round WLAN cell.
Target region is also set in each cell, which is similar to the
2-tier structure.When users enter the target region, prediction
is started.

In [16], a SVM based cell forecast method under 5G UDN
is proposed. The prediction is divided into two stages: sample
acquisition stage and SVM prediction stage. In the former
stage, user ID, time, location coordinates, and speed are
collected and preprocessed. In the latter stage, SVM model
is trained with historical data and results are predicted.

The work of [31] proposes a SVM based next-cell pre-
diction scheme by using short-term CSI and long-term han-
dover history. In the paper, the prediction is formulated as a
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classification problem, where the CSI sequence serves as an
input vector, and the next cell index as the label. In the training
phase, training CSI sequences, their associated previous cells
and their next cell indices derived from handover history are
exploited.While in the prediction phase, testing CSI sequence
and associated previous cells will be inputted to obtain next
possible cell. Since that CSI feedback and handover history
are readily available in cellular networks, no signaling costs
are added to the radio link and implementation effort is
limited. Their simulation, conducted from a Manhattan grid
scenario and a realistic radio map of downtown Frankfurt,
shows that SVMs predict the next cell substantially more
accurately with CSI than with handover history alone, and
can reach 100% prediction accuracy with not more than 60%
of the CSI input values are required.

2) ARTIFICIAL NEURAL NETWORK
An Artificial Neural Network (ANN) has obvious advan-
tages in dealing with random data and non-linear data. It is
particularly suitable for systems with large data scale and
unclear information. Moreover, the model structure is simple.
When sample data is sufficient, ANNs can be effectively
used for mobility prediction, with strong robustness and fault
tolerance. However, one of the disadvantages of ANNs is that,
in most cases, it needs a lot of parameters and the training
process takes a long time [60].

In [61], a next-cell prediction method based on neural
network is proposed, with a 2-tier cell structure based on
pilot signal strength. It starts to predict after users entering the
tier-2 area, to save resource consumed by prediction. Taking
user coordinates as input, the feedforward neural network
is selected for training and prediction. By such a method,
when a user suddenly changes its direction, the correct predic-
tion results can still be obtained and the prediction accuracy
can be improved. In [23], the inter-cell movement is treated
as a function of user position, velocity, acceleration, and
direction can be calculated by three consecutive available
position points. This implies that only three consecutive user
locations needed to be considered in the prediction process.
Two-group-complete-bipartite-meshed feed-forward neural
networks are selected to address the problem, which takes the
coordinates of three consecutive positions as input, and three
future consecutive cells as outputs. Based on user movement
direction, backpropagation neural networks (with low com-
plexity) based prediction method is proposed in [62], which
can handle the uniform, regular or deterministic movements.
In the paper, a rectangular cell structure is considered and an
8×8 array of cells were defined. The work of [63] presents a
more realistic mobility model called Smooth RandomMobil-
ity Model. It depends on the change of speed and direction,
which can make the trajectory smoother. Two kinds of neural
networks are proposed for the case with andwithout historical
handover data, respectively. For the case with no historical
data, the proposed neural network only depends on current
position and directions, which takes cluster identifier, cell
identifier, and movement direction as input. The other neural

network is based on historical data, which recursively calls
the previous prediction results as input for prediction. In [64],
a regular rectangular system network is considered, and users
may connect to one of the nearest three BSs. The distance
between a user and a BS is calculated by RSS and path
loss model. Using Recurrent Neural Networks with long and
short-term memories, the sequences of RSS values are used
as the input of the neural network for training and prediction.

Besides, the authors of [17] use Recurrent Neural Net-
works with both long and short-term memory for next-cell
prediction. The authors of [65] propose supervised learn-
ing algorithms to forecast future Wi-Fi APs by exploiting
historical connected information. The information includes
instants of time when the user begins and ends a connec-
tion to each AP, the average SNR, the average Received
Signal Strength Indicator (RSSI), and the number of bytes
transmitted/received during the connection of the user to
each AP. In particular, neural networks and random forests
are exploited for training and prediction. At the same time,
the authors study the influence of historical data granularity
(i.e. daily and weekly) on prediction. Their results show that
the neural networks based approach can get higher prediction
accuracy than random forest based one, at the expenses of an
increase in the computation time. Also, the prediction accu-
racy is higher when jointly considering time-period, daily,
and weekly historical information than using separate data
only. The work of [66] uses the real mobility model to test
the mobility prediction method based on extreme gradient
boosting trees and deep neural networks to predict the future
cell.

Some other discriminative approaches, such as clustering
[67], [68] and Random Forest algorithm [69], will be skipped
in this article.

C. DATA MINING
Data mining, in terms of association rules, is widely used in
mobility prediction. Association rules can find hidden links
between different data. These links could be useful and avail-
able. The famous discovered relationship is that if a customer
bought bread, butter, and coffee, it is likely that he/she would
also buy milk. In our case, this technology can be used to
discover the relationship between cells and obtain some types
of information, such as users’ movement history, roads, and
locations of BSs [70].

In mobility prediction, most methods only consider the
spatial factors, as it is directly related to users’ future loca-
tions. However, research results show that time characteristics
also have a significant impact on mobility prediction. Most
conventional studies do not consider spatial and temporal
attributes of data simultaneously. The work of [71] suggests a
spatiotemporal data mining approach to predict the next cell.
Data mining is divided into two parts: discovering frequent
movement patterns, and then discovering frequent movement
rules. Two algorithms, Allmop and Maxmop, are introduced
to mine all frequent patterns and maximum patterns respec-
tively. Finally, the user movement is predicted based on the
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movement rules. Similarly, the work of [72] also proposes
a mobility prediction method based on spatiotemporal data
mining, which includes four stages. In the first stage, a trans-
actional database is generated from the historical log file; in
the second stage, all frequent mobility patterns meeting the
minimum support threshold are mined from the transactional
database; in the third stage, the mobility rule is generated
from the frequent mobility pattern; in the last stage, all eligi-
ble mobility patterns are used for mobility prediction. Based
on [72], an improved scheme is suggested in [73]. The authors
think that the recently mined mobility rule is more important
than the foregoing ones. Therefore, in the prediction stage,
different weights are allocated to the mobility rules based on
temporal attributes, so as to improve the prediction accuracy.
Another five-step spatiotemporal data mining based next-cell
prediction method is introduced in [74]. In the first step,
the reduction of noise/outliers depicting random movements
is performed. The second phase is to partition frequent mobil-
ity patterns into similar groups or clusters. Group determina-
tion of current trajectory is performed in the third phase. The
fourth step is to use the discovered frequent mobility patterns
to generate mobility rules. Lastly, find the next cell-ID in
the predicted region using the matched rule in preceding
phases. Besides, the authors of [70] investigate using data
mining to find the relationship between user location and
other information, such as users’ movement history, roads,
and locations of BSs. The Apriori algorithm is used to get the
association rules and predict the target cell.

D. OTHERS
There also exist some other methods based on historical
movement patterns that are out of the scope of the above
categories. In [75], an irregular network structure model is
considered and a graph model is used to represent the rela-
tionship among users in cells. Derived from data compression
techniques, the Ziv-Lempel algorithms are used to predict
next cell, based on historical user location and handoff time.
In [76], a cell matching method is proposed. It stores users’
movement pattern history and current movement information
in each user’s local device. During prediction, the short-term
current movement is compared with the user’s pattern history.
If there exists a matching trajectory, the next cell is predicted
according to the historical data. Otherwise, no prediction is
performed and normal handover is used.

A hybrid method is employed in [77]. Two kinds of user
profiles are stored: local profiles containing personal infor-
mation and global profiles containing a certain percentage
of user information under the network. Accordingly, two
prediction schemes, Local Profile based Prediction Algo-
rithm (LPPA) and Global Profile based Prediction Algo-
rithm (GPPA), are proposed. LPPA matches the local profile
when the user’s historical data is sufficient. Otherwise, it uses
Markov chains or visit frequency to predict the user’s histor-
ical track. GPPA calculates the possibility of users following
the global profile to determine the target cell through the

current cell. LPPA is preferred in prediction, and GPPA is
used if LPPA fails.

Based on the historical mobility information of a user itself
and its neighbors, the work of [78] exploits ant colony algo-
rithm to predict the next cell. Considering five parameters,
including user ID, period, source cell, destination cell, and
date, the authors of [78] establish the system model based on
ant colony system. The possible next cell is then determined
through the pheromone field and visibility field. This method
can be applied to both regular and random motions. Three
prediction methods based on user history data are introduced
in [79], which are probabilistic predictor based on Bayesian
theory, group predictor based on ant colony optimization
algorithm, and spatial predictor based on road topology struc-
ture. Combining these three schemes, this article also pro-
poses a hybrid mobility prediction strategy, which can get
higher prediction accuracy and avoid resource waste.

Based on the cell sequence of history, the work of [80]
proposes a sequence model to predict next Cell-ID. By using
graph embedded algorithm to determine the correlation
between cells, a spatial loss function and a spatial cross entry
loss function are proposed to predict the future Cell-ID.

VI. HYBRID APPROACHES
Although both CMSA and HMPA can predict the next cell,
they still have some limitations. For example, CMSA can
only carry out short-term prediction and may lead to a sig-
nificant burden on UE due to constant monitoring. HMPA
depends on the large volume of movements history. It must
construct a model to predict next cell by consuming high
computation complexity. Meanwhile, it cannot perform well
when lacking history data, especially in the scenario that users
enter a new region or move randomly. Consequently, HDA
that investigate both long-term and short-term mobility pre-
diction based on CMS andHMP emerged. On one hand, HDA
exploits HMP to find the user’s regularity of movements.
On the other hand, real-time estimation is performed for
instantaneous motions as well. Theoretically, HDA can deal
with both regular and random movements while alleviating
the negative impacts of CMSA and HMPA.

A method of sectorized mobility prediction algorithm is
proposed in [21]. A 6-sector and 3-tier network structure are
adopted in the system model. Consequently, a user’s histor-
ical cell sequence can be replaced by the historical section
sequence. Ideally, the data length will be 6 times the original.
Due to the increase in data length, the prediction accuracy
of regular movements is also improved. At the same time,
a prediction method named cell sector numbering scheme is
proposed for random movements. If the regular prediction
fails, the real-time movement information will be monitored.
When the user enters high handover regions, the target sector
will be determined according to moving direction, so that
target cell is also be determined. To solve the problem of poor
accuracy when users move towards the corner of hexagonal
cells in the sectorized method of [21], the authors of [81]
propose an improved scheme based on genetic algorithm.
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A2-tier cell structure is applied and each sector is divided into
two regions: high handover region and low handover region.
Based on real-time RSS, the region in which user is located
can be determined. If the user enters into the high handover
regions, the target cell is determined by the genetic algo-
rithm. Otherwise, the traditional sectorized method is used.
It improves prediction accuracy and reduces the consumption
of resources, and does not need to rely on historical data.

In order to solve the problem of fuzzy and irregular cell
boundary prediction, road topology information is consid-
ered in [32], and second-order Markov chains are used to
predict the current position and speed of users. The work
of [82] introduces the User Mobility Profile (UMP), includ-
ing quasi-stationary UMP with long-term information and
dynamic UMP with short-term information. Firstly, the con-
cept of zone is proposed to narrow the prediction range. Then,
a mobility prediction model is proposed, which considers
historical records, predictive future locations, moving direc-
tion, moving speed, and cell residence time. Finally, the most
likely cell can be predicted based on historical information,
current velocity, and dwell time.

Under the two-node all-IP network, the authors in [83]
propose a prediction algorithm combining the Global Pre-
diction Algorithm (GPA) and the Local Prediction Algo-
rithm (LPA). A 6-sector, 3-tier system model is established.
In GPA, gateway saves user’s historical movement track, i.e.
cell sequence, and uses the second-order Markov chain to
predict the next cell. In LPA, the user’s motion information
is monitored in real-time to obtain the velocity in motion
direction, so as to predict the possible cell. The combination
of these two methods can predict regular and random move-
ments.

A hybrid scheme based on handover history table and
real-time GPS for Markov process prediction is described
in [84]. In [85], the authors also introduce hybrid schemes.
The next cell is determined by matching user’s current path
from the historical connection patterns. If the historical data
volume is insufficient, the real-time GPS positioning method
is used for prediction, based on moving angle and distance
from the adjacent BSs.

Based on users’ long-term and short-term trajectories,
the authors of [86] propose a hybrid cell prediction
approach. For the long-term trajectory, i.e. cell sequence
in weeks or months, the Markov update process is used
to mine the regular movements. The short-term trajectory,
which records users’ short-term movement in the cell, has a
certain degree of randomness. It is used to determine user’s
movement direction through empirical moving average, so as
to determine the next cell. Finally, the prediction results of
Markov renewal process and short-term trajectory are com-
bined by Dempster Shafer theory.

A method combined ant colony system and the sectorized
approach is proposed in [87]. A 6-Sector and 3-tier system
model is established. The prediction is divided into two
stages: the first stage is ant prediction engine, which uses
ant colony system to predict the user movements; the second

stage uses stored dual mobility model to predict real-time
movements. The average angle method is used to determine
user movement, and the cell sector numbering method is used
to predict the next sector. These two methods are combined
to improve prediction accuracy. All the next-cell prediction
models and schemes are described in Table 1.

VII. APPLICATIONS AND FUTURE
Widely deployed next-cell prediction schemes have been
explored in previous parts. In this section, we introduce some
application scenarios for next-cell prediction, including han-
dover management, load balancing, resource reservation, and
Location-Based Services (LBSs). Besides, although next cell
can be predicted with high accuracy using those approaches,
there still exist flaws that can be further improved. Accord-
ingly, the current challenges and future potential research
directions on next-cell prediction will also be discussed.

A. APPLICATIONS OF NEXT-CELL PREDICTION
Based on next-cell prediction schemes, wireless network
operators know the adjacent cell or even a sequence of cross-
ing cells which users will enter into in advance, then it may
optimize network performance to provide better services.

1) HANDOVER MANAGEMENT
Handover is a critical issue in cellular networks. When a user
leaves a cell and enters into another one, a handover process
will be executed. A successful handover requires sufficient
resources at target cell to ensure that the connection will not
be terminated. Handover management is the key to achieve
continuous service for cellular networks. Since next-cell pre-
diction can estimate target BS (or AP) to which the UE will
be connected in advance, the handover can be predicted as
well. Therefore, handover management is one of the most
suitable and intensively used applications. BS controller can
investigate handover procedure to achieve a more efficient
handover and eliminate unnecessary handovers, further to
improve network performance via next-cell prediction. Here
we will introduce three folds of handover management appli-
cations, enveloping enhanced handover mechanism, optimal
target handover BS (or AP) selection, and ping-pong effect
mitigation.

Next-cell prediction can be used to enhance handover pro-
cedure performance. Prior to next-cell information obtained,
the serving BS can prepare a suitable handover strategy, i.e.
proactive and reactive handover [37], to reduce handover
interruption time and increase handover efficiency. Besides,
to handover between the same or different types of networks,
known as horizontal and vertical handover, next-cell predic-
tion can play important roles. The authors in [88] investigate
horizontal and vertical handover in LTE femtocell based on
cell prediction. They analyze three handover scenarios: han-
dover fromMacro Base Station (MBS) to FemtoAccess Point
(FAP) (hand-in), handover from FAP to MBS (hand-out),
and handover from FAP to FAP (inter-FAP). In the paper,
the corresponding proactive and reactive handovers are also
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TABLE 1. A summary of next-cell prediction schemes.
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be analyzed. Similarly, the authors in [46] consider using
next-cell prediction to enhance handover performance
between Wi-Fi APs and cellular networks, and present an
enhanced handover mechanism with mobility prediction.
In the test scenarios, including homogeneous (i.e. han-
dover between Wi-Fi APs) and heterogeneous (i.e. handover
between Wi-Fi and cellular network) networks, their scheme
can improve network throughput and decrease retransmission
rate.

In handover region, it may be covered by multiple BSs.
Accordingly, it is necessary to determine themost suitable BS
to connect. Based on accurate users’movement, BS controller
can management next-cell prediction and further encourage
mobile users to connect to a better BS. Many introduced
prediction approaches in last Section can be used to optimize
BS selection [17], [44], [56], [85]. Based on user mobility
information, the authors in [89] propose a cell selection algo-
rithm, which first predicts candidate next cells and further
chooses the one with maximum SINR as the target cell. This
scheme reduces the number of handovers and mitigates the
degradation of communications quality. Similarly, the authors
in [90] propose a scheme to determine the next femto access
point based on mobility prediction integrated with received
power and quality of reference signal. Their results show that
the proposed scheme can increase handover success rate.

Because of the extensive deployment of BSs (or APs),
a large number of handovers may occur. More handover leads
to more power consumption of UE and decreases system
efficiency. Hence, it is necessary to reduce unnecessary han-
dover. Meanwhile, due to the nature of user movement and
signal fluctuation at cell border, UE may perform frequent
handover back and forth in a short time between serving and
adjacent cells. This potentially undesirable phenomenon is
known as ping-pong effect [91], which severely increases
traffic delay, consumes more power, and degrades network
performance. This problem can be alleviated by next-cell pre-
diction, which can reduce unnecessary handover and relieve
ping-pong effect [92], [93]. For example, the authors in [94]
set a power offset based on mobility prediction, to determine
target BS and avoid unnecessary handovers. Since traditional
handover decisions based on the received quality of refer-
ence symbols will lead to the ping-pong effect, the authors
in [95] introduced Vehicular Location Prediction Handover
Algorithm, which considering two parameters, i.e. predicted
cell and reference symbols received quality, to reduce unnec-
essary handover and ping-pong effect.

If network operators cannot know users’ mobility infor-
mation in advance, they can only perform traditional
handover. In this situation, mobile users may suffer from
undesirable termination due to resource inefficiency, unnec-
essary handover, and ping-pong effect. As described above,
the prediction of user motion can improve handover perfor-
mance undoubtedly. Since it is unlikely that a user will hand
over frequently with short intervals, real-time prediction is
unnecessary in general. Besides, handover management has
relatively low requirements for prediction accuracy. Although

other prediction techniques with high precision or real-time
features can also be applied to handover management, they
usually have higher computation complexity or require more
feedback from users, which bring extra processing and energy
overhead to both the access point and users. In such scenarios,
next-cell prediction has its special advantages. Since network
operators only need to know which cells the users will enter
into, next-cell prediction is good enough, in terms of both
precision and delay tolerance. Therefore, next-cell prediction
is able to strike a good balance between precision and cost,
which makes it suitable for handover management.

2) LOAD BALANCING
In an imbalance scenario, some cells may not have enough
resources to support all requests, while other lightly loaded
neighboring cells still have extra unused resources. An imbal-
anced traffic load of wireless networks will cause longer
packet delay and throughput degradation. Load balancing
based on next-cell prediction can result in a tremendous
increase in network performance under high load [59].

The works of [96]–[98] introduce load balancing schemes
based on next-cell prediction. In particular, the authors in [96]
propose a mobility prediction technique to solve load balanc-
ing problem through an adaptive handover approach. The pro-
posed approach adaptive sets handover hysteresis threshold
for different neighboring cells based on both signal strength
and load information, where mobility prediction is used to
reduce the unnecessary handovers. Except for using handover
for load balancing, network operators can also achieve load
balance via content caching management based on cell pre-
diction. A Proactive Load Balancing (PLB) framework is
investigated in [97]. Specifically, the authors exploit users’
trajectory to predict their future crossing cells and model
users’ content profile to predict their most expected future
data. The PLB framework proactively caches users’ future
contents during their stay at lightly loaded cells, considering
cell prediction and data demand jointly. Their results show
that the proposed scheme can improve cell load fairness. Sim-
ilarly, the works of [98] investigate a proactive load balancing
method called OPERA to solve the imbalance issue between
macro and small cells. OPERA estimates users’ future cells
and further predicts future loads of the cells, then proactively
optimizes key antenna parameters and cell individual offsets
to preempt congestion before it happens.

In order to balance the load of BSs, user’s long-termmobil-
ity information (i.e. subsequently traversed cells) needs to
be predicted. Therefore, long-term forecast schemes, such as
ANN, association rules, etc. should be applied.

3) RESOURCE ALLOCATION
To maintain a continuous service during handover, the band-
width of target cell must be reserved in advance. Otherwise,
it may decrease the Quality of Service (QoS) or terminate
the connection. Traditional fixed reservation usually perma-
nently reserve a part of bandwidth in all neighboring cells.
However, when a user enters into one of the adjacent cells,
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the bandwidth reserved in other neighboring cells will be
wasted. Thus, adaptive reservation should be implemented to
improve bandwidth utilization efficiency. Through next-cell
prediction, the target cell can be determined, and an adaptive
reservation can be derived. It reserves the required bandwidth
only in those cells where the users are expected to visit in
the near future [99], [100]. Also, BSs compute the amount
of bandwidth need to be reserved based on cell estimation
to reduce unnecessary bandwidth reservation [29]. To some
extent, if user mobility can be predicted, the network load can
also be predicted. The authors of [101] solve the problem of
user association and resource allocation in virtual small cell
aided multi-tier heterogeneous networks based on mobility
prediction.

In addition to allocating bandwidth, BSs power can also be
dynamically configured based on mobility prediction [102].
In a high-speed railway wireless communication environ-
ment, the work of [103] study a scheme which uses Fuzzy
C-Means algorithm and user mobility prediction model to
classify mobile users into center and edge users. Based on
classification results, differential power distribution schemes
are implemented for center and edge users. This scheme
effectively manages interference and significantly improves
network performance.

In wireless cellular networks, radio resources such as
bandwidth, time slots, antennas and transmit power, can be
dynamically allocated based on context information [104].
It can be performed on different levels, i.e. inter-cell and
inner-cell levels. From inter-cell level, all the users inside
a cell are considered a whole. The resource allocation puts
more emphasis on reserving enough resources for new com-
ing users in advance. Therefore, it does not need precise and
real-time prediction. For rural cells, which in general have
large coverage and relatively rare handovers, even simple
next-cell prediction methods, such asMarkov chain, canmeet
the requirements. However, for urban and sub-urban cells,
which usually have smaller cell radius, they have to deal with
handover frequently with higher accuracy. Next-cell predic-
tion methods with higher precision, such as CMAS and HDA,
should be applied. On the contrary, from inter-cell level,
mobility-aware resource allocation usually treats users inside
a cell as individuals and considers more detailed management
problems, such as the assignment of sub-channels or schedul-
ing of time slots [105]. Both high precision and near-real-time
features are required when making position and trajectory
prediction. For such applications, next-cell prediction has its
limitation and cannot be applied.

4) LOCATION-BASED SERVICE
Providing a sequence of cell trajectory, next-cell prediction
can be efficiently applied in Location-Based Services (LBSs)
[71], [106], such as advertising recommendation, content
prefetching, and warning for traffic jams.

LBSs usually need a relatively accurate position of mobile
users. It is important to exploit positioning mechanism
with less energy consumption. Based on mobility prediction

results, it is reasonable to determine users’ current position.
In [107], the authors introduce a positioning mechanism to
reduce energy consumption by utilizing mobility prediction
in mobile networks. This scheme proposes that disabling the
high power GPS based positioning and determining current
position with mobility prediction to save battery usage when
a mobile user follows his/her historical mobility pattern. Oth-
erwise, GPS is used to retrieve the current true position as
usual. This solution has been evaluated in real-life for a period
of three months. Results show that the energy consumption
is reduced 60% compared to continuous GPS positioning,
and accuracy is increased by around 76% compared to net-
work based positioning only. Further, [108] proposes a novel
localization method based on neighbor RSS andmobility pre-
diction to provide higher accuracy of localization with lower
calibration requirements in smart building environments.

The predicted information can be further applied to
location-based social activity predictions. Due to festivals or
holidays, a large number of mobile users may gather to form
a crowd, which poses high a load situation to the respective
serving BS and leads to congestion possibly. The work of
[109] predicts crowd formation using the users’ mobility
pattern in neighboring cells. Similarly, the authors of [110]
analyze the mobility behavior of vehicular users to predict the
traffic status of a cell. This information of crowd formation
and road traffic status can be used to proactively trigger
load balancing schemes and design efficient radio resource
management techniques.

Through cell prediction, content recommendation can be
performed as well. In recent years, short video application
has been growing rapidly. In order to improve the Quality of
Experience (QoE) in high-speed scenarios, the work of [111]
investigates a short video recommendation approach based
on cell prediction. If the network operator knows the user’s
interests and future crossing cells in advance, it can push a
user’s preferred short video content to the most likely BS that
user will be connected to. Their experiments show that better
recommendations can be provided and the waiting time for
short video will be eliminated.

For LBSs, assist positioning mechanism needs an accurate
prediction model.While, the precision requirements of crowd
formation and content recommendation are relatively lower,
but they expect long-term estimation. Hence, prediction mod-
els should be considered according to different scenarios.

In summary, next-cell prediction algorithms play a crucial
role in wireless cellular networks. The main applications
of next-cell prediction and suitable prediction models are
summarized in Table 2.

B. CURRENT STATUS AND CHALLENGES
Next-cell prediction has great potential to estimate mobile
users’ future trajectory, in terms of crossing cells, and has
been intensively applied in many fields, e.g. handover man-
agement, resource allocation, and LBSs. However, there still
exist many challenges with the rapid development of wire-
less networks. In this subsection, we discuss some problems
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TABLE 2. The main applications of next-cell prediction.

which can be improved and several potential future research
directions.

• More information could be utilized, e.g. social activities,
weather, and traffic status, instead of movements param-
eters only, to further improve prediction accuracy;

• Fast and efficient predictions need to be studied. The
prediction should be completed before users enter new
a cell, for high data rate networks (i.e. 5G cellular net-
work) with high speed environments (i.e. high speed
railway). Therefore, balancing prediction accuracy and
computational complexity are equally important;

• Pay more attention to random movements prediction.
Regular users can be predicted very well using history
profile. However, accurate prediction of users’ random
movements is still a difficult problem. Besides, most
current random movements predictors need to monitor
users’ positions in real-time, which leads to high energy
consumption. So researchers may work on a more accu-
rate and energy efficient approach for next-cell predic-
tions of random movements;

• More consideration of spatiotemporal prediction. Ideal
cell prediction should estimate where users are heading
to and when users will arrive. While many existing
schemes, e.g. Markov chains, can predict cell transition
well but cannot estimate dwell time;

• Consider data incompleteness and errors. Lots of current
prediction schemes are based on GPS data to deter-
mine user position. However, affected by buildings or
obstacles, indoor positioning of GPS cannot work well,
and part of data may lose or be error. This severely
impact prediction results, which is not considered in
most works;

• Privacy and data security. In the process of cell predic-
tion, mobile users’ trajectory data may face the risk of
disclosure. This may threat the security of users. Thus,
network operator needmore carefully to handle mobility
prediction to prevent users’ personal data leakage;

• Explore more applications based on next-cell prediction
in the future.

• Standardization activity regarding next-cell prediction
could be considered in the future.

VIII. CONCLUSION
This article provides a thorough survey of next-cell prediction
problem in cellular networks.We first introduce concerns and
characteristics of next-cell prediction, including predictabil-
ity of the next cell, how to obtain user mobility information,
classification of mobility data, and classification of predic-
tion methods. To better understand and manage next-cell
prediction models and methods, we propose a classification
based on types of mobility data used for prediction (i.e.
CMSA, HMPA, and HDA). CMSA needs to monitor users’
movements parameters such as moving direction and speed
in real-time, to make a short time prediction and determine
adjacent cell it will be connected to, which can handle random
movements but energy costing.Whereas, HMPAexploits user
movement history to mine movement patterns and predicts
future crossing cells. HMPA can predict regular movement
very well and be extensively studied but poor random capac-
ity. HDA considers both types of data to carry out estimation.
Theoretically, it can get a better accuracy performance, as it
can make both short-term and long-term predictions. Lots
of prediction approaches, enveloping angle-based, distance-
based, Markov chain, HMM, Bayesian network, ANN, SVM,
etc., can be used to predict the next cell, and have been
introduced in detail in the paper. Then the applications of
cell prediction are presented, especially for handover man-
agement, resource allocation, and LBSs. Finally, we discuss
current existed issues and future potential research directions.
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