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ABSTRACT In this paper, novel Doherty Power Amplifier (DPA) models are presented. The motivation
behind the proposed models is to accurately predict static nonlinearities in the compression regions of the
carrier and peaking amplifiers. DPAs suffer from a nonlinearity that originates from the carrier amplifier, and
a second more pronounced nonlinearity generated at the full compression region following the turn-on of the
peaking amplifier. Moreover, these distortions are often observed at different input power levels depending
on whether the AM-AM or the AM-PM characteristic is considered. Therefore, the proposed static model
is based on independent modeling of the memoryless gain in the polar domain. The static model of the
memoryless AM-AM and AM-PM characteristics is augmented with either memory polynomials or deep
neural network functions for memory effects modeling. The methodology of building the proposed models
and the achieved results are discussed in this paper. The MP based proposed model achieves an NMSE as
low as −45.3dB with only 78 model parameters, while the DNN based model achieves an NMSE as low
as −46.1dB with only 156 model parameters. However, the DNN based model achieves the best model
resilience to changes in the identification data.

INDEX TERMS AM-AM, AM-PM, digital pre-distortion, Doherty power amplifier, linearization, memory
effect, polynomial model, deep neural network, bidirectional LSTM, convolutional neural networks.

I. INTRODUCTION
The power amplifier (PA) is a major device included in
a transceiver system. Its performance significantly impacts
the quality of the transmitted signal and that of the com-
munication link [1]–[4]. Modern PAs are driven by signals
having various schemes such as Orthogonal Frequency Divi-
sion Multiplexing (OFDM). With such advanced schemes,
the static and memory effects of the PA should be included
in the modeling and linearization processes [5]–[7]. There
are many techniques and models developed for linearizing
PAs. Each model has a different structure, complexity (num-
ber of model parameters) and error performance. Digital
Pre-distorters (DPD) and power amplifiers (PA) can be mod-
elled using memory polynomials [5]–[7] as well as neural
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networks (NN) [8]–[16]. Real-valued and complex-valued
NNs are developed and published in the literature. For
example, a real-valued time-delay NN for modeling of 3G
base-station PA was developed in [9]. The parameters of the
NN were determined by backpropagation method. Different
optimization methods can still be used such as particle swarm
optimization and genetic algorithm coupled with local min-
imum search algorithm. The NN model can properly model
PA characteristics with satisfactory agreement between sim-
ulated and measured data. Also, the dynamic AM-AM and
AM-PM can bemodelled using the real-valuedNN to account
for the memory effects. The advantage of using real-valued
NNs over complex-valued NNs is that there is no need to
use complex-valued backpropagation algorithm to determine
the unknown parameters of the model [9]. Other forms of
NNs published in the literature include Tapped Advance and
Delay Line Neural Net (TADNN) [10]. TADNN models are
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based on the feedforward tapped delay line structure. The
importance of using the advance taps and the delay taps is
to improve the performance of the DPD [10]. It was proven
that the TADNN scheme improves PA linearization as com-
pared to conventional delay-tap-only model. A second type of
real-valued NN is the Two Layer Artificial Neural Network
(2LANN) [11]. This model was developed for pico-cell PAs
which output about 2 watts or less. The motivation behind
this NN is to realize a model which can be efficiently imple-
mented in a real-time application with hardware considera-
tions. The 2LANN model provides acceptable performance
with significant reduction in computational resources. A dif-
ferent approach for using NN in PA modelling is described
in [12]. It is a real-valued autoregressive with exogenous
input NN which can model a PA with memory effects.
Complex-valued NN are also developed in the literature.
A complex-valued two hidden layers NN (2HLANN) was
published in [13]. Furthermore, a recurrent neural network
termed the instant gated recurrent neural network (IGRNN)
was developed in [14]. Bidirectional long-short-term mem-
ory networks (BiLSTM) have been introduced in the litera-
ture [15]. This architecture outperforms many current deep
learning techniques for DPD and PA modeling especially
when the PA exhibits strong memory effects. Furthermore,
convolutional neural networks (ConvNet) have been also
shown in the literature to be effective for modeling PA behav-
ior [16]. The ConvNet model was found to reduce model
complexity by more than 50% as compared to other deep
learning techniques [16].

Other types of DPD and PA models are based on the
memory polynomial models (MP). Unlike NN models, MPs
are a subset of the Volterra series commonly used to lower
the complexity of the models [17]–[23]. Also, memory poly-
nomials have been used as part of multi-box structures to
achieve high accuracy with lower model complexity than the
standalone memory polynomial model [24], [25].

In this paper, new behavioral models dedicated for high
efficiency Doherty power amplifiers (DPAs) are introduced.
This is of prime importance since many of power ampli-
fication systems deployed in base stations are based on
the DPA architecture. In fact, power efficiency of wire-
less communication systems is an essential part in the
green communication systems. However, achieving high
DPA efficiency introduces strong nonlinear effects due to
the efficiency-linearity dilemma in PAs. Since linearity is a
must for avoiding adjacent channels interferences, efficient
amplification along with excellent linearization technique
must be implemented. Many models in the literature deal
with the PAmodelling problem as a unified black-box model.
Meaning, equations are used to determine the behavior of
the PA along with its memory effects based on the measured
input and output data. Those models range from different
forms of complex-valued polynomial models to real-valued
neural network-based models. The issue is that different
PAs have different levels of memory effects. As such, when
running an optimization algorithm, large number of fitting

parameters can contribute to memory effects even though a
PA’smemory effect might bemild. In contrast, a large number
of parameters related to memory effects would contribute
to static characteristics of the PA. Optimization algorithms
like genetic algorithm and particle swarm can only guarantee
convergence to global minimum error without understanding
the physical relevance of the parameters being optimized.
Therefore, a certain number of parameters will exist in the
model that does not affect the overall performance of the PA
model while unnecessarily increasing the model complexity.
The principal contributions of this paper are as follows:

1) Develop low complexity and high performance models
for the memoryless AM-AM and AM-PM characteris-
tics of GaN based DPA.

2) Integrate the static AM-AM and AM-PM models with
memory effects functions to further enhance the mod-
eled characteristics of the DPA. Two methods are pro-
posed for integrating the static models along with the
memory effects. The first method uses memory poly-
nomials, and the second employs a deep neural network
(DNN).

3) The proposed DPA models are more resilient, in the
sense that their accuracies remain superior to the state
of the art models following variations in the validation
waveform.

4) When MP is used to model the memory effects of the
device under test (DUT), the proposed model achieves
more than 8dB enhancement in the normalized mean
squared error (NMSE) at similar complexity when
compared to state of the art MP models.

5) The use of DNN to model the dynamic distortions
allows the proposed model to outperform standard NN
models by approximately 3dB in the NMSE while
having 85% to 90% less complexity.

The paper is organized as follows: first the proposed DPA
models will be discussed. Then, the proposed modeling pro-
cess is described and the obtained results are reported and
discussed.

II. PROPOSED MODELING OF DPA
The nonlinearity at the compression point of the PA must
be compensated for a device operating at reasonably high
efficiency. A second nonlinearity exists in DPA that fur-
ther worsen the linearity performance. Typically, a DPA is
designed using Class AB and Class C amplifiers serving as
the carrier and the peaking amplifiers, respectively. At rela-
tively low input power, the Class AB amplifier becomes the
dominant operator in the DPA. When input power reaches
the compression point of the Class AB amplifier, Class C
starts contributing to the output power of the DPA using
load modulation. The second nonlinearity exists when both
the class AB and class C PAs contribute to the output
power.

The power characteristic of a DPA can be divided into sev-
eral regions: first is Class AB linear region followed by Class
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FIGURE 1. Example of DPA power characteristic illustrating two typical
transitions. The first transition is due to the compression of the carrier
amplifier around the turn-on point of the peaking amplifier, the second is
due to the compression of the Doherty PA operating at full power
capabilities.

AB compression region. Then, Class C turn-on region, and
finally Class C compression occurs. This nonlinear behavior
is depicted in Figure 1. Therefore, a model should predict
Class C turn-on effect to comprehensively predict the behav-
ior of the DPA.

A. STATIC DISTORTIONS MODELING
The static distortions sub-model is designed to have the
ability to model the specific nonlinearity profile of DPA
which commonly includes two inflection points as depicted
in Figure 1. Furthermore, the proposed static model predicts
the complex-valued gain behavior of the DPA by decoupling
the AM-AM and AM-PM distortions. Equations (1) to (5)
show the mathematical model for the complex-valued static
gain, GPA, and the predicted signal, xout_SD, at the output of
the static distortions model.∣∣GPA,n

∣∣ = a1 − a2e
−

(
|xn|−a3
a4

)2
−

a5
1+ e−a6(|xn|−a7)

(1)

6 GPA,n = −b4 + b5eb6fn + b7eb8|xn|−b9 (2)

fn = b1 |xn| − 0.5
[
b1 |xn| +

√
(b1 |xn| − b2)2 + b3

−

√
b2 + b3

]
(3)

GPA,n =
∣∣GPA,n

∣∣ 6 GPA,n (4)

xout_SD,n =
(∣∣GPA,n

∣∣ 6 GPA,n
)
· xn (5)

a1 through a7, and b1 through b9 are real-valued fitting
parameters, and xn is the complex-valued input sample at
time instant n. One of the advantages of using the pro-
posed model is that the number of parameters used in mod-
eling the static characteristics of the DUT is always con-
stant (16 parameters) regardless of the DPA used. This is
true as long as the DPA exhibits the nonlinearity profile
shown in Figure 1 which is standard for all high-efficiency
DPA designs.

A careful examination of the AM-AM and AM-PM char-
acteristics of Gallium Nitride (GaN) based Doherty power
amplifiers brings to light a key observation: the inflection
points of the AM-AM and AM-PM characteristics do not
occur at the same input power levels. This behavioural mis-
alignment in the distortions profiles of the AM-AM and

AM-PM characteristics of GaN Doherty power amplifiers is
not specific to the considered DUT but can be observed in
several designs reported in the literature [25]–[28]. There-
fore, it is anticipated that modelling the static AM-AM and
AM-PM characteristics separately will enable a better inde-
pendent control on the distortions profile and consequently
lead to enhanced performance. In the proposed model, the
independent modelling of the AM-AM and AM-PM char-
acteristics is implemented using real-numbers based fitting
parameters to model each specific characteristic of the DPA
without affecting the other one. For example, fitting param-
eters in the proposed AM-AM model in Equation (1) do not
affect AM-PM conversion characteristic. Also, fitting param-
eters in the proposed AM-PM conversion in Equations (2)
and (3) do not affect the AM-AM characteristic of the DPA.
Meaning, each characteristic can be separately modeled.

B. STATIC DISTORTIONS/MEMORY POLYNOMIALS MODEL
The proposed static distortions model is not suitable on its
own, since modern PAs unavoidably exhibit memory effects.
Hence, residual nonlinearities are expected between the mea-
sured output signal and the estimated signal at the output of
the static distortion function. This residual memory effects
signal is given by:

xout_ME,n = xout_meas,n − xout_SD,n (6)

where xout_meas,n is the measured output sample of the device
under test.

In order to augment the proposed static model, a first
configuration is proposed by combining the static distortions
sub-model with a memory polynomials sub-model in order
to accurately mimic the behavior of the Doherty amplifier.
This augmentedmodel is referred to as the SMPmodel (Static
andMemory Polynomial model) since the static model output
obtained from (5) is coupled with the memory polynomial
output which augments the static model by including the
memory effect as illustrated in Figure 2. The overall output
of the SMP model is given by:

xout_SMP,n = xout_SD,n + xout_MP,n (7)

The output samples xout_MP,n of the memory polynomial is
calculated using:

xout_MP,n =

MMP∑
k=kmin

NMP∑
j=1

hjkxn−k |xn−k |j−1 (8)

hjk are the complex-valued model parameters of the MP sub-
model. The complexity of the memory effects is controlled by
the dimensions (nonlinearity order NMP and memory depth
MMP) chosen in Equation (8). It is important to note here that
the MP function used in this model does not include the static
term (hence kmin = 1). This is to avoid redundancy since
the static behavior is already modeled by the proposed static
AM-AM and AM-PM functions.
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FIGURE 2. Block diagram of the proposed model for GaN DPA. Polar
domain static model output is combined with the memory effects model
output to estimate the DUT’s output signal. Memory effects model can be
a memory polynomial or a deep neural network.

FIGURE 3. Deep neural network model used to model the DUT’s memory
effects in the SDNN model.

C. STATIC DISTORTIONS/DEEP NEURAL NETWORK
MODEL
The second model proposed in this work shares similarity
with the first model in the sense that the same static dis-
tortions sub-model is used for the accurate modeling of the
DPA memoryless nonlinearity profile, however, a different
sub-model is introduced for the modeling of the memory
effects of the device under test. In this SDNN model (Static
and Deep Neural Network model), the static distortions mod-
eling is performed in the same way as the SMP model
reported in the previous sub-section. However, a deep neu-
ral network (DNN) is used to model the memory effects
instead of the memory polynomials used in the SMP model.
The block diagram describing the DNN sub-model is shown
in Figure 3. In this work, the DNN used has four layers:
an input layer, two hidden layers and one output layer. The
activation function used is a tanh function.Multiple activation
functions other than tanh functions were tested, but they did
not provide a usable model convergence. The input consists
of 6 delays of the input xn, 6 neurons per hidden layer and two
outputs for in-phase and quadrature components. The output
of the static model

(
xout_SD,n

)
and the output of the neural

network
(
xout_DNN ,n

)
are added together to yield the predicted

output sample of the DPA. This model was optimized using
the Keras API of TensorFlow platform for machine learning.
The advantage for using a neural network rather than memory
polynomial functions for modeling the memory effects will
be discussed in the next section while assessing the relative
performances of the two proposed models.

III. DISCUSSION AND RESULTS
In order to develop the proposed models, the static model
should be separately identified, then the memory effects
model will be derived. The identification process of the entire
model is as follows:

1) Extract the memoryless AM-AM and AM-PM char-
acteristics of the device under test by processing the
raw measured data. This includes the steps commonly
used in the identification of two-box models such as
the augmented-Wiener, the Augmented-Hammerstein,
and twin-nonlinear two-box models. These intermedi-
ate steps are namely time-delay alignment between the
input and output waveform, data averaging to eliminate
memory effects, and finally calculation of the memo-
ryless gain magnitude and phase by using the averaged
time-aligned versions of the measured input and output
baseband complex waveforms.

2) Apply fitting algorithm to calculate the parameters of
the static AM-AM model (a1 through a7) from equa-
tion (1),

3) Apply fitting algorithm to calculate the parameters of
the static AM-PM model (b1 through b9) from equa-
tions (2) and (3).

4) Use Equations (5) and (6) to de-embed the measure-
ment data and obtain the desired complex output signal
of the memory effects modelling function xout_ME .

5) Identify the parameters of the second sub-model using
the input signal and the desired sub-model output signal(
xout_ME

)
. This step differs whether the model being

identified is the SMP or the SDNN.

The flowchart in Figure 4 summarizes the parameters iden-
tification process described above. As it is the case for any
behavioral model, the derived coefficients and the model
accuracy is only valid for the observed behavior. Variations
in the test signal or operating conditions which will emulate
a different behavior would require a new identification of
the model coefficients as per the steps described above. This
is common to any behavioral model and does not affect the
generality of the proposed model.

For the experimental validation of the proposed model,
a Doherty PA (DPA) employing a 10WGaN transistor is used
as the device under test. In this DUT, the carrier amplifier
was optimized for efficiency using harmonic tuning. The PA
operates in the 2425MHz frequency range. The DUT was
driven by a 20MHz long term evolution (LTE) test signal
having a peak to average power ration (PAPR) of 9.7dB. The
instantaneous input and output baseband complex waveforms
were acquired using the standard setup for power amplifiers
characterization using modulated test signals [5] in which an
arbitrary waveform generator was used to generate the RF
test signal applied at the input of the DUT. The output signal
was attenuated and then digitized using a commercial vector
signal analyzer.

The measured AM-AM and AM-PM characteristics of the
DUT as well as their estimated static versions are reported
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FIGURE 4. Flow chart of the static model identification and the SMP and
SDNN models identifications.

in Figure 5. This figure demonstrated the ability of the static
model to mimic the nonlinear behavior of the AM-AM and
AM-PM characteristics. Furthermore, it appears that, for
the considered device under test, a first inflection point in
the AM-AM characteristic occurs at an input power around
−26dBm. However, the first inflection point in the AM-PM
characteristic is observed when the input power level is
around−23dBm. Similarly, the second inflection point of the
AM-AM characteristic corresponds to an input power level of
approximately−20dBm, while that of the AM-PM appears at
around−16dBm. This confirms the suitability of an indepen-
dent modelling of the AM-AM and AM-PM characteristics at
origin of the proposed static distortions model.

The formulation of the static functions proposed to model
the AM-AM and the AM-PM characteristics emanated from
the following observations. For the AM-AM model:

• Fitting parameter a1 represents the constant gain of the
DPA at very low input power (−50 to −45dBm region
for this DUT). This typically corresponds to the small
signal gain of the carrier amplifier.

• In the very high input power region where both ampli-
fiers are on and the second compression starts (−20 to
−15dBm for the DUT), the gain exponentially decreases
due to saturation of the DPA. Therefore, a sigmoid
function is used to model the saturation of the DPA.
Fitting parameters a5 and a6 represent the level and the
rate of the gain decay, respectively. Fitting parameter a7
represents the input power at which the gain starts to
exponentially decrease.

FIGURE 5. Measured AM-AM and AM-PM characteristics and their
estimated static versions. (a) AM-AM characteristic, (b) AM-PM
characteristic.

• In the middle input power region (−45 to −20dBm for
the DUT), the gain decreases (from −45 to −25dBm
for the DUT) and then increases again (from −25 to
−20dBm for the DUT) due to the compression of the
main amplifier followed by the turn-on of the peaking
amplifier. This is modelled using a bell-shaped func-
tion to mimic the decrease and increase of the gain at
this region. Fitting parameter a2 represents the amount
of gain decrease in this transition region while fitting
parameter a3 represents the input power at which the
peaking amplifier starts contributing to the DPA output
power.

The reasons behind the proposed formulation of the static
AM-PM model are as follows:

• Fitting parameter−b4 represents the constant phase dis-
tortion of the carrier amplifier of the DPA at low input
power (−50 to −40dBm for the DUT).

• Then phase distortion starts to increase due to gain com-
pression of the carrier amplifier (−40 to −23dBm for
the DUT). This modelled using an exponential function.
Fitting parameter b5 represents the level of the increase
of the phase distortion in the carrier amplifier in this
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FIGURE 6. Breakdown of the static AM-AM and AM-PM models (a) AM-AM and (b) AM-PM.

power region. Fitting parameter b6 represent the rate of
rise of phase distortion.

• At higher input power (more than −25dBm for the
DUT), the peaking amplifier kicks in, and the effect
of the carrier amplifier starts to diminish. Therefore,
a function is needed to start suppressing the phase dis-
tortion of the carrier amplifier. In this work, transition
function as formulated in Equation (3) is used to do so.
This function, fi, has three fitting parameters: b1 which
represents how fast this transition functions saturates, b2
represents the level of saturation, and b3 is the knee point
for the transition function.

• To model the effect of the peaking amplifier compres-
sion (from −23 to −15dBm for the DUT), a second
exponential function is used to model the phase distor-
tion. This part has three fitting parameters: b7 represents
the level of the increase of the phase distortion in this
power region, b8 represent the rate of rise of the phase
distortion, and b9 represents the input power at which
the peaking amplifier kicks in.

The AM-AM and AM-PM models’ build-up is depicted
in Figure 6. This figure clearly illustrates the effect of each
term in Equations (1) and (2) and their respective contri-
butions to recreating the AM-AM and AM-PM distortions
behavior. Once the static distortions model is built, the input
and output signals of the dynamic distortions functions are
de-embedded.

First, the performance of the proposed SMP model was
assessed. In this case, the nonlinearity order and memory

depth of the polynomial function were set to NMP = 6 and
MMP = 6, respectively. The modeled AM-AM and AM-PM
characteristics are reported in Figure 7 and 8, respectively.
These figures show the ability of the proposed model in
mimicking the actual behavior of the DUT.

In order to benchmark the performance of the proposed
model against previously reported state of the art model,
the NMSE was used. The NMSE is commonly used to
benchmark the performance of behavioral models, and as is
defined as:

NMSEdB = 10 log10

L∑
i=1

∣∣xout_meas,i − xout_est,i∣∣2
L∑
i=1

∣∣xout_meas,i∣∣2 (9)

where L refers to the number of samples used for calculating
the NMSE. xout_meas,i and xout_est,i are the ith measured
and estimated output samples of the validation waveforms,
respectively.

The NMSE was calculated using 40,000 samples. The
training NMSE refers to the NMSE obtained when the val-
idation waveform is the same as the waveform used to train
the model.

The SMP model was benchmarked against several compa-
rable models including the standalone MP model, the EMP
model [21], and a hybrid model made of the combination of
the MP and EMP models [29]. The training NMSE results
reported in Table 1 clearly demonstrate the effectiveness and
superiority of the proposed model as it achieves significantly
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FIGURE 7. Measured and modeled AM-AM characteristic of the DUT. The
modeled characteristic is the one obtained using the SMP model.

FIGURE 8. Measured and modeled AM-PM characteristic of the DUT. The
modeled characteristic is the one obtained using the SMP model.

TABLE 1. Benchmarking of SMP Model against State of Art MP-Based
Models.

lower NMSE than the benchmark models while using com-
parable number of parameters. Indeed, the proposed SMP
model reduces the NMSE by approximately 8 to 12dB as
reported in Table 1.

The SDNN model was also compared to other state of
the art neural network based models. The parameters of the

TABLE 2. Benchmarking of SDNN Model against State of Art NN-Based
Models.

TABLE 3. Benchmarking of SDNN Model against State of Art NN-Based
Models.

DNN used in the SDNN are the same as those described in
section II. In table 2, the training NMSE of the proposed
SDNN model is compared to that of the NN based models
reported in [9], [24] and [25]. The results reported in this
Table reveal the ability of the proposed SDNN model in
achieving lower NMSE while requiring significantly less
parameters resulting in between 85% and 90% less com-
plexity without compromising the model accuracy. To further
assess the accuracy of the SDNN model and its ability to
accurately predicted the amplifier’s output signal, the mea-
sured spectrum at the output of the DUT as well as the
estimated spectrum at the output of the SDNN model are
reported in Figure 9. These plots corroborate the accuracy
of the SDNN model as expected by its NMSE performance.
Moreover, the adjacent channel leakage ratio (ACLR) was
calculated at the output of the DUT and its SDNN model.
These results reported in Table 3 confirm the accuracy of the
model and its ability to precisely predict the behavior of the
DUT in time domain (as confirmed by the NMSE results) and
frequency domain (as illustrated by spectra and ACLR data).

Furthermore, to evaluate the robustness of the considered
models, 10 other waveforms (different from the training
waveform) were used to validate the models. The original
test signal contained 200,000 samples, 40,000 of which were
used to train the models. The 10 validation waveforms were
selected as part of the remaining 160,000 samples of the test
waveforms that were not used to train the model. Hence,
a total of 11 NMSE values (1 training NMSE and 10 valida-
tion NMSE) were calculated for each model. The results of
this robustness assessment are summarized in Figure 10. This
figure reports the training NMSE for each model, as well as
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FIGURE 9. Measured spectrum at the output of the DUT and estimated
spectrum using the SDNN model.

FIGURE 10. Performance benchmarking of the proposed SMP and SDNN
models. The training NMSE, and minimum, maximum and mean
validation NMSE for 10 validation datasets are reported. Proposed
models consistently outperforming state of the art models.

the maximum, minimum and mean validation NMSE of each
model based on the results of the 10 validation waveform. For
consistency of the results, the same 10 validation waveforms
were applied to all models. Based on this data, it appears that
the proposed SMP and SDNN models outperform all other
models. Moreover, the SDNN models has a better robustness
than the SMP model as it can be observed by the reduced
NMSE variation following changes in the validation signals.
However, this is achieved at the expense of a higher model
complexity.

IV. CONCLUSION
In this paper, novel behavioral models dedicated for GaN
based Doherty power amplifiers were proposed. The nov-
elty resides in the use of novel polar domain independent

modeling of the static distortions of the DUT. For this pur-
pose, independent functions were used to model the mem-
oryless AM-AM and AM-PM characteristics of the device
under test. This enabled a more accurate modeling of the two
distortions profiles which showed inflection points occurring
at different input power levels. The proposed static distortions
model was then augmented with a memory polynomials, and
later by a DNN function. Experimental validation demon-
strated that the proposed models achieved better NMSE than
comparable state of the art models. The proposed SMPmodel
achieved between 8 and 10dBs better NMSE than its previ-
ously reported counterparts. Furthermore, the SDNN model
led to slight NMSE enhancement compared to other NN
based models but up to 90% reduction in the model complex-
ity. Finally, a study of the robustness of the proposed models
was carried out and showed that the performance of the
SDNN model is less sensitive to variations in the validation
signal than that of the SMP model.
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