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ABSTRACT In this study, the Intelligent Infectious Diseases Algorithm (IIDA) has been developed to locate
the sources of infection and survival rate of coronavirus disease 2019 (COVID-19), in order to propose health
care routes for population affected by COVID-19. The main goal of this computational algorithm is to reduce
the spread of the virus and decrease the number of infected people. To do so, health care routes are generated
according to the priority of certain population groups. The algorithm was applied to New York state data.
Based on infection rates and reported deaths, hot spots were determined by applying the kernel density
estimation (KDE) to the groups that have been previously obtained using a clustering algorithm together with
the elbow method. For each cluster, the survival rate —the key information to prioritize medical care— was
determined using the proportional hazards model. Finally, ant colony optimization (ACO) and the traveling
salesman problem (TSP) optimization algorithms were applied to identify the optimal route to the closest
hospital. The results obtained efficiently covered the points with the highest concentration of COVID-19
cases. In this way, its spread can be prevented and health resources optimized.

INDEX TERMS Clustering, computational intelligence, coronavirus disease 2019 (COVID-19), kernel
density estimation (KDE), medical care routing, optimization.

I. INTRODUCTION

The spread of an infectious disease is a major health problem
for citizens worldwide. Identifying the sources of infection is
key to stopping a pandemic. It is necessary to act quickly and
limit the geographical areas of disease exposure. In Novem-
ber and December 2019, the highly contagious disease known
as coronavirus disease 2019 (COVID-19) spread through
Wuhan, China. Since then, it has spread to more than 6 million
people and 188 countries around the world [1]. Coronaviruses
are an extensive family of viruses that can cause disease in
both animals and humans. In humans, some coronaviruses
are known to cause respiratory infections that can range from
the common cold to more serious illnesses, such as Middle
East Respiratory Syndrome and Severe Acute Respiratory
Syndrome (SARS) [2]. In the case of COVID-19, its rapid
expansion has caused many infected people in many countries
due to the lack of adequate sanitary resources.

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

In order to spatially limit the effect of a pandemic, it is
necessary to study how infectious diseases spread. The main
infection sources (hot spots) and the most vulnerable popula-
tion areas must be quickly identified. Confinement measures
at the national or regional level have proven effective, but
these have had strong social and economic impacts in these
countries. A more located confinement around infection cen-
ters or where there is a higher infection risk could avoid these
global measures that negatively affect the economic develop-
ment of these countries, particularly the more disadvantaged
ones.

The objective of this research is to develop a methodology
to first locate the regions that are the main sources of infection
or may become areas of high infection due to poor sanitary
conditions, lack of development, etc. These would allow deci-
sion makers to confine only certain sectors of the population
that are geographically located at specific areas and thus,
to provide the necessary resources so that those areas do
not evolve into hot spots due to the lack of health care.
Health service routes can be then generated to stop the spread
of the virus to other communities. These virus propagation
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contingency studies are a priority for governments and public
health organizations to reduce or prevent the transmission of
highly contagious diseases.

In this work, an algorithm to identify the main infection
sources (hot spots) from spatial information of reported cases
of COVID-19 has been developed. Real data from the United
States from February 22 to May 31, 2020 were used. The pro-
cedure was as follows. First, the k-means clustering technique
was applied using the elbow method to estimate the number of
clusters and to group the reported cases spatially. The statis-
tical function known as kernel density estimation (KDE) was
used to determine the points with the highest concentration of
cases in each of the clusters (hot spots). The algorithm also
estimates the survival rate of each of the clusters to determine
their care priority. This analysis was performed by applying
the proportional hazards model. On the obtained way-points
points, the ant colony optimization (ACO) and the travel-
ing salesman problem (TSP) evolutionary algorithms were
applied to generated optimal routes to the closest hospital
according to the virus survival rates (epidemiological fences).

This combination of intelligent techniques, which are usu-
ally applied individually, has been proved to be efficient. For
example, in [3] partial derivative regression and nonlinear
machine learning are combined for prediction of COVID-19.
It obtains an accurate prediction for this pandemic disease in
India. The work by Zhang [4] proposes a network-perspective
optimization model across multiple social scales (e.g, access,
social unbalance, spatial unbalance and resource unbalance)
to assign antiviral drugs to the urban dispensing pharmacies in
Shangai, China. They apply clustering algorithm, optimiza-
tion and statistical models.

Our the methodology includes the selection of the most
appropriate technique for each of the algorithm’s objectives
and the analysis of the configurations that yielded the best
results. The generated routes can allow for surveillance and
prevention of new virus cases in certain spatial regions. This
will facilitate the optimization of both mobility resources
(ambulances, cars, etc.) and health facilities (doctors and
medicine). In this way, the time until health care arrives is
also reduced, which can further decrease the spread of the
pandemic. The results obtained in the testing phase were
satisfactory; outbreaks of infection were detected with good
precision, and the health care routes were optimized.

To summarize, the main contribution of this research is
the use of available spatial information on the spread of
infectious diseases, such as COVID-19, to improve the care
of people affected by the virus and to prevent the spread of
any infectious disease. This is way it is possible to develop
healthcare routes to optimize hospital resources and prioritize
care in the most affected areas. This may have a direct impact
on the improvement of sanitary conditions in specific areas as
well as in sick patients’ care.

The article is structured as follows. Section 2 summarizes
related investigations. Section 3 describes the temporal space
information and attributes selection of the U.S. COVID-19
infection dataset. Section 4 presents the proposed Intelligent
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Infectious Diseases Algorithm (IIDA), and details its four
phases. In Section 5, the IIDA algorithm is applied to New
York state data, and the results are presented and discussed.
The paper ends with conclusions and suggestions for future
research.

Il. RELATED WORKS

There have been numerous studies on the spread of viruses
using simulation models that allow for predicting the evolu-
tion of the pandemic over time. However, few works have
analyzed spatial expansion. These articles have been lim-
ited to indicating the number of infections or deaths by
region without providing relevant information that could
lead to effective actions, such as local confinement or other
measures.

Among the works that have been found in the literature, the
one published by Kramer [5] detailed a method for predicting
the spread of a disease by evaluating the relative probabil-
ity of alternative epidemic pathways. This study compared
several models that defined the network space movement of
the spread of the Ebola virus epidemic in West Africa. The
proposed model applied a generalized gravity model using
distance and population density to obtain the transmission
probability between various cities.

The study conducted by Poon [6] described the implemen-
tation of an automated system to monitor and identify hot
spots of human immunodeficiency virus (HIV) transmission
in British Columbia, Canada. This system used a database
that contains more than 32 000 genotypes for almost 9000 res-
idents with HIV. The monitoring system applied clustering
of the data to extract groups of five or more individuals with
phylogenetic distances.

Gryseels [7] analyzed the spatial spread of yellow fever in
Angola and the Democratic Republic of Congo. The author
used demographics and human mobility data from Central
Africa to predict the spread of the virus. A standard logistic
model was used to determine the risk of the virus in each
of the districts of the region. The results of the proposed
model confirmed that human mobility in high-risk districts
significantly influences areas with lower risk.

Wesolowski [8] used mobile phone data to quantify sea-
sonal travel and directional asymmetries in Kenya, Namibia,
and Pakistan. The researcher developed a model of the geo-
graphic spread of various acute pathogens by applying a
time-varying hazard. Furthermore, the model prioritizes the
relative importance of routes and their variation through-
out the year. In the study by Guzzetta [9], the geographic
expansion of dengue in free urban areas was analyzed with
spatio-temporal information for Porto Alegre city, Brazil.
A Bayesian inference model was applied to geo-located
dengue cases from 2013 to 2016. The results showed trans-
mission primarily through short-distance human movement,
with some limited contribution from long-distance move-
ments within the city.

Li [10] studied the spatial and temporal characteristics of
human H7N9 virus infections in China over a 4-year period.
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TABLE 1. Comparison of the Methodologies Between Related Works.

Research Data Model Methodologies
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Studies Year  Dataset Name < v K K 1 un Q0 K
Kramer [5] 2016  Dryad v v v v v - v -
Poon [6] 2016  HIV genotype v v - v - v oo
Sung [17] 2016  EMS data v v - - v - -
Gryseels [7] 2017  GenBank v v o- - Ve v -
Wesolowski [8] 2017  GISDiva v v v v v v - -
Guzzetta [9] 2018 Dengue Transmission v v v - v - v -
Ray [13] 2018  Influenza v - v o vovo- - -
Li[10] 2019  A(H7N9) v v v - v - v -
Nandana [14] 2019  Delhi-Dengue v v v - v - v -
Grabowski [11] 2020 RCCS v v - - v - - -
Nelli [12] 2020  Malaria v v v v v - - -
Kang [15] 2020  Covid-19 China v o vovoo- v - - -
d’Onofrio [16] 2020 - v o vovoo- v o voo- -
Guevara 2020 Covid-19 NY, USA v v v - v - v v

The temporal analysis proved that this virus shows a higher
activity at the beginning of the year and then decreases. The
space study concluded that the eastern parts of China were
more affected initially, and then the virus spread to coastal
areas and finally to inland cities in a short period of time.

Migration patterns and their relationship to HIV in 38 com-
munities in Rakai, Uganda were the basis for the study by
Grabowski [11]. The researcher used a dataset of 22 000 peo-
ple with a known HIV status and with a virus prevalence of
9-43%. Migrants moving from a geographical position with
a low rate of the disease were found to move to hot spots that
had a higher HIV prevalence. However, it was the emigration
of people to outside the hot spots that facilitated the geograph-
ical spread of the virus. Cumulative distribution functions,
medians, and interquartile ranges were applied to obtain
the distances traveled by migrant populations. Furthermore,
by applying Wilcoxon’s model, the researcher obtained sig-
nificantly different traveling distances and Shannon entropy
based on the geographic diversity between community types.

Nelli [12] analyzed the distribution of malaria in Burkina
Faso rural areas, which have a large at-risk population and rel-
atively low accessibility to health services such as hospitals or
clinics. This allowed for the prediction of malaria incidence
rates based on the distance from health centers. Similarly, Ray
[13] used various models to predict the spread of influenza
in the United States. In the article published by Nandana
[14], the Density-based spatial clustering of applications with
noise was applied to disease surveillance. A database of
15 000 cases from Delhi, India in 2011-2013 was used with
the aim of reducing the risk of dengue transmission.

Severe acute respiratory syndrome coronavirus 2
(SARS-COV-2) and other coronaviruses have been the focus
of more recent investigations. Kang [15] presented the spatial
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epidemic dynamics of COVID-19 in Mainland China by
applying the statistical method known as Moran’s 1. This
study analyzed spatially close cases to determine if there was
a geographical relation between virus infection points. The
spatial analysis helped to determine the behavior of infectious
disease spread.

The article published by d’Onofrio et al. [16] also focused
on the spread of an endemic infectious disease. Models
were generated that represent changes in people’s social and
mobility behavior, such as avoiding visiting areas with a
high prevalence of infection. Turing patterns were applied to
non-homogeneous SIR models with a prevalence-dependent
contact rate. These models responded to spatial variables,
mitigation conditions, etc.

Finally, some researchers have studied care routes for
populations affected by viruses. For example, Sung and Lee
[17] developed a model for the coverage of victims during
medical emergencies. This model determines the order in
which medical emergencies should be addressed and which
destination hospitals these patients should be sent to for care.

In Table 1, the data, models, and methodologies used in
different related works are presented. This summary high-
lights the current state of studies in this area. It can be seen
that, in research related to the spread of diseases using spatial
data, most of the models are developed by applying time
series. The main objective of these works is to monitor the
spread of the virus and the location of the infection sources
(high number of cases). Few of them make a prediction about
the expansion of the virus in the spatial domain. Regarding
the techniques used, statistical techniques are applied to the
analysis and processing of the data in all of the works. Many
of the studies end with this phase of study and analysis,
deducing a series of conclusions or suggestions. There are
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TABLE 2. Description of Covid-19 Dataset Variables.

Variable Data Decimal Type of in- | Example
type precision | formation
UID Integer 0 | Country 84001001
coding
iso2 Text - UsS
iso3 Text - USA
code3 Integer 0 840
FIPS Double 1 60.0
Admin2 Text - Barbour
Province_State Text - | Geographic | Alabama
location
Country_Region | Text - UsS
Lat Double 6 31.868263
Long Double 6 -85.387128
Combined_Key Text - Barbour,
Alabama,
UsS
Date Date - | Temporary 4/23/20
infor-
mation
infection
and deaths
Confirmed Integer 0 4
Deaths Integer 0 1

few articles that generate models with these data to make
predictions about the spread of infections. Rather, they apply
supervised and unsupervised machine learning techniques to
this pre-processed data. The main difference between these
studies reported in the literature and the one presented here
is that the final goal of this study is to determine care routes
for infected patients, in such a way as to optimize both care
for those infected and health resources. For this reason, evo-
lutionary techniques, specifically Ant Colony Optimization
and the Traveling Salesman Problem, are used to determine
the optimal healthcare routes, using the survival rate as an
optimization criterion.

Ill. DATASET DESCRIPTION

Two datasets were used in this study: the COVID-19
database, which determines the rates of infections and deaths
worldwide, and a list of Pulmonology and Lung surgery
hospitals of the state under study to determine care centers.

A. COVID-19 DATASET
This data repository collects information on the worldwide
spread of Covid-19, which was first identified in Wuhan,
the capital of the Hubei province of China. The dataset is
compiled by the Center for Systems Science and Engineering
at Johns Hopkins University (https://coronavirus.jhu.edu/).
This study focused on the country with the highest number
of infections (i.e., United States), from February 22 to May
31, 2020. The number of confirmed cases was 1 773 020.
The dataset contained 407 625 records and 14 attributes that
describe the country coding, geographic location of the infec-
tion, and temporal information on positive cases and deaths
caused by Covid-19, as shown in Table 2.

For this study, it was necessary to focus on a specific
geographic area, that is, a state with high infection rates
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FIGURE 1. Covid-19 virus infection density in the United States (Johns
Hopkins University).

TABLE 3. Description of New York Hospitals Dataset Variables.

Variable | Data Decimal Type of in- | Example
type precision | formation
Hospital Text - Hospital North  Shore
name name University
Hospital
Medical Text - Medical Pulmonology
specialty care area & Lung
Surgery
Score Double 1 Hospital 77.1
rating  for
human
resources
and
equipment
Latitude Double 6 Geographic 40.775685
location
Longitude | Double 6 -73.699704

within the United States. The five states with the highest
confirmed case rates (as of May 31, 2020) were New York
with 369 660, New Jersey with 159 608, Illinois with 118
917, California with 109 983, Massachusetts with 96 301, and
Pennsylvania with 75 697. The U.S. virus infection density is
shown in Fig. 1.

New York was selected because it was the state most
affected by the pandemic and has a high rate of mobility of
its inhabitants.

B. HOSPITAL DATASET

A list of hospitals in New York state with Pulmonology
and Lung surgery departments was obtained from the New
York Department of Health (https://profiles.health.ny.gov).
The dataset was comprised of 91 hospitals and their corre-
sponding medical specialty, score, and geographic location
(see Table 3).

C. FEATURES SELECTION

The most relevant features were selected from the vari-
ables presented in Tables 1 and 2. Two techniques, the
chi-squared (X?) statistical hypothesis test [18] and greedy
stepwise algorithm [19], were applied for the attributes
selection.
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The chi-squared test, defined in (1), was applied to the
Covid-19 dataset:

ko N2
XE _ Z (x; mmz) )

i—1 !

where c is the degrees of freedom, x represents the observed
values for the Covid-19 dataset, and m the expected values.
It is supposed that m observations in a random sample from
a population are classified into £ mutually exclusive classes
with respective observed numbers x; (fori = 1,2, ..., k).

A greedy stepwise algorithm was also applied to the same
set to select the most relevant features based on correlation.
The result was a percentage of each attribute based on the
information provided.

The results (in percentages) of the application of the
two feature selection methods are shown in Fig. 2
(blue = chi-squared test; red = greedy stepwise). Fig. 2a
shows that 5 out of the 14 attributes of the Covid-19 dataset
had a value greater than 0. The latitude (Lat) and longi-
tude (Long) values give the geographical location of the cases
of infection (Confirmed) and death (Death). The day (Date)
provides temporal information for analyzing the spread of the
virus. The Death value is used to determine the survival rate
in a given area. The Confirmed value determines the infection
density. Having selected New York as the state where to apply
the IIDA algorithm, the features Admin2, State, and Country
do not give any extra information.

For the New York hospitals dataset (Figure 2b), the latitude
and longitude were selected since they give the geographic
location of the health centers. The attribute score was ruled
out because in this state of emergency, all hospitals receive
cases of COVID-19 patients.

IV. INTELLIGENT INFECTIOUS DISEASES ALGORITHM
The IIDA was applied to the features selected in previ-
ous section. The vector of characteristics is defined as
d, = {cf,dt,t,lat,Jong}. The variable cf represents the number
of infected patients, dt is the number of deaths, ¢ is the day
they were reported, and lat and long represent the spatial posi-
tion where infected or deceased patients were identified. The
total number of records in New York City for March 2 to May
30, 2020 was 4340. A set of 3064 records from March 2 to
May 9, 2020 was selected for training. For testing, a set
of 1276 records from May 10 to May 31, 2020 was selected.

The IIDA algorithm was applied in four phases, which
are described in Fig. 3. Details for each phase are explained
below.

A. PHASE 1: SPATIAL GROUPING OF THE INFECTED CASES
In this phase, the main objective was to spatially group cases
of COVID-19 infection in New York state. The k-means clus-
tering algorithm, one of the most commonly used algorithms
among partitional methods, was applied [20].

The standard k-means algorithm follows an iterative
methodology. First, k points are randomly selected and used
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FIGURE 2. Feature selection with the chi-squared test (blue line) and
greedy stepwise algorithm (red line).

as initial means of k clusters. Then, each point in the dataset
is assigned to the cluster with the nearest mean. The goal is to
minimize the within-cluster sum of squares (SS,,) calculated
by

k
SSw=_ Y llda(t); — ill® 2)

i—1 d,,(t)jESi

where x represents observations, S represents clusters, and u;
is the mean of observations in cluster S;. The sum of squares
is the squared Euclidean distance; therefore, choosing the
nearest mean will generate the minimum SS,,. Once all data
points are assigned to the k clusters, the SS,, is calculated,
and the new centroids of the clusters are identified and used
as new means. The point assignment and mean update steps
repeat until the minimum SS,, is reached.
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Phase 2 applying the Kernel Density Estimation (KDE) function.

Survival rate calculation for each k cluster

Calculate the survival rate based on the deaths reported in each of the

k clusters, applying the Proportional Hazards Model.

Phase 3

Health care routes generation

Generated routes using the hot spots of each k cluster according to the
priority determined by its survival rate, applying Ant Colony
Optimization (ACO) and Travel Salesman Problem (TSP).

Phase 4

FIGURE 3. Four stages of the IIDA.

L L L
04

£
Number of Clusters

FIGURE 4. Application of the elbow method to obtain the optimum
number of clusters (k = 15).

The number of clusters k should be predefined for the
k-means algorithm; however, there are different clustering
evaluation criteria that can be used to estimate the optimum
number of clusters. In this phase, different combinations of
common cluster analysis criteria were used to determine if a
fully-automated clustering of the COVID-19 dataset was fea-
sible. Finally, the elbow method [21] was used to determine
the best partition. The elbow method computes the clustering
algorithm for different values of k. Then, for each k, it calcu-
lates the total SS,,. The representation of SS,, regarding the
number of clusters k allowed us to find the correct number of
clusters (Fig. 4).

Once the optimum number of clusters is obtained, in this
case k = 15, the k-means algorithm is applied. Fig. 5 shows
the results for New York state. Each colored circle represents
a different number of points (between bracket). The color
indicates the cluster (from k = 1 to k = 15).

After the optimal number of clusters has been identified,
it is added as an attribute, ci, to the characteristics vector,
i.e., d, = {cf,dt,t,lat,Jlong,cy }.

B. PHASE 2: INFECTION HOT SPOTS DETECTION IN EACH
k CLUSTER

The objective of this phase was to identify the hot spots in
each of the clusters generated in Phase 1. The KDE function
is a non-parametric method to estimate the probability density
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FIGURE 5. K-means clustering (k = 15) in New York state.

function of a random variable [22]. A popular version of this
type of methodology is the sample point adaptive density
estimator, defined by

o 1 & 1 & X — X;
fh(x>=r—l§Kh(x—xi>=EZK p 3)

i=

where x1, ..., x, are the bivariate coordinates of n indepen-
dent, identically distributed observations; K is the kernel (a
non-negative function); and A, a smoothing parameter called
the bandwidth, is greater than 0. A kernel with subscript # is
called the scaled kernel and defined as Kj(x) = 1 (;—i).

The KDE (3) function is applied to the latitude (lat) and
longitude (long) features of the data of each c; cluster. Fig. 6
shows the surfaces obtained with the KDE function for clus-
ters k = 1 to k = 4. The obtained hot spots Hj are shown in
Fig. 7 (orange circles).

These Hj hot spots were stored for further analysis in the
following algorithm stages.

C. PHASE 3: SURVIVAL RATE CALCULATION FOR EACH k
CLUSTER
In this phase, the survival rate of COVID-19 was determined
for each cluster generated in Phase 1. This survival rate is
important to determine the areas where medical attention and
health resources are necessary to prevent and reduce deaths.

To calculate the survival rate, the information about the
number of deaths dt of each cluster was used. The Cox
proportional hazards model (CPHM), which gives the time ¢
that elapses before a death occurs, was applied. The survival
function is denoted by S(r) = Pr(T > t), where S(¢) is
the probability that the random variable T is larger than
a specified time ¢, i.e., it represents the probability of an
individual to survive up to time ¢ [23], [24].

The individual probability of hazard function A(z) is
defined by

(1) = lim Pr(t <T+t+48|T =1) @
8—0 )

This hazard function is a measure of risk at time ¢. A larger
value means a greater risk of failure. It is composed of two
functions: a baseline hazard function Ao (¢) and a risk function
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FIGURE 6. Hot spots obtained with KDE for clusters k = 1 to k = 4.

h(dt) denoting the effects of an individual’s covariates. The
hazard function is assumed to have the form

At|dr) = ro(r)e @) )

Applying (4) and (5) to each of the k clusters, the survival
rate and its priority is determined.

If A(z|dt) < O, it is classified as a high priority area with a
high mortality rate, which requires urgent medical attention
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FIGURE 8. Hot spot priorities when applying the CPHM.

and more health resources. The mean of this value is M; ¢,
which is used to divide it into two subgroups. If A(¢|dt) <
M, -0, the area is identified as critical high priority, and label
Phcis assigned. If A(¢|dt) > M) o < 0O, the area is considered
moderate high priority, and labelled Phm. If A(¢|df) > 0, the
area is considered low priority, and label Pl is assigned, which
means that health care is not as urgent as in the other areas
but is still necessary to prevent the spread of the virus. The
priority groups are shown in Fig. 8.

Table 4 shows the results of applying CPHM with the
A(t|dt) values and the priority for each of the subgroups.
Three subgroups were obtained. The first had two hot spots
with priority Pl. For the other two subgroups, the mean of the
values with high priority was calculated as M .o = —0.4037.
With this value, a subgroup with 10 hot spots with Phm
priority and another subgroup with 3 hot spots with Phc
priority were obtained.

These results were used to generate routes for health care
according to priority.

D. PHASE 4: HEALTH CARE ROUTES GENERATION
This phase aims to identify the closest hospitals to each of the
Hj hot spots grouped according to their priority. In this way,
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TABLE 4. CPHM Results for Each k Cluster and its Priority.

k 1 2 3 4 5
A(t]dt) -0.482 | -0.686 | -0.26 -1.827 | -0.146
Priority | Phc Phe Phm Phe Phm

k 6 7 8 9 10
A(t]dt) -0.146 | -0.274 | 0.00 -0.359 | -0.237
Priority | Phm Phm Pl Phm Phm

k 11 12 13 14 15
A(t]dt) 0.00 -0.007 | -0.021 | -0.253 | -0.402
Priority | PI Phm Phm Phm Phm

TABLE 5. Closest Medical Centers According to Group Priority.

Priority | Latitude Longitude | Hospital Name

Pl 41.057717 | -74.768386 | Newton Medical Center-
New Jersey

Phm 40.764181 | -73.956225 | Memorial Sloan-Kettering
Cancer Center

Phc 40.78 -72.97729 Long Island Community
Hospital

optimal health care routes could subsequently be generated
by applying ACO and TSP techniques.

The information about the hospitals and medical centers
was determined by a vector of characteristics with the spa-
tial location of each of the m hospitals: hs,, = {lat,long}.
To determine the closest hospital to the hot spots Hy by their
priority—P1 for low, Phm for moderate high, and Phc for
critical high—the Euclidian distance between Hj and hs,, is
used, as defined by [25]

d(Hi hs) = /G =20 + Gk =3P (©)

Then, the shortest distance d(Hy,hs,,) is selected for each
subgroup, and the corresponding hospital is assigned to the
subgroup according to its priority (Table 5).

Both ACO and TSP algorithms were applied to these three
data subgroups to identify the most optimal routes for each
one (i.e., the shortest route, minimum number of iterations,
and less data).

1) APPLICATION OF ACO

The ACO algorithm performs several interactions that build
solutions through the use of heuristic information. These
algorithms use ants that collect experiences (pheromones) for
future ant populations. Pheromones represent the trail each
ant follows to find a solution (path). The ACO algorithm
applies the pheromone update rule procedure, where an ant
is a simple computational agent that interactively builds a
solution to the problem. For each interaction performed by
the algorithm, each ant moves from one status r to another
status s, obtaining a more complete intermediate solution
[26], [27]. The k™ ant from state r to state s is selected among
the unvisited states memorized in J*:

s = arg,cpemax[t(r, W>n(r, WP if(q < q0) ()

The trail level represents a posteriori indication of the
desirability of that move. Trails are usually updated when
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all ants have completed their solution. The trail is increased
or decreased if that movement was part of the good or bad
solution, respectively. The probability of the k™ ant to move
from state r to state s is
7(r,9)®n(r.s)f . k
W’W if(s e Jb )
otherwise

pr(r,s) =

where pi(r,s) is the transition probability, 7(r, u) is the
pheromone concentration between the state r and the state
w of the i population, n(r, u) is the length of the trail from
the state r and the state pu, Jf is the set of unvisited states
of the k" ant in the i population, o and g are the control
parameters, and ¢ is a uniform probability [0, 1].

The solution will improve each time the trace of the
pheromones is updated using

w(r, ) = (1= p)r(r, ) + Y Ani(r,s) ©)
k=1

where p(0 < p < 1) is the pheromone trail evaporation rate.
In (9), Ati(r, s) is the amount of pheromone trail added to
the edge (r, s) by ant i between time ¢ and ¢ 4+ At, calculated
by

g (r,s) e m
Ati(r,s) =13 L; (10)

0  otherwise

where Q is a constant parameter, and L; is the distance of the
sequence 7; toured by the ant in Az.

2) APPLICATION OF THE TSP ALGORITHM

The TSP algorithm, which determines the shortest route
between a list of cities and distances, was also applied. This
algorithm applies combinatorial optimization [28]. The TSP
can be represented by a complete directed graph G = (N, A),
where N is a set of n nodes (vertices), also called cities; A is a
setof arcs; and D = dj; is the cost (distance) matrix associated
with each arc (i, j) € A, where D can be either symmetric or
asymmetric. The main objective of TSP is to find the shortest
closed tour visiting each of the n = |N| nodes of G. The TSP
is defined by

1 if the arc(i, j) is in the tour
X = { (11)

0 otherwise

The TSP can be formulated by following the well-known
integer program formulation, where z is the objective function
that represents the total cost to be minimized:

dijij
z=miny Y (12)
i
with the following constraints:

n
injzl, i=1,23,...,n (13)
i—1
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FIGURE 9. The route obtained with the ACO algorithm for low priority
groups (PI).

n
injzl, i=1,2,3,...,n (14)
=1

xj €01, i,j=1,23,....n (15)
n
Yxy<ISi—1, 2<ISIsN-2  (16)

i,jeS
The first constraint (13) ensures that each position j is

occupied by only one city, and the second constraint (14)
guarantees that each city (node) i is assigned to exactly one
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TABLE 6. ACO Algorithm Initial Parameters Configuration.

Details Values
Ants (k) 50
Pheromone factor 1
Heuristic factor3 4
Volatility coefficient p 0.2
Pheromone amount ¢ 100
Initial concentration 7;, (0) 1
Maximum iteration I’ 100

TABLE 7. TSP Algorithm Initial Parameters Configuration.

Parameter Values
Maximum number of iteration (MaxIter) 1000
Population Size 100

position. The third constraint (15) represents the integrality
constraints of zero-one variables x; (x; > 0). The last
constraint (16) ensures that each city (node) in the final route
will be visited one time and that no sub-routes will be formed.

For the generation of the routes, the TSP algorithm is
applied to the three subgroups of data according to their
priority: P1, Phm, and Phc [29].

V. EXPERIMENT RESULTS

This section presents the results obtained with the IIDA algo-
rithm, that is, the shortest route to the closest medical center
obtained for each subgroup. The experiments were performed
using the Matlab R2019 version 5 software on a Pentium
CPU i7 (8th generation) with 32.0 GB of RAM and Win-
dows 10 64-bit operating system. For training, 3064 records
were used, and 1276 were used for testing. The data for the
tests were grouped into Test 1 (406 records from May 10 to
May 16, 2020), Test 2 (406 records from May 17 to May 23,
2020), and Test 3 (464 records from May 24 to May 31, 2020).

To ensure a fair comparison, the simulations of the ACO
and TSP route optimization algorithms have been executed
with the same input values and following the same procedure.
The input information is the three data subgroups according
to their priority (Low Priority Pl, High Moderate Priority
Phm, and Critical Priority Phc), and the location of the closest
hospital for each of the subgroups, hs,. Subsequently, the
executions have been carried out individually for each sub-
group, and the optimal routes have been obtained.

Several techniques have been used in the different phases
of the proposed algorithm. The configuration parameters of
these methods have been determined based on an analysis
of different configurations to ensure the robustness of the
proposed values. For example, the elbow method has been
applied to select the optimal number of clusters in which the
infection sites are spatially classified. A range of values from
k = 1to k = 55 has been tested, and for each of the three
data sets used, the most appropriate value has been obtained.

Additionally, several simulations were performed to deter-
mine the optimal configuration of the parameters of the ACO
and TSP algorithms. For each one of them, a range of values
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TABLE 8. ACO Algorithm Application Results.

Data k #Points BKS Maximum Minimum Average Best S.dev. PDav (%) PDbest(%) CPU Time
3064 15 18 3084 3101.72 3084 3092.83 3084 4,86 0.29 0.00 9.37
406 10 13 2299 2303.45 2299.12 2301.28  2299.12 1.13 0.1 0.01 5.99
406 9 11 1836 1840.69 1836.21 1838.45 1836.21 1.33 0.13 0.01 6.52
464 9 12 1815 1821.64 1815.09 1818.36  1815.09 1.95 0.19 0.00 7.25
TABLE 9. TSP Algorithm Application Results.
Data k #Points BKS Maximum Minimum Average Best S.dev. PDav (%) PDbest(%) CPU Time
3064 15 18 3084 3090.71 3084 3087.35 3084 1.72 0,11 0.00 9.6
406 10 13 2299 2302.45 2299.12 2300.78  2299.12 0.89 0.08 0.01 9.56
406 9 11 1836 1840.97 1836.1 1838.53 1836.1 1.56 0.14 0.01 5.16
64 9 1z 1815 1820.67 1815.02  1817.84 1815.02 .55 0.16 0.00 58
was applied to the initial parameters, and the optimal values TABLE 10. IIDA Proposed Algorithm General Results.
were identified. In the case of the ACO algorithm, values
Data Best(km) Worst(km) PDav(%) PDbest(%) CPU Time
were tested for the number of ants between.l(.) and 200, 206A 3084 T o1 .00 3386
pheromone factor o between 0.1 and 1, heuristic factor g 406 2299.12 2303.45 0.08 0.01 13.58
e . 406 1836.1 1840.97 0.13 0.01 14.83
between 2.00 and 4.00, volatility coefficient p f.rom 01 .to pra RISt T 0T 500 e5%
1.00, and pheromone amount 6 from 1 to 100. Besides, initial
concentration values from 0.1 to 1 and maximum interac-
tion 7" between 1 and 200 were e\{aluated. The.best' values best-known solution length, BKS (18).
have been selected and are shown in Table 6. Likewise, the
; : ; Best — BKS
§elected TSP algornhm configuration Pararpeters are shown PDBest(%) = ——— - 100 (18)
in Table 7. The maximum number of iterations MaxIter has BKS

been evaluated between 1 and 2000, and the initial popSize
population from 1 to 500. For the execution of the simulations
of the ACO and TSP algorithms, the initial configurations for
each algorithm have been applied, as shown in Table 6 for
ACO and Table 7 for TSP.

Fig. 9 shows the routes for low priority groups. The route
optimization algorithm (ACO or TSP) that gave the best result
in terms of time and route was selected in each case.

In Fig. 9a, two hot spots (orange circles) with low priority
(P1) (high survival rate) can be seen using the training set.
The route is a triangle with a shaded area, which connects
the closest hospital (green hospital icon) to the two hot spots.
Fig. 9b shows the only hot spot of the Test 1 set that has low
priority (orange circle) and the route to the closest hospital
(green hospital icon). Fig. 9c shows the only hot spot that has
low priority for the Test 3 dataset (orange circle) and the route
to the hospital (green hospital icon). The Test 2 dataset did not
have any hot spots with low priority PI.

The simulation results are presented in Tables 8, 9, and 10:
the column labeled BKS shows the length of the best-known
solution obtained with the TSP and ACO algorithms. The col-
umn labeled Best shows the length of the best solution found
for each algorithm. The column PDAv (%) is the percentage
deviation of the average solution length over the best-known
solution length, BKS (17).

Average — BKS

PDAV(%) = kS

100 a7

PDBest (%) calculates the percentage deviation of the
length of the best solution for each algorithm, Best, over the
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The average of the results obtained in 10 runs for each
data set with the ACO and the TSP algorithms are presented
in Table 8 and Table 9, respectively. The final results of
the routes obtained with the ITAD algorithm are shown in
Table 10.

VI. DISCUSSION

From the results shown in Table 10, it can be concluded
that the phases of the algorithm are well designed when the
objective is to determine optimal healthcare routes based on
spatial hotspots of infected people. Both the ACO and TSP
algorithms yield very good results (Tables 8 and 9). In fact,
the PDAv values are between 0.10% and 0.29% for ACO and
between 0.08% and 0.16% for TSP. The percentage deviation
of the length for the best solution for both, ACO and TSP,
is very close to 0.00%, which demonstrates the efficiency of
these algorithms in this application. These values mean that
the deviation from the best route solution is very small in any
case. On the other hand, the PDBest(%) reaches also very
good results, up to 0.01%.

In Tables 8 and 9, the number of points (that is, the
way-points of the route) has a direct relationship with PDBest
(%). The greater the number of spatial points to visit, the
better the route solution obtained with both, ACO and TSP
algorithms and not necessarily the larger one. In addition,
standard deviation is very low (Table 8 and 9), which indi-
cates that most of the results obtained tend to be grouped close
to their mean, thus giving an optimal solution.

The length of the route is different for each data sets, even if
they have the same number of infection records. For example,
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dataset Test 2 and dataset Test 3 have 406 infections records,
and the routes are 2299.12 km 1836.10 km respectively,
which agrees with the number of way-points.

Regarding the efficiency of the IIDA algorithm, the max-
imum PDAv is 0.16% and the maximum PDBest (%) is
0.01%. This shows that the generated routes are very effi-
cient, although the computational time is high, between
16.25 seconds and 23.86 seconds.

Some similar proposals found in the literature are the
research of Nellier al. (2020) [12] and Kang et al. (2020)
[15]. In Nelli (2020), a model is presented to predict the
probability of Malaria infection in eight rural clinics, based on
the road travel distances from the surrounding villages (Burk-
ina Faso). The results obtained for infection prediction are
good, reaching up to 100% accuracy. Kang’s work explores
the Covid-19 spatial epidemic dynamics in mainland China,
applying Moran’s I spatial statistic. Very good results are
obtained with regard to identifying infection areas and their
spatial association.

The proposed algorithm uses information that allows
routes to be prioritized. It calculates the mortality rate, which
makes it possible to identify sectors with the greatest need for
health resources. This can be an advantage when monitoring
virus spread compared to the other research mentioned above.

VIl. CONCLUSION AND FUTURE RESEARCH

In this work, the Intelligent Infectious Disease Algorithm
IIDA has been developed to identify the main infection
sources (hot spots) of COVID-19 by applying k-means clus-
tering (with the elbow method) and the statistical function
KDE. The algorithm estimates the survival rate of each of the
hot spots by applying the proportional hazards model. With
this survival rate, a priority is assigned for the generation of
routes to the closest medical center. These heath care routes
are generated by applying the evolutionary ACO and TSP
algorithms. It has been applied to New York state.

The proposed IIDA algorithm can improve the health care
response time to a pandemic like Covid-19 by determining
areas with higher infection rates and mortality. The IIDA
performs a spatial distribution of the infection sources from
the analyzed information, which allows us to determine the
optimal routes for medical care within a reasonable process-
ing time.

The number of clusters determined by the elbow method
is relevant since it represents the number of hotspots and
thus the way points of the healthcare routes. For this reason,
the number of clusters can be fine-tuned to improve spatial
coverage in small regions with isolated infections.

Although the routes obtained using the ACO algorithm are
good, the processing time of the entire algorithm is high for
its execution in real time. A possible extension of the work
would be to optimize the code and its implementation in
distributed systems to reduce computational time.

As future research, it is proposed to incorporate temporary
information on virus spread. Spread models could also be
completed with other types of information related to space,
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such as the social and cultural environment of the region.
Regarding other methodologies, beyond using one technique
or another, the Moran’s I method could be applied to deter-
mine the spatial autocorrelation between different regions
with infected people.

During this study, the importance of including the infection
rate and the incubation time to determine time periods for the
analysis of disease spread became evident.
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