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ABSTRACT This work focuses on the issue of static output feedback control for Takagi-Sugeno (T-S) fuzzy
systems in the discrete-time domain. Both the fading channel and actuator faults are determined by a set
of stochastic variables. Specifically, an actuator fault is described by a nonhomogeneous Markov chain,
and fading channels are characterized by the l-order Rician fading model. Using the Lyapunov-Krasovskii
function, sufficient conditions are established, and controller gains are developed. Finally, the practical mass-
spring-damping model is expressed to verify the practicability of the theoretical results.

INDEX TERMS T-S fuzzy system, fading channel, static output feedback control, actuator fault.

I. INTRODUCTION
In recent decades, comprehensive physical applications have
encouraged an increase in the amount of attention given to
nonlinear systems. Compared with linear systems, nonlinear
systems are generally difficult to explore. To address this,
many efficient methodologies have been proposed. Among
them, the T-S fuzzy model has been extensively recognized.
Because of its influential approximation capacity, the T-S
fuzzy model has been used to approximate many complex
nonlinear plants [1]–[5]. In fact, in addition to this approach,
nonlinear plants can be divided into finite weighted sums of
linear subsystems. Note that by adopting the T-S fuzzy frame-
work, the sophisticated theories and approaches for linear
systems can be extended to the analysis of nonlinear systems.
In addition, by means of parallel distributed compensation
(PDC), the controllers/filters can also be solved. In light of
the aforementioned discussion, the analysis and synthesis of
T-S fuzzy systems have attracted much attention [6]–[10].

In networked control systems (NCSs), control techniques
have been widely studied and investigated. As an efficient
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tool in NCSs, the state feedback control (SFC) strategy
plays a significant role in modeling NCSs. In this strategy,
the states are required to be constantly accessible. However,
for uncertain/unknown state conditions, SFC seems to be
unrealistic. To tackle this situation, a static output feedback
control (SOFC) scheme has been developed for NCSs [11]–
[18]. Compared with other control laws, the SOFC has been
widely applied due to its unique structure. In light of the
above observations, applying SOFCs for T-S fuzzy systems
is more realistic, which partly inspires this work.

In addition, the signals are transmitted via shared com-
munication channels, which may result in multiple path
fading and other unanticipate factors, such as fading chan-
nel (FC), data collision, dropout loss, et al. Among them,
the FC is more general, where the received signals are mod-
eled by various paths with different probability distributions.
In fact, because of its probabilistic sequences, FC models
are more general than unideal measurements governed by
Bernoulli sequences. In this regard, FCs abate the perfor-
mance and quality of plants. To eliminate the drawbacks, fil-
tering/control issues for NCSs with FCs have been addressed
[19]–[23]. However, much attention has been devoted to nor-
mal channels, and the reported results offer few insights into
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SOFCs for fuzzy systems. Following this trend, this study
seeks to solve this problem.

Based on the above observations, we aim to establish an
SOFC for T-S fuzzy systemswith FCs and actuator faults. The
major contribution of this work is as follows. (1) To character-
ize the property of incomplete measurements, the phenomena
of FCs are covered, all of which are obeyed by probabilistic
variables. By referring to a Rician fading model, the miss-
ing measurement can be settled. (2) The actuator faults are
described by a nonhomogeneous Markov chain, where time-
varying transition probabilities are polytope structured. (3)
To better model reality, randomly occurring uncertainties are
revealed. (4) By establishing a Lyapunov-Krasovskii func-
tion, a mode-dependent SOFC design is formed.
Notations: In this research, Rn symbolizes the n-

dimensional Euclidean. E {·} indicates the expectation oper-
ator. λmax(·) and λmin(·) are, respectively represent the max-
imum and minimum eigenvalue. diag{· · · } means the block
diagonal matrix. Sym{Z } indicates Z> + Z . L2[0,∞) means
the square integrable space on [0,∞).

II. PRELIMINARY
Consider the fuzzy systems depicted by IF-THEN rules:

Rule p: IF ζ1(k) is Mp1, and · · · and ζr (k) is Mpr , Then
δ(k + 1) = (Ap + α(k)1Ap)δ(k)+ Bpu(k)+ Dpω(k),
y(k) = Cpδ(k),
z(k) = Fpδ(k)+ Hpu(k),

(1)

where Mpq(p = 1, 2, · · · , t, q = 1, 2, · · · , r) are fuzzy
sets, r is the number of ‘‘IF-THEN’’ rules. ζ (k) =

[ζ1(k), ζ2(k), · · · , ζr (k)] indicates the premise variable.
δ(k) ∈ Rny , y(k) ∈ Rny , z(k) ∈ Rnz , u(k) ∈ Rnu are, respec-
tively, the state vector, measured output, controlled output
signal and control input. ω(k) ∈ Rnw means the disturbance
input that residing in l2[0,∞). Ap, Bp, Cp, Dp, Fp and Hp are
known matrices with proper dimensions. The matrix 1Ap is
characterized by

1Ap = Mp1p(k)Np, (2)

where Mp and Np are known matrices. 1p(k) is an unknown
matrix with the form of1>p (k)1p(k) ≤ I . The stochastic vari-
able (SV) α(k) is utilized to depict the parameter uncertainties
in a probabilistic way. Here, for SV α(k), it is obvious that

Pr{α(k) = 1} = α, Pr{α(k) = 0} = 1− α,

where α ∈ [0, 1], with mathematical expectation E {α(k) −
α} = 0 and E {(α(k)− α)2} = α(1− α) = α∗.
Remark 1: Most of the literature concerns parame-

ter uncertainty with time-varying scalar structure (TVSS),
i.e., 1Ap(k) = π (k). Although an easier SOFC design can
be acquired for system (1), the addressed results may be
conservative due to neglect of the cross term. In this work,
probabilistic parameter uncertainty is applied. In contrast to
TVSS, norm-bounded uncertainty achieves less conservative
results.

Inspired by [11], [12], the T-S fuzzy system (1) can be
reestablished as:

δ(k + 1) =
t∑

p=1

h̄p(ζ (k))[(Ap + α(k)1Ap)δ(k)

+Bpu(k)+ Dpω(k)],

y(k) =
t∑

p=1

h̄p(ζ (k))Cpδ(k),

z(k) =
t∑

p=1

h̄p(ζ (k))(Fpδ(k)+ Hpu(k)),

(3)

where µp(ζ (k)) =
∏r

q=1Mpq(ζq(k)) ≥ 0, h̄(ζ (k)) =
µp(ζ (k))∑t
q=1 µq(ζ (k))

> 0,
∑t

p=1 h̄p(ζ (k)) = 1, and Mpq(ζq(k))

symbolizes the grade of membership of ζq(k) in set Mpq.
For simplification, one denotes

Ah̄ =
t∑

p=1

h̄p(ζ (k))Ap, Bh̄ =
t∑

p=1

h̄p(ζ (k))Bp,

Ch̄ =
t∑

p=1

h̄p(ζ (k))Cp, Dh̄ =
t∑

p=1

h̄p(ζ (k))Dp,

Fh̄ =
t∑

p=1

h̄p(ζ (k))Fp, Hh̄ =
t∑

p=1

h̄p(ζ (k))Hp.

Accordingly, system (3) can be rewritten as
δ(k + 1) = (Ah̄ + α(k)1Ah̄)δ(k)

+Bh̄u(k)+ Dh̄ω(k),
y(k) = Ch̄δ(k),
z(k) = Fh̄δ(k)+ Hh̄u(k).

(4)

In limited source circumstances, all signals are transformed
through a shared communication network. The phenomena
of fading channels (FCs) cannot be neglected in many cir-
cumstances, which may lead to different transmission rates
among channels. To reveal the different capacities of a chan-
nel, the lth-order Rice FC model [20]–[23] is expressed as
follows:

y(k) =
lk∑
s=0

βs(k)y(k − s)+ ν(k), (5)

where lk = min{l, k}, ν(k) is an external disturbance, and
βs(k) symbolize the channel coefficients that are mutually
independent SVs satisfying

Pr{βs(k) = 1} = βs, Pr{βs(k) = 0} = 1− βs.

Note that βs(k) ∈ [0, 1] and variances E {(βs(k)− βs)2} =
β∗s .
Remark 2: To describe the phenomena of FCs, induced

delays, and data losses in an unreliable network, a lth-
order Rician fading model is applied. Different from the
conventional single Gauss distribution, mutually independent
coefficients that have values in the set [0, 1] are addressed.
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In the following, a more general actuator fault (AA) with
the property of time-varying is developed, it yields

u(k) = 8(ϑk )u(k), (6)

where 8(ϑk ) = diag{φ1(ϑt ), φ2(ϑt ), · · · , φnu (ϑt )} and
φl(ϑt ) ∈ [0, 1], (l = 1, 2, · · · , nn). {ϑk , k ≥ 0} ∈ M =

{1, 2, · · · ,M} is recognized as a discrete-time nonhomoge-
neousMarkov chain (MC)with the transition probability (TP)
matrix 5(k) = [$µν]:

Pr{ϑk+1 = ν | ϑk = µ} = $µν(k), ∀µ, ν ∈M,

where $µν(k) is the time-varying TP, and $µν(k) ≥ 0,∑
ν∈M$µν(k) = 1. To characterize the TP matrix 5(k)

form of polytope structure:

5(k) = 5(ϕn(k)) =
N∑
n=1

ϕn(k)5n, (7)

where ϕn(k) ≥ 0 and
∑N

n=1 ϕ
n(k) = 1. For n = 1, 2, · · · ,N

with N symbolizes the vertices number of 5(k), 5n are the
vertex matrices. For ϑk = µ ∈M, the systemAA coefficient
matrix of the µ-th mode is symbolized by 8µ.
Specifically, φl(ϑk ) = 0, φl(ϑk ) ∈ (0, 1) and φl(ϑk ) = 1,

respectively, imply the fault, partial fault, and no fault.
In light of system (1), a fuzzy-based static output feedback

controller (SOFC) is constructed.
Rule p: IF ζ1(k) is Mp1, and · · · and ζr (k) is Mpr , Then

u(k) = Kpy(k), (8)

where Kp is the corresponding controller gain to be solved.
By resorting to T-S fuzzy strategies [3-6], (8) implies

u(k) = Kh̄y(k). (9)

where Kh̄ =
∑t

p=1 h̄p(ζ (k))Kp.
In terms of (4)-(6) and (9), we obtain the closed-loop fuzzy

system as below:

δ(k + 1) = (Ah̄ + α1Ah̄ + β0Bh̄8µKh̄Ch̄)δ(k)
+Dh̄ω(k)+ α̃(k)1Ah̄δ(k)
+ β̃0(k)Bh̄8µKh̄Ch̄δ(k)

+

lk∑
s=1

βsBh̄8µKh̄Ch̄δ(k − s)

+

lk∑
s=1

β̃s(k)Bh̄8µKh̄Ch̄δ(k − s)z

+Bh̄8µKh̄ν(k),
z(k) = (Fh̄ + β0Hh̄8µKh̄Ch̄)δ(k)

+ β̃0(k)Hh̄8µKh̄Ch̄δ(k)
+Hh̄8µKh̄ν(k)

+

lk∑
s=1

βsHh̄8µKh̄Ch̄δ(k − s)

+

lk∑
s=1

β̃s(k)Hh̄8µKh̄Ch̄δ(k − s),

(10)

where α̃(k) = α(k)− α, β̃(k) = β(k)− β.

Remark 3: In reality, one may experience bias faults, espe-
cially for physical plants with multiple actuators. Recently,
mode-independent AA has been fully studied in To remove
the mode-independent restriction and reflect the stochastic
occurrence of AA, a homogeneous MC is utilized in [21].
In fact, it is unrealistic that the TP of a homogeneous MC
remains time invariant. To eliminate this drawback, a non-
homogeneous MC accounting for the characterization of the
time-varying TP is adopted.

Before proceeding further, the necessary definition and
lemmas are introduced.
Definition 1 [20]: The system (10) with ω(k) = 0 and

ν(k) = 0 is said to be stochastic stable (SS), if for any (δ0, ϑ0),
such that

E

{
∞∑
k=0

‖ δ(k) ‖2| δ0, ϑ0

}
<∞.

The object of this work is to explore theH∞ fuzzy control
problem for system (10) such that the following conditions
satisfied:

(i) System (10) is SS in mean square;
(ii) Under zero initial condition and a performance level γ ,

the controlled output z(k) satisfies
∞∑
k=0

E
{
‖ δ(k) ‖2

}
< γ 2

∞∑
k=0

E
{
‖ %(k) ‖2

}
.

Lemma 1 [16]: For compatible matrices X = X >, Y
and Z , U satisfying U >U ≤ I , then X + Y U Z +
Z >U >Y > < 0, if and only if there exists ε > 0 such that
X + ε−1Y Y −1 + µZ >Z < 0.
Lemma 2 [18]: If there exist a scalar ε and matrices X ,

Y , Z and U satisfying[
X Z + εU >

∗ −εSym{Y }

]
< 0,

such that

X +Z Y −1U +U >Y −>Z > < 0.

In what follows, sufficient conditions are attained such that
the system (10) is SS in mean square.

III. MAIN RESULTS
Theorem 1: For given scalars α, α∗, βs and β∗s (s =
1, 2, · · · , lk ), if there exists matrices Pnµ > 0 and Qs > 0
(s = 1, 2, · · · , lk ) such that

0ppnlµ < 0, (1 ≤ p ≤ t) (11)

0pqnlµ + 0qpnlµ < 0, (1 ≤ p < q ≤ t) (12)

where

0pqnlµ =

01
nµ 02

pqµ 03
pqµ

∗ −(Pnlµ)−1 0
∗ ∗ −I

 ,
I = diag{I , I ,I ⊗ I }, I = diag{I , I , · · · , I︸ ︷︷ ︸

lk

},

200716 VOLUME 8, 2020



Y. Chen et al.: SOFC for Fuzzy Systems With Stochastic FC and Actuator Faults

01
nµ = diag

−Pnµ +
lk∑
j=1

Qj, −Q, −γ 2I , −γ 2I

 ,
02
pqµ =

[
61>
pqµ 6

2>
pqµ 6

3>
pqµ 6

4>
pqµ

]
,

03
pqµ =

[
65>
pqµ 6

6>
pqµ 6

7>
pqµ

]
,

6(1)
pqµ =

[
Ap + α1Ap + β0Bp8µKqCp 9 ⊗ Bp8µKqCp

Dp Bp8µKq
]
, 6(2)

pqµ =

[√
α∗1Ap 0 0 0

]
,

6(3)
pqµ =

[√
β∗0Bp8µKqCp 0 0 0

]
, 6(4)

pqµ=
[
0 ϒ ⊗ Bp8µ

KqCp 0 0
]
, Q = diag{Q1,Q2, · · · ,Qlk },

6(5)
pqµ =

[
Fp + β0Hp8µKqCp 9 ⊗ Hp8µKqCp 0

Hp8µKq
]
, 6(6)

pqµ =

[√
β∗0Hp8µKqCp 0 0 0

]
,

6(7)
pqµ =

[
0 ϒ ⊗ Hp8µKqCp 0 0

]
,

9 =
[
β1I β2I · · · β lk I

]
,

ϒ = diag{
√
β∗1 I ,

√
β∗2 I , · · · ,

√
β∗lk I },

Pnlµ = diag

{∑
ν∈M

$ n
µνP

l
ν,
∑
ν∈M

$ n
µνP

l
ν,

∑
ν∈M

$ n
µνP

l
ν,I ⊗

∑
ν∈M

$ n
µνP

l
ν

}
.

Proof: In consideration of (11)-(12), it is clear that

0h̄nlµ =

t∑
p=1

h̄p(ζ (k))
t∑

q=1

h̄q(ζ (k))0ppnlµ

=

t∑
p=1

h̄p(ζ (k))0ppnlµ +
t−1∑
p=1

h̄p(ζ (k))

×

t∑
q=p+1

h̄q(ζ (k))(0ijnlµ + 0jinlµ) < 0, (13)

where

0h̄nlµ =

01
nµ 02

h̄µ 03
h̄µ

∗ −(Pnlµ)−1 0
∗ ∗ −I

 ,
02
h̄µ =

[
61>
h̄µ 6

2>
h̄µ 6

3>
h̄µ 6

4>
h̄µ

]
, 03

h̄µ=

[
65>
h̄µ 6

6>
h̄µ 6

7>
h̄µ

]
,

6
(1)
h̄µ =

[
Ah̄ + α1Ah̄ + β0Bh̄8µKh̄Ch̄ 9 ⊗ Bh̄8µKh̄Ch̄

Dh̄ Bh̄8µKh̄
]
, 6

(2)
h̄µ =

[√
α∗1Ah̄ 0 0 0

]
,

6
(3)
h̄µ =

[√
β∗0Bh̄8µKh̄Ch̄ 0 0 0

]
, 6

(4)
h̄µ =

[
0 ϒ ⊗ Bh̄8µ

×Kh̄Ch̄ 0 0
]
, 6

(5)
h̄µ =

[
Fh̄ + β0Hh̄8µKh̄Ch̄

9 ⊗ Hh̄8µKh̄Ch̄ 0 Hh̄8µKh̄
]
, 6

(6)
h̄µ=

[√
β∗0Hh̄

8µKh̄Ch̄ 0 0 0
]
, 6

(7)
h̄µ=

[
0 ϒ ⊗ Hh̄8µKh̄Ch̄ 0 0

]
.

Applying the Schur complement to (13), the inequalities
(14) and (15) can be obtained:

0̂1
h̄µ +

4∑
f=1

6̂
(f )>
h̄µ

∑
ν∈M

$ n
µνP

l
ν6̂

(f )>
h̄µ < 0, (14)

01
h̄µ +

4∑
f=1

6
(f )>
h̄µ

∑
ν∈M

$ n
µνP

l
ν6

(f )>
h̄µ

+

7∑
f=5

6
(f )>
h̄µ 6

(f )>
h̄µ < 0, (15)

where

0̂1
h̄µ = diag

−Pnµ +
lk∑
j=1

Qj, −Q

 .
Next, formulating the Lyapunov functional in the form of:

V (δk , ϑk ) = V1(δk , ϑk )+ V2(δk , ϑk ), (16)

where

V1(δk , ϑk ) = δ>(k)
N∑
n=1

$ n(k)Pnµδ(k),

V2(δk , ϑk ) =
lk∑
j=1

k−1∑
i=k−j

δ>(i)Qiδ(i).

By calculating the difference of V (δk , ϑk ), it yields

E {1V (δk , ϑk )} = E {V (δk+1, ϑk+1 = ν | δk , ϑk = µ)}

−V (δk , ϑk ).

Recalling (10), E {1V1(δk , ϑk )} renders that

1V1(δk , ϑk )

= E

{
δ>(k + 1)

N∑
n=1

ϕn(k + 1)Pnνδ(k + 1) | δk ,

ϑk = µ} − δ
>(k)

N∑
n=1

ϕn(k)Pnµδ(k)

= E
{[
(Ah̄ + α1Ah̄ + β0Bh̄8µKh̄Ch̄)δ(k)

+

lk∑
s=1

βsBh̄8µKh̄Ch̄δ(k − s)+ Dh̄ω(k)

+Bh̄8µKh̄ν(k)
]> ∑

ν∈M
$µν(k)

N∑
n=1

ϕn(k + 1)Pnν

×
[
(Ah̄ + α1Ah̄ + β0Bh̄8µKh̄Ch̄)δ(k)+ Dh̄ω(k)

+

lk∑
s=1

βsBh̄8µKh̄Ch̄δ(k − s) +Bh̄8µKh̄ν(k)
]

+α(1− α)δ>(k)1A>h̄
∑
ν∈M

$µν(k)
N∑
n=1

ϕn(k + 1)

×Pnν1Ah̄δ(k)+ β̃
2
0 (k)(Bh̄8µKh̄Ch̄δ(k))

>
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×

∑
ν∈M

$µν(k)
N∑
n=1

ϕn(k + 1)PnνBh̄8µKh̄Ch̄δ(k)

+

( lk∑
s=1

β̃s(k)Bh̄8µKh̄Ch̄δ(k − s)

)>

×

∑
ν∈M

$µν(k)
N∑
n=1

ϕn(k + 1)Pnν

×

( lk∑
s=1

β̃s(k)Bh̄8µKh̄Ch̄δ(k − s)

)}

− δ>(k)
N∑
n=1

ϕn(k)Pnµδ(k). (17)

Added by the variances of FCs, (17) can be reformulated
as

1V1(δk , ϑk )

= E

θ>(k)
4∑

f=1

[
6

(f )>
h̄µ

∑
ν∈M

$µν(k)

×

N∑
n=1

ϕn(k + 1)Pnν6
(f )>
h̄µ

]
θ (k)


− δ>(k)

N∑
n=1

ϕn(k)Pnµδ(k)

= E

θ>(k)
4∑

f=1

[
6

(f )>
h̄µ

∑
ν∈M

N∑
n=1

ϕn(k)$ n
µν

×

N∑
n=1

ϕn(k + 1)Pnν6
(f )>
h̄µ

]
θ (k)


− δ>(k)

N∑
n=1

ϕn(k)Pnµδ(k), (18)

where

δ>lk (k) =
[
δ>(k − 1) δ>(k − 2) · · · δ>(k − lk )

]
,

θ>(k) =
[
δ>(k) δ>lk (k) ω

>(k) ν>(k)
]
.

Set ϕn(k + 1) = χ l(k), it holds that

N∑
n=1

ϕn(k + 1)Pnν =
N∑
l=1

χ l(k)Plν, (19)

where
∑N

l=1 χ
l(k) = 1 and χ l(k) ≥ 0.

By combining the inequalities (13)-(19), 1V1(δk , ϑk ) can
be rewritten as

1V1(δk , ϑk )

= E

θ>(k)
4∑

f=1

[
6

(f )>
h̄µ

∑
ν∈M

N∑
n=1

ϕn(k)$ n
µν

×

N∑
l=1

χ l(k)Plν6
(f )>
h̄µ

]
θ (k)


− δ>(k)

N∑
n=1

ϕn(k)Pnµδ(k), (20)

On the other hand, for term V2(δk , ϑk ), we further have

1V2(δk , ϑk ) = E


lk∑
j=1

k∑
p=k−j+1

δ>(k)Qiδ(i)

−

lk∑
j=1

k−1∑
i=k−j

δ>(i)Qiδ(i)


= δ>(k)

lk∑
j=1

Qjδ(k)−
lk∑
j=1

δ>(k − j)

×Qjδ(k − j). (21)

In what follows, the SS of the system (10) with ω(k) = 0
and ν(k) = 0 will be verified. Recalling the inequalities (20)-
(21), it can be obtained that

E {1V (δk , ϑk )}

= E

θ̂>(k)
4∑

f=1

[
6̂

(f )>
h̄µ

∑
ν∈M

N∑
n=1

ϕn(k)$ n
µν

×

N∑
l=1

χ l(k)Plν6̂
(f )>
h̄µ

]
θ̂ (k)


+ δ>(k)

N∑
n=1

ϕn(k)

−Pnµ + lk∑
j=1

Qj

 δ(k)
−

lk∑
j=1

δ>(k − j)Qjδ(k − j)

= θ̃>(k)
N∑
n=1

ϕn(k)
N∑
l=1

χ l(k)0̂h̄µθ̃ (k), (22)

where

0̂h̄µ = diag

−Pnµ +
lk∑
j=1

Qj, −Q


+

4∑
f=1

6̂
(f )>
h̄µ

∑
ν∈M

$ n
µνP

l
ν6̂

(f )>
h̄µ ,

6̂
(1)
h̄µ =

[
Ah̄ + α1Ah̄ + β0Bh̄8µKh̄Ch̄ 9 ⊗ Bh̄8µKh̄Ch̄

]
,

6̂
(2)
h̄µ =

[√
α∗1Ah̄ 0

]
, 6̂

(3)
h̄µ =

[√
β∗0Bh̄8µKh̄Ch̄ 0

]
,

6̂
(4)
h̄µ =

[
0 ϒ ⊗ Bh̄8µKh̄Ch̄

]
, θ̂>(k) =

[
δ>(k) δ>lk (k)

]
.

Letting ξ = maxµ∈M{λmax(0̃h̄µ)}, one gets ξ < 0, (22)
gives rise to

E {V (δk+1, ϑk+1)} − E {V (δk , ϑk )} < ξ ‖ δ(k) ‖2 . (23)
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For integer T > 0, it can be achieved from (23) that

E {V (δT , ϑT )} − E {V (δ0, ϑ0)} ≤ ξ
T∑
k=0

E {‖ δ(k) ‖2},

which means
T∑
k=0

E {‖ δ(k) ‖2} ≤ −
1
ξ
E {V (δ0, ϑ0)}. (24)

Consequently, the following condition is achieved:

lim
k→∞

E {‖ δ(k) ‖2} <∞. (25)

Therefore, the system (10) is SS with ω(k) = 0 and ν(k) =
0.

To analyze theH∞ performance for the system (10) under
zero initial condition, the following index function is adopted:

J (T ) = E

{
T∑
k=0

z>(k)z(k)− γ 2%>(k)%(k)

}
, (26)

where

%(k) = [ω>(k) ν>(k)]>.

By utilizing the inequalities (21)-(22), J (T ) can be fur-
ther improved as below:

J (T ) = E

{
T∑
k=0

[
z>(k)z(k)− γ 2%>(k)%(k)

]}

≤ E

{
T∑
k=0

[
z>(k)z(k)− γ 2(ω>(k)ω(k)

+ ν>(k)ν(k))+1V (δk , ϑk )
]}

=

T∑
k=0

E

θ>(k)
N∑
n=1

ϕn(k)
N∑
l=1

χ l(k)

×

01
h̄µ +

4∑
f=1

6
(f )>
h̄µ

∑
ν∈M

$ n
µνP

l
ν6

(f )>
h̄µ

+

7∑
f=5

6
(f )>
h̄µ 6

(f )>
h̄µ

 θ (k)
 . (27)

By resorting to the inequalities (15) and (27) such that

J (T ) < 0, (28)

Letting T →∞, (28) results in

∞∑
k=0

E {‖ z(k) ‖2} ≤ γ 2
∞∑
k=0

E {‖ %(k) ‖2}. (29)

Therefore, we conclude that the system (10) is SS withH∞
performance index γ . This completes the proof. �
Next, in Theorem 2, the control design scheme is elicited.

Theorem 2: For given scalars α, α∗, βs and β∗s (s =
1, 2, · · · , lk ), if there exists matrices Pnµ > 0, Qs > 0
(s = 1, 2, · · · , lk ), and matrices Xq, Yq (q = 1, 2, · · · , r)
such that

2ppnlµ < 0, (1 ≤ p ≤ r) (30)

2pqnlµ +2qpnlµ < 0, (1 ≤ p < q ≤ r) (31)

where

2pqnlµ =


21
pqnlµ 22

pqµ ρ31
p 32

p
∗ 23

q 0 0
∗ ∗ −ρI 0
∗ ∗ ∗ −ρI

 ,

21
pqnlµ =

01
nµ 0

2
pqµ 0

3
pqµ

∗ Pnlµ 0
∗ ∗ −I

 ,
22
pqµ =

[
22

1pqµ 22
2pqµ · · · 2

2
(lk+3)pqµ

]
,

22
spqµ =

[
ε1Zs

pq Ws>
pqµ

]
, (s = 1, 2, · · · , lk + 3)

23
q = diag{−ε1Sym{Xq},−ε2Sym{Xq}, · · · ,

− εlk+3Sym{Xq}}, 31
p =

[
Np 0lk 0 · · · 0

]
,

32
p =

[
0 0lk 0 0 αM>p G

>
√
α∗M>p G

> 0 · · · 0
]
,

W1
pqµ =

[
0 0 0 0 β0(GBp8µ − Bp8µXq)

> 0√
β∗0 (GBp8µ − Bp8µXq)

> 0 β0(Hp8µ

−Hp8µXq)>
√
β∗0 (Hp8µ − Hp8µXq)

> 0
]>
,

W2
pqµ =

[
0 0lk 0 0 (GBp8µ − Bp8µXq)> 0 0

0 (Hp8µ − Hp8µXq)> 0 0
]>
,

W3
pqµ =

[
0 0lk 0 0 (GBp8µ − Bp8µXq)> 0 0

0 (Hp8µ − Hp8µXq)> 0 0
]>
,

W3+s
pqµ =

0 0lk 0 0 0 0 0 0 · · · 0︸ ︷︷ ︸
s−1

√
β∗s (GBp8µ

−Bp8µXq)> 0 · · · 0︸ ︷︷ ︸
lk−s

0 0 0 · · · 0︸ ︷︷ ︸
s−1

√
β∗s (Hp8µ − Hp8µXq)

> 0 · · · 0︸ ︷︷ ︸
lk−s

> ,
Z1
pq =

[
YqCp 0lk 0 0

]
, Z2

pq =
[
0 9 ⊗ YqCp 0 0

]
,

Z3
pq =

[
0 0lk 0 Yq

]
,

Z3+s
pq =

0 0 · · · 0︸ ︷︷ ︸
s−1

YqCp 0 · · · 0︸ ︷︷ ︸
lk−s

0 0

 ,
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0
2
pqµ =


(GAp + β0Bp8µYqCp)

> 0
(9 ⊗ Bp8µYqCp)> 0

(GDp)> 0
(Bp8µYq)> 0√

β∗0 (Bp8µYqCp)
> 0

0 (ϒ ⊗ Bp8µYqCp)>

0 0
0 0

 ,

0
3
nµ =


(Fp + β0Hp8µYqCp)

>
√
β∗0 (Hp8µYqCp)

>

(9 ⊗ Hp8µYqCp)> 0
0 0

(Hp8µYq)> 0

0
(ϒ ⊗ Hp8µYqCp)>

0
0

 ,
Pnlµ = diag

{∑
ν∈M

$ n
µνP

l
ν − G− G

>,∑
ν∈M

$ n
µνP

l
ν−G− G

>,
∑
ν∈M

$ n
µνP

l
ν−G−G

>,

I ⊗
∑
ν∈M

$ n
µνP

l
ν − G− G

>

}
.

Meanwhile, the controller gains are formulated by

Kq = X−1q Yq. (32)

Proof:Applying Schur complement to (30)-(31), the fol-
lowing inequality can be obtained:[

21
pqnlµ 22

pqµ
∗ 23

q

]
+ ρ31>

p 31
p + ρ

−132>
p 32

p < 0. (33)

By resorting to Lemma 1, (33) is described by[
21
pqnlµ 22

pqµ
∗ 23

q

]
+31>

p 1>p (k)3
2
p +3

2>
p 1p(k)31

p < 0.

(34)

Obviously, (34) infers[
−→
2 1

pqnlµ 22
pqµ

∗ 23
q

]
< 0. (35)

Benefit from the Lemma 2, it can be obtained that

−→
2 1

pqnlµ +

lk+3∑
s=1

Ws
pqµX

−1
q Zs

pq +

lk+3∑
s=1

Zs>
pq X

−>
q Ws>

pqµ < 0,

(36)

where

−→
2 1

pqnlµ =

01
nµ

−→
0 2
nµ 0

3
nµ

∗ Pnlµ 0
∗ ∗ −I

 ,

−→
0 2
nµ =


(GAp + αG1Ap + β0Bp8µYqCp)

>

(9 ⊗ Bp8µYqCp)>

(GDp)>

(Bp8µYq)>
√
α∗1Ap

√
β∗0 (Bp8µYqCp)

>

0 0
0 0
0 0

0
(ϒ ⊗ Bp8µYqCp)>

0
0

 .
Additionally, (36) can be further reformulated as01

nµ 02
pqµG

> 03
pqµ

∗ Pnlµ 0
∗ ∗ −I

 < 0. (37)

We acquire the fact that

Pnlµ − G− G> ≥ −G(Pnlµ)−1G>, (38)

which together with (37) leads to01
nµ 02

pqµG
> 03

pqµ
∗ −G(Pnlµ)−1G> 0
∗ ∗ −I

 < 0. (39)

Pre- and post-multiplying (39) by diag{I , Ilk , I , I ,G,G,
G,G, I , I , I } and its transpose, it can be concluded that the
inequalities (30) and (31) are satisfied from (11) and (12). �

IV. A NUMERICAL EXAMPLE
To substantiate the effectiveness of the established results,
the practical mass-spring-dampingmodel (MSDM) from [25]
is provided, and its dynamic equation is depicted as:

M ẍ +Ff +Fs = u(t), (40)

where

M : the mass

Ff : the friction force

Fs : the restoring force

u(t) : the control input

Furthermore, Ff and Fs are, respectively, formed by
Ff = cẋ and Fs = k(1 + a2x2)x, where x means the
displacement of point, scalars c > 0, k and a. Accordingly,
equation (40) is inferred as

M ẍ + cẋ + kx + ka2x3 = u(t).

In general, defining x(t) = [x>1 (t) x
>

2 (k)]
>
= [x> ẋ>]>,

letting x1(t) ∈ [−2, 2], M = 2kg, c = 2N · · · n/s, k =
5N/m, a = 0.2m−1. Here, T = 0.03s is sampling time.
Thus, theMSDMcan be approximated by the following fuzzy
model:
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FIGURE 1. The nonhomogeneous MC ϑk .

FIGURE 2. State response of δ(k).

FIGURE 3. Controlled output signal z(k).

Rule p: IF ζ1(k) is Mp1, and · · · and ζr (k) is Mpr , Then
δ(k + 1) = (Ap + α(k)1Ap)δ(k)+ Bpu(k)+ Dpω(k),
y(k) = Cpδ(k),
z(k) = Fpδ(k)+ Hpu(k),

FIGURE 4. Input signal u(k).

where

A1 =

 0 1
−k − kax21 (k)

M
−

c
M

 , B1 =

[
0
1
m

]
,

A2 =

[
0 1
−k
M

−
c

M

]
, B2 =

[
0
1
m

]
.

More specifically, the membership functions are chosen
as h1(δ1(k)) = (δ21/4), h2(δ1(k)) = 1 − h1(δ1(k)). The
aforementioned matrices are improved:

D1 =

[
0.0042
−0.0036

]
, C1 = [−0.0826 1.00],

F1 = [0.0017 − 0.0058], H1 = −0.0033,

D2 =

[
0.0004
−0.0080

]
, C2 = [−0.0502 1.00],

F2 = [−0.0020 − 0.0061], H2 = 0.0228,

Mp[0.02 0.01]>, Np = [0.01 0.01], (p = 1, 2).

Other scalars are chosen as α = 0.5, (α∗)2 = 0.25, β0 =
0.8, β1 = 0.6, β2 = 0.3, (β∗0 )

2
= 0.012, (β∗1 )

2
= 0.026,

(β∗2 )
2
= 0.03. Meanwhile, the TP matrices 5s (s = 1, 2) are

taken as

51
=

[
0.4 0.6
0.85 0.15

]
, 52

=

[
0.5 0.5
0.3 0.7

]
.

By solving the LMIs in Theorem 2, one gets the parameters
of desired fuzzy controller gains:

K1 = −1.0264, K2 = −1.0001.

Letting x(0) = [0 0]>, ω(k) = exp(−0.1k) sin(k) and
ν(k) = 0.2 exp(−k2), the nonhomogeneous MC ϑk is
depicted in Fig. 1. Added by the aforementioned controller
gains, simulation results are revealed in Figs. 2-4. The result-
ing state trajectory δ(k) is shown by Fig. 2, the control output
signal is given in Fig. 3 and control input signal is presented
in Fig. 4.

VOLUME 8, 2020 200721



Y. Chen et al.: SOFC for Fuzzy Systems With Stochastic FC and Actuator Faults

V. CONCLUSION
In this study, an SOFC for nonlinear systems with FCs and
AAs has been explored using the T-S fuzzy model. Both
FCs and AAs are determined by a set of stochastic variables.
An AA is described by a nonhomogeneous MC that accounts
for the characterization of time-varying TPs. FCs are char-
acterized by the l-order Rician fading model. By applying
the Lyapunov-Krasovskii function and PDC technique, suf-
ficient conditions are established, and controller gains are
developed. Finally, the practicalMSDM is expressed to verify
the practicability of the theoretical results. In the near future,
our attention will be shifted to sliding mode control scheme
for complexity with FC [27], [28].
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