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ABSTRACT This article presents a study on the efficiency of implementing classifiers for the detection
of sleep apnea moments based on a minute-to-minute Electrocardiogram (ECG) signal, detailing the
comparison of the accuracy for different classifiers. At each ECG signal, a Sgolay filter was applied to
extract the Heart Rate Variability (HRV) and the ECG-Derived Respiration (EDR) and they were used for
the training, testing and validation of the classifiers. The same features were extended in a second phase in
order to understand if all the classified features were important. According to the results obtained, the best
accuracy was 82.12%, with a sensitivity and a specificity of 88.41% and 72.29%, respectively. This study
shows the importance of choosing the right classifier for a specific problem as well as choosing and using the
best features for a better accuracy. These promising early-stage results may lead to complementary studies
to improve the classifiers for a possible real-world application. The performance of the proposed model was
compared with other approaches used for the detection of sleep apnea.

INDEX TERMS Sleep apnea, electrocardiogram, feature extraction, feature selection, artificial neural

network, support vector machine.

I. INTRODUCTION

Sleep apnea is a clinical disorder characterized by cessation
of breathing during sleep that can last seconds or even min-
utes. Due to the fact that has direct effects on the cardiovas-
cular system, such as systemic hypertension and sympathetic
activity increment, it is considered an important cause for
morbidity and mortality [1]. Since sleep is a key activity
for each individual as it permits the human body to repair
and maintain health [2], then is crucial to promote adequate
clinical practices to mitigate its effects as evidenced when
patients with sleep apnea who developed COVID-19 were
considered at risk of great morbidity and mortality compared
to other patients [3].

The gold-standard for sleep apnea diagnosis is the
Polysomnography (PSG) that aggregates data collected from
a myriad of body functions, such as: heart rhythm, eye
movement, brain activity, and muscle activity, among others.
However, this multi-parametric concurrent recording of
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physiologic data, limits its adoption. Indeed, this is a com-
plex, cumbersome, and time-consuming activity because it
requires an exhaustive test in a controlled environment; like
an hospital setting, to monitor the patient’s sleep, hence
this diagnosis is both unfeasible for a large population and
extremely expensive. So, is timely and promising the intro-
duction of surrogate techniques that may be not only com-
fortably applied to the patient but also a low-cost and simpler
solution. The literature in alternative models to PSG are very
abundant, namely related with proposals based on either a
reduced set of signals [4]—[8] or a combination of signals [9].
Thus, in this study we demonstrate a comprehensive bench-
mark of different classifiers and selected features based on a
single signal, the Electrocardiogram (ECG). In line with this,
four different classifiers to detect sleep apnea from ECG data
were evaluated. In addition, these classifiers were tested on
three different scenarios using distinct features (also extracted
from the signal). The proposed methods could provide prac-
titioners with a robust, simple and cost-efficient diagnosis
tool compared with the classical screening schemes provided
by PSG.
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The main contributions of this article are as follows:

« Implementation of feature selection principles aiming at
to determine the most relevant descriptors

« Benchmark of multiple classifiers to detect sleep apnea

« Explanatory and up-to-date state of the art on sleep
apnea detection techniques.

The rest of the article is organized as follows. Section II
introduces related works with special focus on physiological
signals and classifiers for sleep apnea diagnosis. Section III
details methods, and experimental settings. Section IV
presents the results of our experiments and Section V expli-
cates their significance. Finally, Section VI brings the article
to conclusion.

Il. BACKGROUND

In recent years, different methods have been proposed in
the literature for the diagnosis of sleep apnea disease. In,
[10] authors conducted a systematic review on classification
techniques used on computerised systems for sleep apnea
diagnosis, identifying clusters of classifiers as follows: neural
networks, regression, instance-based, Bayesian algorithms,
reinforcement learning, dimensionality reduction, ensemble
learning, and decision trees. On the one hand, separately
of the adopted classifier its accuracy is highly dependant
on an effectiveness features selection from the multitude of
sources of data. On the other hand, since the PSG requires
an exhaustive data collection fused by multiple sources of
data such as ECG, electroencephalogram (EEG), electroocu-
logram (EOG), electromyogram (EMG), oxygen-saturation
(Sp0O2), among others, an observed trend in the literature is
related with the adoption of a reduced number of physiologi-
cal signals [11] as an alternative methodology for sleep apnea
diagnosis.

Thus, is convenient to provide a brief perspective on can-
didate physiological signals for sleep apnea diagnosis with
special focus on the ECG due to its immense adoption into
these systems.

The flow of electricity generated from brain activity is
measured by the EEG signal whereas the EMG signal mea-
sures the electrical activity generated from muscle motion.
Furthermore, the electrocardiogram is a method of observing
the heart function by measure the electric potential change
related to the heartbeat resulting in the ECG signal [12], [13].
At a grassroots level, the ECG signal may be considered as
a response to an impulse originated by the body. Indeed,
this is an oscillatory signal due to the nature of the ECG
signal. First, the ECG encompasses six features which corre-
sponds to different stages that makes up a heartbeat which are
denoted by letters P, Q, R, S, T and U as depicted in Figure 1.
Second, the RR (a.k.a. RR interval) is the interval between
successive heartbeats. Third, since R peaks are detected and if
we measure the time between them we obtain the Heart Rate
(HR). Four, the beat to beat variation in a heart-beat pattern
is known as Heart Rate Variability (HRV). Five, the ECG-
Derived Respiration (EDR) is the respiration signal derived
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RR interval

FIGURE 1. The ECG signal [14].

from the ECG. Six, the Instantaneous Heart Rate (IHR) is the
number of beats per minute.

In [15] authors presented a sleep apnea detection model
using both HR, and RR signals extracted from the ECG
signal. The Support Vector Machine (SVM) and the Ran-
dom Forest (RF) were applied to classify normal and sleep
apnea episodes. The observations revealed that both classi-
fiers have yielded higher accuracies using features from HR
signal as compared to RR signal. In addition, the 10-fold
cross-validation demonstrated that the SVM has less error
value than the RF. Also based on the ECG signal, authors in
[16] combined the RR and the EDR signal as cornerstone of a
sleep apnea system. The SVM, and the Stacked Autoencoder
Based Deep Neural Network (SAE-DNN) were considered
for classification. The experimental results demonstrated that
SVM coupled with the Radial Basis Function (RBF) kernel
performs better as compared to SAE-DNN. Similarly, authors
in [17] proposed a sleep apnea detection system based on
EDR and RR signals. The performance was determined using
the fuzzy K-means clustering and the SVM classifier. The
experiments revealed that the RBF kernel-based SVM has
yielded the highest accuracy. In addition, authors recom-
mended either the adoption of entropy features [18] or the
implementation of deep learning algorithms. In [19] and [20]
authors also used the EDR signal, but this time jointly the
HRV. Authors in [19] implemented both Artificial Neural
Network (ANN), and SVM to benchmark the system per-
formance. The SVM classifier has yielded higher accuracy
as compared to the ANN. The experimental results demon-
strated that different features meet different significance in
the system performance. On the contrary [20] used the Kernel
Extreme Learning Machine (KELM) to distinguish between
normal, and sleep apnea episodes. Main findings revealed
that the polynomial kernel based KELM provided higher
average accuracy as compared to linear, RBF, and cosine
wavelet. Moreover, the inclusion of higher order spectral and
non-linear features based on EDR and HRV signals were
recommended.

On the contrary, [21] focused on the analysis of single-lead
ECG signals. The classification of events either normal or
apnea were performed by the following classifiers: Logis-
tic Regression (LR), Linear Discriminant Analysis (LDA),
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SVM, Naive Bayes (NB), RF, and k-nearest neighbors (KNN).
Authors findings included that not only RF provided higher
accuracy, but also increasing the number of features led
to a reduced accuracy. Congruently, [22] also used the
single-lead ECG and implemented the following classifiers:
kNN, Multilayer Perceptron Neural Network (MLPNN),
SVM, Least-Square Support Vector Machine (LS-SVM). The
experimental results demonstrated that the RBF kernel-based
LS-SVM has yielded higher accuracy. Also based on a
single-lead ECG, [23], and [24] proposed the Adaptive boost-
ing (AdaBoost), and the SVM respectively to classify normal
and apnea events. In addition, authors in [23] suggested the
usage of time-frequency wavelet transforms to analyze oscil-
latory signals such as the ECG. In [25], authors extracted the
EDR signal from the single-lead ECG and applied the follow-
ing classifiers to detect sleep apnea episodes: ANN, SVM,
kNN, Linear Discriminant (LD), and Quadratic Discriminant
(QD). Main findings revealed that the ANN with two hidden
layers performs better. Similarly in [26], authors used the
HRV signal in they proposal for sleep apnea detection and
implemented the following classifiers: ANN, BN, kNN, and
SVM. The linear kerner SVM obtained the highest perfor-
mance. In addition, authors highlighted that a feature extrac-
tion method has different performance in every classification
method. In [27] authors proposed a sleep apnea detection
system with the edge-computing principles in mind. Based on
data provided by a single-channel ECG sensor, authors deter-
mined the system’s performance through RF, Extremely Ran-
domized Trees, SVM, NB, AdaBoost, KNN, and LR. It was
observed that the SVM coupled with RBF kernel achieved
the best accuracy in spite of the reduced number of features
provided. In [28], authors proposed a microelectromechanical
system (MEMS) based acceleration sensor for sleep apnea
detection. The main goal was to measure diaphragm move-
ments during the respiratory activity. The ANN was used
as classifier of the proposed model. Furthermore, authors in
[29] also proposed a wearable for ambulatory sleep apnea
monitoring. The model used a single-lead ECG and a SVM
classifier do distinguish normal, and apnea events. On the
other hand, in [30] authors proposed a system based on the
oronasal airflow signal. The SVM was the classifier elected
to access the system’s performance. Authors in [31] used the
SpO2 sensor to acquire both oxygen blood rate, and heart rate.
The notion behind this model is to determine a correlation
between the oxygen saturation and the HRV during apnea
episodes. The experimental results evidenced that the SVM
provided higher accuracy as compared to KNN and ANN.
In addition, it was observed that the 1-min variance demon-
strated a good discriminant capacity.

Finally, [32] and [33] used deep learning methods on the
sleep apnea detection. In [32], authors used the ECG signal
and implemented the following deep learning models: Deep
Neural Network (DNN), one-dimensional (1D) Convolu-
tional Neural Networks (CNN), two-dimensional (2D) CNN,
Recurrent Neural Networks (RNN), Long Short-Term Mem-
ory (LSTM), and Gated-Recurrent Unit (GRU). In addition,
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authors suggested the implementation of either the 1D CNN
or the GRU coupled with time series signals. On the other
hand, [33] used the single-channel nasal pressure signal and
applied a CNN model. Moreover, [34] combined the IHR
with the SpO2 and applied the Long Short-Term Memory
Recurrent Neural Networks (LSTM-RNN).

Ill. METHODS AND MATERIALS

Based on lessons learned from the aforementioned literature
we formulate the hypothesis that: (1) the ECG alone is a
promising signal to use for sleep apnea detection. In addi-
tion, (2) an adequate feature selection is preponderant for
the classifier accuracy, and (3) the SVM algorithm revealed
its suitability to cope with apneic ECG signals. With those
notions in mind, we developed a system to detect sleep apnea
in which feature selection and classifiers were benchmarket.
The flow of the proposed model is depicted in Figure 2
including: pre-process, feature extraction, classification, and
feature selection. These architecture is explained in detail in
the sections below.

PRE-PROCESS
SIGNAL

OUTPUT

CLASSIFICATION

FIGURE 2. Proposed system activity model.

For the development of this study, we used GNU Octave,!
which is software compatible with MATLAB? and its
packages.

A. DATABASE

Our experiments were based on the PhysioNet [35] database.
The considered datasource comprises 70 records, but only
35 records were used as only these were annotated. The
signals during the 8h episodes were sampled with a fre-
quency of 100 Hz, and annotated every minute by sleep dis-
order experts using standard criteria with respiratory signals,
namely, each minute was labeled as A’ or "N’ in case of sleep
apnea moment or no-apnea, respectively.

B. PRE-PROCESS SIGNAL
The database used for evaluation has a wide variety of QRS
complexes and P- and T-wave morphologies and the records

1 https://www.gnu.org/software/octave/
2https://Www.mathworks.com/products/matlab.html
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have noise and artefacts that occur in a clinical setting. In line
with this, as QRS detection is based on the time of occurrence
of the QRS complex in the ECG signal it is pertinent to
reduce the signal noise since it tends to decrease the classi-
fiers’ performance. Thus, the Sgolay filter [36] was used to
remove the baseline wander, as it decreases the accuracy of
the EDR. Afterwards, the obtained signal was subtracted from
the original to yield the waveform. With an ECG signal free
from noise, it is possible to detect the R-peaks and the QRS
complex without missing or misclassifying a heartbeat. The
TEO algorithm [37] was applied off-line over the signal on
the basis of the discrete time domain. In addition, to detect the
R-waves, the signal was processed in a one-second window.
An adaptive threshold at 10% of the maximum R amplitude
was applied due to the contrasting amplitude of the R-peaks
along the signal. If the output at t0 exceeds the threshold and
no greater value was observed in the next 0.25 seconds, then
t0 is marked as an R-peak.

C. FEATURE EXTRACTION

The feature extraction was processed on both signals: the
HRYV and the EDR. In addition, features were extracted from
one-minute segments congruently with the database anno-
tations. Thus, in a first phase, 18 features were extracted
from the HRV as detailed in Table 1, and 2 features were
extracted from the EDR as presented in Table 2, giving a total
of 20 features.

TABLE 1. Time-Domain Measure For HRV(m) Epoch Sequence.

RR(m) RR(m) = [rri]72, Feature
Count
Mean p= = 1
Standard Deviation o= \/ E(WZTW 1
Sum of beats with inter- | NN50v1 =1
beat difference over 50 ms, | >, unit[|lrr; — rrip1| —
variant 1 50ms]
Sum of beats with inter- | NN50v2 =1
beat difference over 50 ms, Z:’;}l unit||rrig1 — rri| —
variant 2 50ms]
Ratio of NNSOVI to seg- | pNN50v1 = FA50vL 1
ment length
Ratio of NN50v2 to seg- | pNN50v2 = NI20v2 1
ment length
Mean of interbeat differen- | prq = 2%, where rd; = | 1
tials TTir1 — TG
Standard deviation of in- | o = \/ E(MiTW 1
terbeat differentials
. JErd?
Root mean square of inter- | RMSSD = +—— 1
beat differentials
Serial correlation coeffi- | g =15
cients (k=1,...,5) 2imy (rri—prd) (PTig = Horr)
S (rri—prr)? 2

Fractal Alan  Factors | ATy = W, 3
(k=5,10,15) N; (k] is the numberlgf beats in

the i-th window of k seconds
NEP (Number of Extreme | NEP = ﬁ mota - |1
Points) unit[(rr; — rri—1)(rrig1 —

7))
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TABLE 2. Time-Domain Measure For EDR(q) Epoch Sequence.

EDR(q) EDR(q) = [edr]]_; Feature Count
Mean Ledr = % 1
. 2
Standard Deviation | ocgr = M 1

In a second phase of the study, and to extend it with
existing results from the literature, more features were added,
allowing for an extended analysis of the results and of the
behavior of different classifiers. In line with this, our experi-
ments included 50 features in total for the HRV and 34 from
the EDR signal, giving a total of 84 features. The additional
features were extracted from the the 256-point FFT power
spectral density, namely 32 points for each HRV, and EDR
were considered.

D. CLASSIFICATION

With the classification in mind, all records extracted from
one-minute segments were labeled as 0 or 1 represent-
ing non-apnea or apnea event respectively. The database
containing 17401 records in which 46.33% are related to
apnea moments, whereas non-apnea moments are observable
in 53.67%. Then, database was segmented into three dif-
ferent vectors for training, testing, and validation purposes.
The k-fold cross-evaluation method was adopted with k=10,
in order to improve the training of the classifiers. Finally, sen-
sitivity, specificity and accuracy were calculated as follows:

TP
sensitivity = TP—|——F]V (1)
TN
Specificity = TIV——|—FP 2)
TP + TN
accuracy = P—i-—N 3)

where P: Positive. N: Negative. TP: True Positive. TN: True
Negative. FP: False Positve. FN: False Negative.

In the classification phase, five classifiers (ANN, SVM,
LDA, PLS, and aNBC) were implemented and its perfor-
mance were comparatively evaluated. All algorithms were
implemented following its default settings except the ANN
and the SVM that were configured for our experiments.

1) ARTIFICIAL NEURAL NETWORK (ANN)

The ANN was implemented with both 20 and 84 input neu-
rons (congruently with the 20 and the 84 features extracted
respectively). The hyperbolic tangent sigmoid transfer func-
tion, i.e. tansig was used as a transfer function between the
input layer and the hidden layer. Then, the linear transfer
function i.e. purelin was used as a transfer function between
the hidden layer and the output layer. The tansig function is
defined as:

. 2
tansig(n) = Tren 1
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and the purelin function is defined as:

purelin(n) = n.

2) SUPPORT VECTOR MACHINE (SVM)
An RBF kernel-based SVM was implemented as defined
below:

K (xi, xj) = e 75l 1y > 4)

In which y determines the variance i.e. the similarity
measure between two points. A large value means a small
variance (two points are similar when they are close to each
other). On the contrary, a lower value means a large variance
(two points are similar even if are distant to each other) [19].

On the other hand, aiming at to obtain a better overall
fit model [38], we tuned the SVM soft margin, namely the
C parameter. Based on the experimental results the models
performed best with the C parameter equal to 512.

3) LINEAR DISCRIMINANT ANALYSIS (LDA)

The LDA was introduced by [39] for dimensionality reduc-
tion. On the one hand its simple to implement since is
based on generalized eigenvalue decomposition. In addition,
its easy to adapt for discriminating non-linearly separable
classes [39]. In other words, the LDA aims to identify a
low-dimensional linear subspace whereon instances of mul-
tiple classes; at least two, are best separable [40]. Figure 3
depicts a two class-separation using the LDA by means of
axes maximization.

..o o ®
e o ®
o.‘..n_____._’. L
o o ® ® o

° &

PROJECTION OF THE CLASS-SEPARATION

FIGURE 3. LDA maximizing the component axes for class-separation.

4) PARTIAL LEAST SQUARES (PLS) REGRESSION

The (PLS) regression may also be applied to reduce the
data dimensionality. Indeed, the main goal of PLS regression
is to determine an input vector composed by relevant and
informative data according to the output [41]. As depicted
in Figure 4, the notion behind PLS regression is to describe
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FIGURE 4. PLS summarizing variability of variables and use it as predictor.

the relationship between multiple response variables and pre-
dictors through the latent variables wisely selected to provide
maximum correlation with the dependant variable.

5) AUGMENTED Naive BAYES CLASSIFIER (aNBC)

The aNBC is an extension of the naive Bayes classifier,
in which the class node directly points to all attribute nodes,
and there exist links among attribute nodes [42]. At a grass-
roots level, all attributes are independent given the value of
the class variable in the naive Bayes classifier, while they are
dependents in the aNBC scheme. As depicted in Figure 5,
the attribute A1l is dependent on A2, and An whereas A2 is
dependent on A1, and A3. Finally A3 is dependant on A2.

Al A2 A3 ... An

AN

FIGURE 5. Example of aNBC.

IV. RESULTS ANALYSIS

Our computational experiments were based on the above
mentioned classifiers. Firstly, 20 extracted features were
applied to train and simulate the model. Secondly, 64 addi-
tional features obtained via PSD/FFT points were added to
the initial features set (i.e., 84 features in total). All five
classifiers were trained using 8507 records of features, with
2836 records used as training set and 5671 records used to
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evaluate the performance. The data provided to the classifiers
for training and testing were divided using the k-fold cross-
validation method with k=10.

The classification performance was assessed on both data
sets (of 20 and 84 features) as shown in Table 3, Table 4,
Figure 6, and Figure 7.

TABLE 3. Results when using 84 features with comparison between the
classifiers.

Classifiers | Accuracy | Sensitivity | Specificity
ANN 59.40% 96.43% 2.67%
SVM 61.61% 99.23% 0.87%
LDA 60.57% 98.56% 0.95%
PLS 63.00% 54.93% 65.24%
aNBC 62.12% 0% 62.12%

TABLE 4. Results when using 20 features with comparison between the
classifiers.

Classifiers | Accuracy | Sensitivity | Specificity
ANN 82.12% 88.41% 72.29%
SVM 70.94% 80.87% 54.94%
LDA 62.93% 83.98% 28.40%
PLS 64.49% 57.78% 66.05%
aNBC 41.20% 39.24% 79.21%

120

o
&

ra
a

ANN UM LDA PLS aNBC

W Accuray Sensitivity Specificity

FIGURE 6. Results when using 84 features with comparison between the
classifiers.

100

an
E: | | | |
SV LD& PLS

ANN sMBL

n

o ow

W Accuracy Sensitivity Specificity

FIGURE 7. Results when using 20 features with comparison between the
classifiers.

Our experiments encompassed two scenarios: (1) extrac-
tion and classification of features; (2) additional features
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extraction and classification. On the one hand, when 20 fea-
tures were extracted and classified then we may observe that
most accurate model is the ANN classifier (82.12% with a
sensitivity of 88.41%). On the contrary, when 84 features
were extracted the PLS classifier performed better (63.00%).

Moreover, we also observe that the higher specificity was
obtained by the aNBC (79.21%), and PLS (62.24%) respec-
tively. Finally, we note that the LDA (83.98%), and the SVM
(68.36%) presented the higher sensitivity.

V. FINDINGS

The results obtained in our experiments are comparable
with other studies; using the same database (PhysioNet
ECG-Apnea Database), existing in the literature. This is rel-
evant to consolidate the knowledge on the use of ECG signal
for sleep apnea detection and diagnosis.

In [43] authors compared the performance of different
classifiers based on a selected feature set, being that the
most accurate was the Bagging.REPTree with an accuracy
of 84.40%, and a specificity of 85.90%. The best sensitiv-
ity was achieved by the AdaBoost algorithm with a score
of 87.03%. On the contrary, on the absence of feature selec-
tion the performance is lower, namely the observed accuracy,
sensitivity, and specificity was 77.74% (Bagging. REPTree),
72.47% (AdaBoost), and 80.29% (Bagging.REPTree) respec-
tively. In [1], only four features were selected to be considered
on the classification leading to the following results: sensitiv-
ity, 88.84%, specificity, 83.29% and accuracy, 85.07%.

In addition, in [44]; that used the the ELM classifier,
authors obtained results as follows: an accuracy of 87.71%,
a specificity of 91.70% and a sensitivity of 81.30%. Despite
this good performance, the sensitivity is lower compared with
similar studies. It should be noted that, since is more relevant
to detect the sleep apnea moments than the normal moments
then sensitivity is more crucial than specificity. In a real-time
monitor [45] a high sensitivity was obtained (96.00%), how-
ever the use of the PSG is mandatory to collect patients’ data.

Finally, in [46], the LD and the QD classifiers were
tested using three different methods (no optimization, feature
selection, and co-variance regularization) which resulted that
the QD provided the best specificity (94.60%), and LD the
best sensitivity (94.00%) with no optimization. The highest
accuracy (93.20%) was obtained by the QD using feature
selection.

In our study two different methods were implemented
using a set of 20 and 84 features respectively. In spite of the
better performance of SVM compared to ANN as observed
in the aforementioned literature, our experiments revealed
that the best combination is achieved with the ANN coupled
with 20 features. Indeed, an accuracy of 82.12%, a sensitivity
of 88.41%, and a specificity of 72.29% were obtained for the
ANN classifier. One explanation for this could be that these
features are more correlated with the detection of sleep apnea
and normal moments. Further, it provides additional evidence
that when the pair sensitivity-specificity ratio is higher it may
lead to an accurate detection of either normal or sleep apnea
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moments. Moreover, Table 4 evidences that using LDA or
SVM results in a very sensitive classifier, bur very low spe-
cific. On the contrary, the aNBC results in a very specific clas-
sifier, but very low sensitive. In addition, it should be noted
that higher sensitivity combined with reduced specificity may
lead to poor classifier performances as evidenced in Table 3
on ANN (Sensitivity: 96.43% Specificity: 2.60% Accuracy:
59.40%) and SVM (Sensitivity: 99.23% Specificity: 0.87%
Accuracy: 61.61%) classifiers.

In line with this, the proposed model revealed its suitability
for sleep apnea detection and diagnosis based on a single
signal, the ECG.

Finally, a particularly relevant finding of the present study
is the correlation between the wisely feature selection and
the accuracy. Into the context of this study, when the quantity
of selected features increased lead to reduce the accuracy of
the proposed model. Thus, it would be interesting to explore
whether and how a wise selection of features may improve
sleep apnea detection model.

VI. CONCLUSION

This study presents an ECG-based model for minute-based
analysis of sleep apnea. The main goal is to implement an
efficient and precise alternative method to the classical PSG,
based on a single signal, the ECG. In addition, a benchmark
with five classifiers are implemented, namely: ANN, SVM,
LDA, PLS, and aNBC.

As expected and according with the presented results,
it can be concluded that different classifiers have different
behaviors to solve the same problem. Additionally, it is shown
that the model proposed in this study is suitable, feasible
and accurate in the detection of sleep apnea with an ECG
signal. Our findings highlighted the ANN using 20 features
as the most accurate model with an accuracy of 82.12%,
a sensitivity of 88.41% and a specificity of 72.29%. More-
over, the experimental results revealed that is crucial deter-
mining the most relevant features with the ambition to
enhance the accuracy of the model. Indeed, a same classifier
may present contrasting performances as observed on the
lower accuracy obtained when classifiers were evaluated with
84 features.

Future work may include the introduction of feature selec-
tion in order to determine an optimized characteristic set for
the detection of sleep apnea; improving sensitivity so that all
apnea moments are detected; comparing and calculating the
performance of the different methods applied in the study,
including evaluating the computational costs of classifiers;
and simulating the same study in real patients to examine the
viability of the method presented here and its implementation.
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