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ABSTRACT Recently, as the demand for tremendous spectral efficiency has increased, the massive
multiple-input multiple-output (MIMO) system has attracted attention in the wireless communication
system. In massive MIMO, the zero forcing (ZF) precoder provides optimal performance. However,
the complexity for process of matrix inversion is burden in terms of practical implementation. Therefore,
many researches for approximate inversion of channel matrix have been performed in order to reduce the
complexity. The typical linear precoder based on approximate matrix inversion is the Gauss Seidel (GS)
precoder. The GS precoder provides the similar precoded signals to ZF precoder with low complexity.
However, the GS precoder does not adopt parallel implementation because of inner structure. Consequently,
precoder for the GS iterativemethod spends a lot of times in order to estimate precoded signal. Therefore, this
problem makes the GS precoder impractical. In this article, the punctured GS (PGS) is proposed in order
to mitigate the problem of parallel operation by modifying inner structure for the GS precoder. However,
the performance for the PGS precoder is degraded due to modified inner structure. Therefore, the ordering
PGS precoder which performance degradation due to modified inner structure is mitigated is additionally
introduced. As a result, although the delay when precoded signal for the PGS precoder is obtained decreases
than the GS precoder, the BER performance for the PGS precoder is degraded than the GS precoder. In
contrast, the ordering PGS precoder provides improved BER performance with decrease of delay compared
with the GS precoder.

INDEX TERMS Massive MIMO, punctured Gauss Seidel (PGS), Gauss Seidel (GS), linear precoding.

I. INTRODUCTION
In the future, since demand for throughput increases to pro-
vide various services, wireless communication systems can
require high bit error rate (BER) performance [1]–[3]. For
this reason, massive multiple-input multiple-output (MIMO)
system has attracted attention in the wireless communication
system. Although base station (BS) transmits precoded sig-
nals with power constraint, massive MIMO system obtains
the improved signal to noise ratio (SNR) by equipping huge
antenna array in BS. Also, huge antenna array offers pre-
dictable statistic characteristic of channels by channel hard-
ening [4]–[11]. Because of these advantages, simple linear
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precoders such as matched filter (MF) and zero forcing (ZF)
show great improvement of performance [12]. In particular,
the performance for ZF precoder is optimal performance in
massive MIMO system. However, as the number of user
equipments (UEs) and transmit antennas grows, the dimen-
sion of channels increases. The increased dimension of chan-
nels causes high complexity for precoder. Therefore, the
various techniques, such as Neumann Series (NS) method,
Gauss Seidel (GS) method, etc, which reduce the complexity
were proposed [13].

The NSmethod provides approximate inversion of channel
matrix and lower complexity compared with the ZF pre-
coder. However, in order to obtain output close to exact
inversion of channel matrix, the large iteration number
must be required, and the complexity for the NS precoder
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significantly increases as the iteration number increases [14],
[15]. On the other hand, the GS precoder offers precoded
signals that are relatively similar to the output of the ZF
recorder in small iteration number. Also, even though the
iteration number grows, the GS method maintains low com-
plexity [16], [17]. However, the GS precoder cannot perform
parallel implementation because of inner structure. Although
the internal sequential iteration structure of GS provides the
enhanced performance, this iteration process does not allow
parallel implementation [13], [18]. Therefore, the many mod-
ified GS precoders were proposed in [19]–[22]. Though these
methods provide improved performance than conventional
GS precoder, these schemes cannot mitigate the problem of
parallel implementation.

The GS precoder has inner structure that previous esti-
mated symbols are set as input in order to estimate next
symbol. Therefore, after all preceding symbols are estimated,
the last symbol can be obtained. Consequently, the problem
for sequential process causes delay to estimate the precoded
signal. To solve this problem, the author in [18] proposed the
novel GS precoder. However, the performance for novel GS
precoder is significantly lower than the GS precoder. Thus,
the new scheme that mitigates problem for parallel operation
is required with performance similar to GS.

This article proposes punctured GS (PGS) precoder which
mitigates problem of parallel operation. In a different way
from GS, the proposed scheme divides the gram matrix of
channel. This modified structure mitigates chief problem for
GS. However, because the relationship between parallel oper-
ation and accurate precoded signals has trade-off relation,
the performance for proposed scheme is degraded than GS.
Therefore, in order to reduce degradation of performance,
the ordering PGS method which the gram matrix of channel
is rearranged according to the correlation between channels
of UEs is additionally proposed.

The remainder of this article is organized as follows.
Section II addresses a downlink massive MIMO system
model. Section III explains conventional precoding schemes.
In Section IV, the PGS precoder and the ordering PGS pre-
coder are proposed. The simulation results for BER perfor-
mance and the comparison for complexity and the number
of required calculations are given, in Section V. Finally,
Section VI concludes this article.
In this article, the upper-case and lower-case bold-face

letters are defined as matrices (e.g. H,Z,L,B) and vectors
(e.g. x, x̄, x̂, y,w), respectively. Also, the scalars are
represented by non-bold letters (e.g. NT ,K ,PT , i, c).

II. DOWNLINK MASSIVE MIMO SYSTEM MODEL
Fig. 1 shows the downlinkmassiveMIMO systemmodel con-
sidering in this article. The BS employs NT transmit antennas
and the K UEs are serviced from BS, where K � NT . Also,
each UE has only one receive antenna. The BS transmits
K data streams via complex Rayleigh flat fading channel to
separate K UEs. The K data streams are precoded according
to the channel state information (CSI) by passing precoder.

FIGURE 1. The downlink massive MIMO system model.

In this system model, the precoded signal vector x̄ ∈ CNT×1

is given by,

x̄ =
√
PTFx, (1)

where F ∈ CNT×K is preoding matrix and x ∈ CK×1 is
data signal vector with uniform distribution (E

{
xxH

}
= IK ).

Also, the precoded signal vector x̄ is limited by trasmit power
PT (E

{
‖x̄‖2

}
= PT ) and is transmitted from BS to UEs.

The received signal vector y ∈ CK×1 is represented as
follows,

y = Hx̄+ w, (2)

where H ∈ CK×NT and w ∈ CK×1 are complex Rayleigh
flat fading channel matrix and additive white Gaussian
noise (AWGN) vector with independent and identically dis-
tributed (i.i.d) complex components with zero mean and unit
variance.

III. CONVENTIONAL PRECODING SCHEME
A. CONVENTIONAL ZERO FORCING PRECODER
In massive MIMO system, the ZF precoder provides optimal
performance by completely eliminating inter user interfer-
ence (IUI). In order to completely remove IUI, the pseudo
inverse matrix of channel is used as precoding matrix for ZF
precoder and represented as follows,

FZF = γZFHH
(
HHH

)−1
= γZFHHZ−1, (3)

where

Z =

 z1,1 · · · z1,K
...

. . .
...

zK ,1 · · · zK ,K


is gram matrix HHH and diagonally dominant matrix when
the number of transmit antennas is very larger than the num-
ber of UEs [7]. γZF is scaling factor for ZF and given by,

γZF =

√
1

tr
(
Z−1

) . (4)

The gram matrix Z has Wishart distribution, so tr
(
Z−1

)
can

be approximated toward K
NT−K

. Therefore, γZF is represented
as follows,

γZF =

√
NT − K

K
. (5)
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Consequently, the precoded signal vector x̄ZF for ZF is
represented as follows,

x̄ZF =
√
PTFZFx =

√
PT (NT − K )

K
HHZ−1x. (6)

Technically, the minimummean square error (MMSE) pre-
coder provides optimal performance in massive MIMO. On
the other hand, the performance for the ZF precoder is close to
optimal performance and the performance for ZF andMMSE
precoders becomes same when the transmit antennas per UE
is large. However, because theMMSE precoder requires addi-
tional process that received SNR ismeasured, theMMES pre-
coder has more complexity than the ZF precoder. Therefore,
in massive MIMO, the ZF precoder is regarded as optimal
precoder [6]. However, the computational complexity for the
ZF precoder increases exponentially as the number of UEs
which are serviced by BS grows. Thus, the many schemes
which obtain approximate inversion matrix of channel with
low complexity are proposed.

B. GAUSS SEIDEL PRECODER
The GS precoder was proposed in order to mitigate problem
of complexity for ZF precoder. The GS precoder obtains
precoded signal which is approximated to (6) by iterative
calculation. The grammatrixZ can be divided into three parts
as follows,

Z = L+ Zdiag + LH , (7)

where L, Zdiag and LH are strictly lower triangular
matrix, diagonal matrix and strictly upper triangular matrix,
respectively. The GS precoder obtains precoded signal as
follows,

x̄GS= γGS
√
PTHH x̂GS, (8)

where γGS is scaling factor for the GS precoder and equal to
γZF [16]. x̂GS is final solution vector that is estimated by GS
iterative way and satisfies criterion as follows,(

L+ Zdiag + LH
)
x̂GS = x. (9)

Also, the (9) can be modified as follows,

x̂GS =
(
L+ Zdiag

)−1 (x− LH x̂GS
)
. (10)

Then, the iterative GS method is given by [16], [23],

x̂(i+1)GS =
(
L+Zdiag

)−1 (x− LH x̂(i)GS
)
(i = 0, 1, · · · ) , (11)

where i is the number of iterations and x̂GS satisfies x̂GS =
lim
i→∞

x̂(i+1)GS . TheGS precoder provides improved performance

than other methods for approximate matrix inversion by itera-
tive calculation (11). This advantage is given by the structure
of GS methods. In more detail, the (11) can be represented as
follows,

x̂(i+1)GS = Z−1diag

(
x− LH x̂(i)GS − Lx̂(i+1)GS

)
, (12)

and (12) can be expressed in form of elements for matrix as
follows,


x̂(i+1)1
x̂(i+1)2
...

x̂(i+1)K

 =



(
x1−

K∑
j=2

z1,jx̂
(i)
j

)
z1,1(

x2−
K∑
j=3

z2,jx̂
(i)
j −z2,1x̂

(i+1)
1

)
z2,2
...(

xK−
K−1∑
j=1

zK ,jx̂
(i+1)
j

)
zK ,K


, (13)

where x̂(i+1)j and x̂(i)j are the j-th component for estimated pre-
coded signal of present step and previous step, respectively.
According to (13), the first to (j−1)-th elements for estimated
precoded signal of present step are required in order to obtain
x̂(i+1)j . In this article, the previous estimated symbols that are
used to obtain following symbol in the same (i+1)-th step are
called as the feedback symbols. Also, the feedback symbols
are multiplicated by strictly lower triangular matrix L. There-
fore, for the sake of argument, L is called as the feedback
matrix.

The structure for feedback matrix of the GS precoder
provides improved performance. However, since the previous
symbols must be obtained in advance to estimate the follow-
ing symbol, this structure causes disadvantage that parallel
implementation is difficult. Therefore, the new scheme that
shortcoming for GS precoder is mitigated is required.

IV. PUNCTURED GAUSS SEIDEL SCHEME
Since the PGS precoder mitigates problem of parallel
operation, the PGS precoder reconstructs the grammatrix into
N×N (N ≤ K ) separate blocks. This modified structure pro-
vides high efficiency for parallel operation by simultaneously
calculating N symbols.
The GS precoder divides Z into three matrices and strictly

lower triangular matrix L is used as feedback matrix. In
contrast, the PGS precoder considers that Z is separated
into N × N square matrices where N is the factor of K .
Also, N represents the number of simultaneously operating
precoders and the PGS precoder is equal to the GS precoder
when N = 1. In more detail, the divided gram matrix that is
consisted of N ×N square matrices is represented as follows,

Z =


B1,1 B1,2 · · · B1,N
B2,1 B2,2 · · · B2,N
...

...
. . .

...

BN ,1 BN ,2 · · · BN ,N

 , (14)

whereBi,j ∈ C
K
N ×

K
N is the i-th row and the j-th column square

matrix which consists of components for Z. Also, the Bi,j can
be separated into three parts as follows,

Bi,j = Blower
i,j + Bdiag

i,j + Bupper
i,j , (15)

where Blower
i,j , Bdiag

i,j and Bupper
i,j are strictly lower triangular

matrix, diagonal matrix and strictly upper triangular matrix,
respectively.
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After the Z is divided into small blocks, the proposed
scheme separates Z into three parts as follows,

Z = Zfb + Zdiag + Zun - fb, (16)

where Zfb consists of N 2 strictly lower triangular matrices.
Zun - fb consists of N strictly upper triangular matri-
ces (Bupper

1,1 , · · · ,Bupper
N ,N ) and N 2

− N upper triangular

matrices involved with diagonal components (Bdiag
1,2 +

Bupper
1,2 , · · · ,Bdiag

N ,N−1 + Bupper
N ,N−1). In more detail, the gram

matrix can be separated into multiple block matrices as
follows,

B1,1 B1,2 · · · B1,N
B2,1 B2,2 · · · B2,N
...

...
. . .

...

BN ,1 BN ,2 · · · BN ,N


︸ ︷︷ ︸

Z

=


Blower
1,1 Blower

1,2 · · · Blower
1,N

Blower
2,1 Blower

2,2 · · · Blower
2,N

...
...

. . .
...

Blower
N ,1 Blower

N ,2 · · · Blower
N ,N


︸ ︷︷ ︸

Zfb

+


Bdiag
1,1 0 · · · 0
0 Bdiag

2,2 · · · 0
...

...
. . .

...

0 0 · · · Bdiag
N ,N


︸ ︷︷ ︸

Zdiag

+


Bupper
1,1 Bdiag

1,2 + Bupper
1,2 · · · Bdiag

1,N + Bupper
1,N

Bdiag
2,1 + Bupper

2,1 Bupper
2,2 · · · Bdiag

2,N +B
upper
2,N

...
...

. . .
...

Bdiag
N ,1 + Bupper

N ,1 Bdiag
N ,2 + Bupper

N ,2 · · · Bupper
N ,N


︸ ︷︷ ︸

Zun - fb

,

(17)

where 0 is matrix with zero value.
The number of components for feedback matrix is reduced

as N increases. Therefore, the performance for the PGS pre-
coder is degraded when the number of simultaneously operat-
ing precoders is large. However, the required time is reduced
in order to calculate the precoded signal as the gram matrix
is divided into smaller blocks. In other words, the relation-
ship between parallel implementation and accurate precoded
signals has trade-off relation.

The PGS precoder obtains precoded signal as follows,

x̄PGS = γPGS
√
PTHH x̂PGS, (18)

where γPGS is scaling factor for the PGS precoder and equal to
γZF, according to the subsection IV-B. The final solution vec-

tor x̂PGS

(
x̂PGS = lim

i→∞
x̂(i+1)PGS

)
for the PGS precoder satisfies

criterion as follows,(
Zfb + Zdiag + Zun - fb

)
x̂PGS = x. (19)

The (19) can be rewritten as follows,

x̂PGS =
(
Zfb + Zdiag

)−1 (x− Zun - fbx̂PGS
)
. (20)

Like (12), iterative way for the PGS precoder is given by,

x̂(i+1)PGS =
(
Zfb + Zdiag

)−1 (x− Zun - fbx̂
(i)
PGS

)
. (21)

In order to obtain improved performance, the initial solu-
tion vector x̂(0)PGS can be adopted as variousmethods. However,
to compare only the performance for each precoder, it is
assumed that initial solution vector for all schemes is vector
with zero value in this article.

Also, (21) is modified as follows,

x̂(i+1)PGS = Z−1diag

(
x− Zun - fdx̂

(i)
PGS − Zfdx̂

(i+1)
PGS

)
. (22)

In more detail, the (22) can be represented in form of block
matrix B as follows, (23), as shown at the bottom of the
next page, where xu, x̂

(i)
PGS,u and x̂(i+1)PGS,u are the u-th par-

tial vector for x, x̂(i)PGS and x̂(i+1)PGS , respectively. The feed-
back elements for the j-th estimated symbol vector x̂(i+1)PGS,j

are
N∑
u=1

Blower
j,u x̂(i+1)PGS,u. Because the feedback matrix Blower

j,u is

strictly lower triangular matrix, the first symbol for x̂(i+1)PGS,j is
obtained without any feedback symbols. Then, the second
symbol for x̂(i+1)PGS,j is estimated by using the first estimated

symbols for all partial vectors (x̂(i+1)PGS,1, · · · , x̂
(i+1)
PGS,N ). There-

fore,N partial vectors are operated in parallel. This advantage
reduces the required time for obtaining the precoded signal.

When the number of UEs is prime number, the PGS pre-
coder does not service some UEs in order to change prime
number to composite number. The PGS precoder can know
the UE that has most non diagonally dominant channel by
calculating gram matrix and omits the UE which has poor
channel condition. In this way, the PGS precoder can divide
gram matrix into N × N blocks when the number of UEs is
prime number.

However, because the PGS precoder uses less the number
of feedback symbols than the GS precoder by separating the
gram matrix into small square matrices, the PGS precoder
obtains degraded performance than the GS precoder. For
compensation of degradation, the ordering PGS precoder is
additionally proposed.

A. ORDERING PGS PRECODER
In this subsection, the ordering PGS precoder is proposed.
According to channel condition, the ordering PGS precoder
changes the order of column and row for gram matrix Z.
In massive MIMO system, the large diagonal elements and
small non-diagonal elements for Z represent that the channel
condition is favorable. In other words, the UE that has diag-
onal dominant channel enjoys favorable channel condition.
Also, accuracy for the estimated symbols is increased as
many feedback symbols are used. Therefore, the ordering
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FIGURE 2. The method for rearranging gram matrix in specific order.

PGS precoder arranges that UE with unfavorable channel
condition is located in the bottom of block matrix B to
use more feedback symbols and UE with favorable channel
condition is located in the top of block matrix B. In order
to rearrange Z, the ordering PGS precoder calculates c =
sumrow

(
Zdiag − abselement (Zfd + Zun - fd)

)
, where c is factor

vector for channel condition and sumrow (·) is sum opera-
tor for each row. Also, abselement (·) is operator which each
element for matrix has absolute value. In other words, c is
obtained as follows,

c =


c1
c2
...

cK

 =



z1,1 −
K∑
j=2

∣∣z1,j∣∣
z2,2 −

K∑
j=1,j6=2

∣∣z2,j∣∣
...

zK ,K −
K∑

j=1,j6=K

∣∣zK ,j∣∣


, (24)

where cj is factor that represents channel condition of the
j-th UE. Then, the ordering PGS precoder sorts these factors
in specific order and rearranges the gram matrix Z into the
sorted gram matrix Zorder according to c.
In more detail, the Fig. 2 representes the way for specific

order. The B̄i ∈ C
K
N ×N is row matrix that consists of i-th

row block matrices (B̄i =
[
Bi,1 · · ·Bi,N

]
). Firstly, N rows

with the smallest N components of c are extracted and these
rows are located at the bottom of each row block. Then, N
rows with the next smallest N components of c are located
at above space where the previous N rows are placed. In this
way, the all rows are rearranged. Also, since the gram matrix
is symmetric matrix, the columns for rearranged gram marix
are sorted in same specific order.

After that, the ordering PGS precoder obtains the precoded
signal via Zorder in the same iterative way for PGS precoder.

Algorithm 1: Ordering PGS Precoder

1 input:
2 H and x
3 initialization:
4 Z = HHH and Zdiag = diag (Z)
5 c = sumrow

(
Zdiag − abselement (Zfd + Zun - fd)

)
6 indexc = sortdes (c)
7 Zorder

= Z [indexc, :]
8 Zorder

= Zorder [:, indexc] and xorder = x [indexc]
9 Zorder

fd + Zorder
diag + Zorder

un - fd = Zorder

10 x̂order,(0)ordering PGS = 0 and i = 0
11 while i ≤ I do
12 x̂order,(i+1)ordering PGS =(

Zorder
fd + Zorder

diag

)−1 (
xorder − Zorder

un - fdx̂
order,(i)
ordering PGS

)
13 end
14 x̂(I )order PGS [indexc] = x̂order,(I )order PGS
15 output:
16 x̂(I )order PGS

The algorithm for the ordering PGS precoder is represented
in Algorithm 1.

From Algorithm 1, firstly, the gram matrix Z is obtained
and diagonal components of Z are extracted on line 4.
Then, the factor vector is calculated and indexc which is
row index for arranged factor vector is gained by sort-
ing c (line 5-6). The sortdes (·) is operator that the row
indexes for vector are extracted in specific order so that the
UE which has unfavorable channel utilizes more feedback
symbols.

On line 7-8, Z and x are respectively rearranged into the
sorted gram matrix Zorder and xorder via indexc. On line 9,
Zorder is separated into feedback matrix Zorder

fd , diagonal
matrix Zorder

diag and unfeedback matrix Zorder
un-fd, like the PGS

precoder. Also, the initial solution vector of ordering PGS
x̂order,(0)ordering PGS and iteration factor i are set as zero vector and
zero, respectively (line 10). On line 11-14, the ordering PGS
precoder estimates the precoded signal by using iterative way
of PGS and the lastly estimated signal x̂order,(I )order PGS is arranged in
original ordering. Then, the ordering PGS precoder provides
precoded signal x̂(I )order PGS with high accuracy than the PGS
precoder.


x̂(i+1)PGS,1
...

x̂(i+1)PGS,N


︸ ︷︷ ︸

x̂(i+1)PGS

=



(
Bdiag
1,1

)−1 (
x1 −

N∑
u=1

Bupper
1,u x̂(i)PGS,u −

N∑
u=1

Blower
1,u x̂(i+1)PGS,u

)
...(

Bdiag
N ,N

)−1 (
xN −

N∑
u=1

Bupper
N ,u x̂(i)PGS,u −

N∑
u=1

Blower
N ,u x̂(i+1)PGS,u

)


︸ ︷︷ ︸

Z−1diag

(
x−Zun - fdx̂

(i)
PGS−Zfdx̂

(i+1)
PGS

)

, (23)
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FIGURE 3. The comparison for the total transmit power when the number
of UEs and the total power constraint factor are fixed as K = 12 and
PT = 1, respectively.

B. TRANSMIT POWER CONSTRAINT
This subsection shows that the scaling factor for the PGS pre-
coder γGS has appropriate value in order to radiate precoded
signal with suitable power.

The Fig. 3 represents the total radiated power for the ZF
and PGS precoders when the number of UEs and power
constraint factor are fixed as 12 and 1, respectively. In this
case, the PGS precoder divides the gram matrix Z into 2× 2
blocks. From the Fig. 3, the scaling factor for PGS precoder
γGS provides proper total transmit power. Also, the total radi-
ated power for PGS precoder approaches the total radiated
power for ZF precoder as the number of iterations or transmit
antennas per UE increases.

C. CONVERGENCE RATE
The PGS precoder can achieve improved convergence rate by
reducing N or using ordering scheme. From (20) and (21),
the error between the final solution vector x̂PGS and approxi-
mate solution vector x̂(i+1)PGS can be obtained as follows,

x̂(i+1)PGS − x̂PGS = −
(
Zfd + Zdiag

)−1Zun - fd

(
x̂(i)PGS − x̂PGS

)
= MPGS

(
x̂(i)PGS − x̂PGS

)
, (25)

where MPGS (= −
(
Zfd + Zdiag

)−1Zun - fd) is the iteration
matrix for PGS precoder and the (25) is rewritten as follows,

x̂(i+1)PGS − x̂PGS =Mi+1
PGS

(
x̂(0)PGS − x̂PGS

)
. (26)

The convergence rate accelerates when Frobenius norm for
MPGS is small [24].
The Fig. 4 represents the Frobenius norm for the iterative

matrix of the GS, PGS and ordering PGS precoders when the
number of UEs is fixed as 16. Since the GS precoder utilizes
many feedback symbols, the GS precoder has highest conver-
gence rate compared with the other precoders. As N reduces,

FIGURE 4. The comparison for the Frobenius norm when the number of
UEs is fixed as K = 16.

the Frobenius norm for the iterative matrix of the PGS and
ordering PGS precoders reduces. Because the number of
feedback symbols reduces when N is large, the convergence
rate for both schemes declines. Also, the convergence rate of
the ordering PGS precoder is faster than the PGS precoder
when the both precoders divide the grammatrix into the same
N × N blocks. The gap between the ordering PGS and PGS
precoders decreases as N is large. In other words, when N
is small, the ordering PGS precoder obtains more gain for
convergence rate than the PGS precoder.

V. SIMULATION RESULTS
This section is composed of four parts. The subsection V-A
provides the comparison of complexity for the PGS, ordering
PGS and GS precoders. In the subsection V-B, the number
of required calculations in order to obtain final calculated
symbol is presented. This comparison is useful to verify
the efficiency for parallel operation. The subsection V-C
shows the performance comparison of BER for the pro-
posed and conventional schemes. In the subsetction V-D, the
comprehensive analysis is given.

A. COMPARISON OF COMPLEXITY
This subsection shows comparison for multiplication com-
plexity for the PGS, ordering PGS and GS precoders. It is
assumed that the one complex multiplication needs four real
multiplications in this subsection.

The step that the grammatrix is divided into multiple small
square blocks does not use multiplication operation. There-
fore, the complexity for the PGS precoder is only caused by
calculation of precoded signal. And the processes that the
gram matrix is obtained and the lastly estimated signal is
multiplied by HH are equally involved in the PGS, ordering
PGS and GS precoders. Thus, complexity for multiplication
that is caused by these processes is not considered in this
subsection. On the other hand, since the ordering process
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TABLE 1. The Comparison for Computational Complexity.

requires additional multiplication operation in order to obtain
the factor vector for channel condition in Algorithm 1-line
(5), the complexity for ordering PGS is higher than the com-
plexity for the PGS andGS precoders. In more detail, the total
complexity for the ZF, PGS, ordering PGS and GS precoders
is represented in Table 1.

According to Table 1, the highest order of total complexity
for the ZF precoder is K to the power of three and the highest
order of total complexity for other precoders is the square to
K . Therefore, the complexity for ZF precoder exponentially
increases than approximate matrix inversion methods when
the number of UEs is large. The GS and PGS precoders have
same complexity for multiplication caused by (13) and (23),
respectively. Also, because the ordering process of ordering
PGS precoder utilizes absolute values, the ordering PGS
precoder requires additional multiplication. Consequentially,
total complexity for the PGS precoder is same as total com-
plexity for GS precoder and total complexity for the order-
ing PGS precoder slightly increases compared to the other
precoders.

B. COMPARISON FOR EFFICIENCY OF PARALLEL
OPERATION
The number of required calculations in order to obtain final
estimated symbol for the ordering PGS, PGS and GS pre-
coders is presented in this subsection. This comparison is
useful in order to identify efficiency for the parallel imple-
mentation of each precoder. It is assumed that the one cal-
culation can obtain multiple estimated symbols. Also, since
the feedback symbols are used to estimate another symbol,
the feedback symbols must be estimated previously. In other
words, the symbol can be calculated in present step when
all feedback symbols used to estimate present symbol are
obtained. Therefore, the precoder which needs the low num-
ber of required calculations has high efficiency for parallel
operation. In more detail, the number of required calculations
in order to obtain final estimated symbol for each precoder is
represented in Table 2.
According to Table 2, the total number of required

calculations for the PGS and ordering PGS precoders
reduces as N increases. Also, the gap between the GS
precoder and proposed schemes grows by increasing num-
ber of iterations. These advantages mean that the PGS and
ordering PGS precoders are efficient in terms of parallel
implementation.

TABLE 2. The Comparison for the Number of Required Calculations.

TABLE 3. The Simulation Parameters.

FIGURE 5. The BER comparison when BS has 100 transmit antennas and
the number of UEs is 12 with i = 2.

C. COMPARISON OF BER
This subsection provides the comparisons of BER perfor-
mance for the ZF, GS and proposed schemes. The simulation
parameters are represented in Table 3. Also, it is assumed that
BS can obtain perfect CSI for all UEs.

The Fig. 5 and Fig. 6 show the comparison for BER perfor-
mance when BS has 100 transmit antennas and the number of
UEs is 12. And the Fig. 7 and Fig. 8 show the comparison for
BER performance when BS has 140 transmit antennas and
the number of UEs is 12. Also, the number of iterations is
2 in Fig. 5 and Fig. 7 and 3 in Fig. 6 and Fig. 8. Because
the ZF precoder provides the optimal performance in massive
MIMO, the BER performance for the ZF precoder is always
higher than other precoders in all comparisons for BER.

Since the PGS precoder uses the lower number of feed-
back symbols than GS precoder, the BER performance of all
cases for PGS precoder is degraded than the GS precoder.
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FIGURE 6. The BER comparison when BS has 100 transmit antennas and
the number of UEs is 12 with i = 3.

FIGURE 7. The BER comparison when BS has 140 transmit antennas and
the number of UEs is 12 with i = 2.

Also, the BER performance for PGS precoder reduces as N
increases. This result is caused by the decreased number of
feedback symbols when N is large.

According to Fig. 5, in contrast, although the ordering PGS
precoder utilizes fewer feedback symbols in order to esti-
mate the precoding symbol like PGS precoder, the ordering
PGS precoder provides higher BER performance than the GS
precoder by rearranging gram matrix. This gap between the
ordering PGS precoder and GS precoder increases when N is
small and SNR is high.

According to Fig. 6, since the number of iterations grows,
the BERperformance for all precoders except for ZF precoder
is improved. Also, the BER performance for the ordering PGS
precoder is always high compared with the PGS precoder
when both precoders have same N . Though the ordering
PGS precoder obtains higher BER performance than the GS
precoder when gram matrix is divided into 2 × 2, the BER
performance for the ordering PGS precoder is degraded com-
pared with the GS precoder in other cases (3× 3 and 4× 4).

FIGURE 8. The BER comparison when BS has 140 transmit antennas and
the number of UEs is 12 with i = 3.

Because the ordering method only provides lower gain for
convergence rate than the way that the feedback symbols
increase by growing N (in Fig. 4), the ordering PGS precoder
gains the lower benefit by increasing the number of iterations
i than the way that uses more feedback symbols.

The channel of Fig. 7 and Fig. 8 has the larger number
of transmit antennas per UE than the channel for Fig. 5
and Fig. 6. Therefore, in Fig. 7 and Fig. 8, the channel has
favorable condition than the channel for Fig. 5 and Fig. 6.
Due to these properties, performance for all precoders is
improved.

According to Fig. 7, the ordering PGS precoder provides
improved BER performance than the GS precoder for the
same reason as Fig. 5. Also, the gap between both precoders
is large when N is small and SNR is high.
In Fig. 8, all preocders have same BER performance. This

improvement for BER performance is caused by growth for
the number of iterations and transmit antennas per UE. In
other words, the PGS precoder gains BER performance same
as the GS precoder with decrease of the number of required
calculations when the wireless systems have favorable chan-
nel and the precoder can execute multiple iterations. In con-
trast, in this case, the ordering PGS precoder does not obtain
any other benefits compared with the PGS precoder. Even
if the ordering PGS precoder provides small gain for BER
performance, the additional processes, such as rearranging
gram matrix, are inefficient against benefit for performance.

D. COMPREHENSIVE ANALYSIS
This subsection provides comprehensive results and analysis
in order to provide usefulness for proposed schemes in accor-
dance with situation. Table 4 shows rate of change for the
complexity of the proposed schemes compared with the GS
precoder when BS has 140 transmit antennas and the number
of UEs is 12 with i = 2. Also, Table 4 presents the number
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TABLE 4. The Maximum Difference for the BER Gain, the Rate of Change
for Complexity Compared With the GS Precoder and the Number of
Calculations.

of required calculations for proposed schemes and the max-
imum difference for the BER gain between the proposed
schemes and the GS precoder. In this case, the number of
calculations for the GS precoder is 24.

According to Table 4, the BER gain of PGS precoder
decreases as the N is large. In addition, the PGS precoder has
always lower BER gain than the GS precoder. Also, the gap
between the PGS and GS precoders increases when the SNR
is large in Fig. 5, Fig. 6, Fig. 7 and Fig. 8. On the other hand,
the PGS precoder reduces required time for obtaining the
precoded signal by 50% in (2× 2), 67% in (3× 3) and 75%
in (4 × 4), respectively, without any additional complexity.
When the SNR is low and the iteration number i is large, since
the GS, PGS and ordering PGS precoders provide similar
BER performance, the PGS precoder that has large N is more
efficient in terms of required time.

Like the PGS precoder, the BER gain of ordering PGS
precoder decreases as the N is large. Also, the number of
calculations for the ordering PGS precoder is same as the
PGS precoder. On the other hand, the ordering PGS precoder
obtains more BER gain compared with the GS precoder as the
N decreases. Due to the method for rearranging gram matrix
in specific order, BER performance is improved. Therefore,
the ordering PGS precoder has additional complexity. In
Table 4, the complexity of all cases for ordering PGS precoder
is increased by 50%. When the SNR is large and the iteration
number i is small, since the ordering PGS precoder pro-
vides improved BER performance than other precoders and
decreased time for obtaining the precoded signal, the ordering
PGS precoder is efficient.

VI. CONCLUSION
In this article, in order to mitigate the problem of parallel
operation for the GS precoder, the PGS is proposed by mod-
ifying the structure for feedback matrix. The PGS precoder
reduces the number of required calculations in order to obtain
final estimated symbol and provides same total complex-
ity for the GS precoder. However, since the PGS precoder
divides the grammatrix of channel into small blocks, the PGS
precoder utilizes the fewer number of feedback symbols.
Therefore, the convergence rate and BER performance for the
PGS precoder are degraded compared with the GS precoder.

Thus, the ordering PGS precoder is additionally proposed
in order to compensate degradation for performance by

rearranging the gram matrix. Although the ordering PGS
precoder obtains only small gain of convergence rate and
complexity for the ordering PGS precoder slightly increases,
the degradation for the PGS precoder is mitigated by allo-
cating more feedback symbols when the UE has unfavorable
channel condition. Therefore, the simulation results show
that the ordering PGS precoder provides the improved BER
performance than GS precoder. Consequently, the ordering
PGS precoder provides efficiency for parallel operation and
enhanced performance in massive MIMO.
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