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ABSTRACT An improved dynamic surface control (IDSC) approach is presented for a class of
strict-feedback nonlinear systems with unknown functions. The proposed method makes the state errors get
rid of the influence of first-order filters, which simplifies the design of control. By employing neural networks
to account for system uncertainties, the virtual control signal of the IDSC is directly used to construct the
state error instead of the signal generated by the first-order filter in the dynamic surface control (DSC)
method. The stability of the method is proved by Lyapunov stability theory, and the semi-global uniform
ultimate boundedness of all signals in the closed-loop system is guaranteed. Simulation results demonstrate
the IDSC method has better tracking performance and stability than traditional DSC method.

INDEX TERMS Neural networks, improved dynamic surface control (IDSC), strict-feedback nonlinear
system, virtual control signal.

I. INTRODUCTION
During the past decades, Approximation-based adaptive con-
trol for uncertain nonlinear systems has received much atten-
tions [1]–[15]. In these articles, neural networks (NNs)
and fuzzy-logic systems (FLS) are used to approximate
uncertain nonlinear functions without superfluous knowledge
about controlled system, which has effectively removed the
restrictive conditions for system uncertainties. In addition,
as a very powerful control method for nonlinear systems,
backstepping method has been widely used in the existing
achievements [15]–[18]. Abundant remarkable results have
been obtained by combining backstepping method with the
neural networks or logic fuzzy systems [19]–[21]. In these
approaches, backstepping method is used as the basic frame
of control design, and they can always achieve satisfactory
control performances and robustness. Nevertheless, these
aforementioned schemes suffered from the major limitation
of the ‘‘explosion of complexity’’. Because of the recursive
control design of the backstepping method, the design com-
plexity of the aforementioned method is always unbearable
when facing the repeated differential of nonlinear functions.
Therefore, a low pass filter was firstly introduced in each

The associate editor coordinating the review of this manuscript and

approving it for publication was Haibin Sun .

design step of backstepping method, and the semi-globally
boundedness of all the signals in the controlled system is
proved. Thismethod is popular known as ‘DSC’method since
dynamic surfaces are introduced by using low pass filters.
Based on the DSC method, many approximation-based adap-
tive backstepping approaches have been proposed [22]–[30].
A DSC-based robust adaptive neural control approach has
been proposed for strict-feedback nonlinear systems in [30].
However, the bounds of control gain functions are always
assumed to be constants while using DSC method. This
restrictive condition has been weakened that the control gain
functions can be unbounded functions in [31], where a
DSC-based adaptive neural control method is designed for
a class of non-strict-feedback nonlinear systems. Meanwhile,
the DSCmethod has already been successfully used for much
nonlinear systems by combining the universal approxima-
tions [32]. Thus far, the DSC method has been widely used
in various types of systems, from linear systems to strict
feedback uncertain systems, to pure-feedback or nonaffine
systems, as well as constrained systems [33], [34] and other
complex systems [35]–[39].

However, with the wide application of DSC, its inher-
ent problems become more and more obvious. Many arti-
cles about improved DSC method has been concerned. [40]
proposed a novel modular neural dynamic surface control
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method for the position tracking control of PMSMs.
A second-order nonlinear tracking differentiator (NLTD)
instead of a first-order filter is used to extract the time
derivatives of virtual control law, which makes the deriva-
tive of virtual control input more accurate. There are still
three deficiencies in this improvement. Firstly, phase delay
reduces system performance. Secondly, due to the problem
of switching function, there is high frequency chatter after
the system enters the steady state. Although the maximum
speed control functions can be introduced to eliminate the
chatter, it is difficult to use it in practical engineering due
to the introduction of too many parameters. Thirdly, it is
difficult to adjust its velocity factor to a proper value. In [41],
an improved adaptive DSC approach has been presented for
the tracking control of a class of semi-strict feedback systems.
The improved algorithm introduces nonlinear adaptive filters
instead of the first-order low pass ones to avoid repeatedly
differentiating the virtual control signals. It can realize global
tracking instead of semi global tracking. But it introduces a
large number of adaptive law design, which makes the struc-
ture more complex, meanwhile, if any adaptive parameter is
not selected properly, the stability of the system cannot be
guaranteed. An improved adaptive neural dynamic surface
control for pure-feedback systems with full state constraints
and disturbance have been researched in [42]. A command
filter instead of a first-order filter was presented, where the
effects of filtering error were reduced by introducing a serial
of error compensating variables in the controller designing.
And it is extended to a class of uncertain state constrained
systems. In [43], author proposed an improved DSCmethod,
which introduces a first-order sliding mode differentiator
to realize global dynamic surface control. [44] proposed a
nonlinear adaptive robust controller is based on the improved
dynamic surface control method. The sliding mode control
is introduced to the dynamic surface design procedure, and
the parameter update laws are designed using the uncertainty
equivalence criterion which not only reduces the complexity
of the controller but also improves the system robustness,
speed and accuracy.

The above improvement of DSC is to replace the first-order
filter with other methods, while lack of research on the
improvement of DSC first-order filter. When we turn our
attention back to DSC method, it should be noted that the
state errors and actual controller for the DSC method are
constructed based on the signals produced by passing virtual
control signals through first-order filters, which implies the
convergence of state errors heavily depends on the first-order
filters. This fact will result in the problem that the tracking
performance or even the stability of system may degrade
rapidly when the time constants are changed.

Motivated by the above discussion, an improved dynamic
surface control (IDSC) method is proposed in this article for
a class of nonlinear systems. Though the basic idea of DSC
method is utilized, we use the original virtual control signals
to construct the state errors and actual controller in this article,
which is very different from the standard DSC method. In the

IDSC, first order filtering error is replaced and independent
of the design of control. Then, the stability of the closed-loop
system controlled by IDSC method has been proved based
on Lyapunov theorem. Finally, simulation results are given
for the comparison of DSC and IDSC methods to show the
advantage of the method in our article.

The remainder of this article is organized as follows.
Section II gives the problem formulation and preliminar-
ies. In Section III, the improved dynamic surface control
design is described in detail. The stability analysis of the
closed-loop system is given in Section IV. The simulation
examples are given to demonstrate the effectiveness of the
proposed method in Section V and followed by Section VI
which concludes this article.

II. PROBLEM STATEMENT
Consider a class of nonlinear systems investigated in [7] as
follows 

ẋi = xi+1 + fi(x̄i), i = 1, 2..., n− 1
ẋn = u+ fn(x̄n)
y = x1

(1)

where x̄i = [x1, x2, . . . , xi]T ∈ Ri denotes the state vector of
the system; u ∈ R is system control input; y ∈ R is system
output; fi(·) are unknown continuous functions, i = 1, . . . , n.
We make the same assumptions as [7] as follow:
Assumption 1: fi is a smooth function in its arguments, and

fi(0, . . . , 0) = 0.
The control objective is to design a controller to make

the output y of the system track the desired trajectory yd .
By properly selecting the design parameters, the tracking
error can converge to any small neighborhood of the origin.
Assumption 2: The desired trajectory yd is sufficiently

smooth function of t , and yd , ẏd and ÿd are bounded, that
is, there exists a positive constant B0 such that �0 :={
(yd , ẏd , ÿd ) : (yd )2 + (ẏd )2 + (ÿd )2 ≤ B0

}
.

Assumption 3: The powerful approximation function of
artificial neural networks is often used to construct approx-
imators for nonlinear systems, and is widely used to solve the
control problems of nonlinear systems. We design a neural
network to approximate the unknown nonlinear continuous
function fi(x̄i).

fi (x̄i) = W ∗Ti 9 (x̄i)+ εi (2)

where x ∈ �x ⊂ R, W ∗Ti is a neural network weight vector,
εi is an approximation error and meets |ε| ≤ ε∗, ε∗ > 0 is
an unknown constant. CauseW ∗Ti is unknown, it’s estimated
value Ŵ whose adaptive updating law was designed to

˙̂Wi = γi0i

[
ei9 (x̄i)− σiŴi

]
(3)

where 0i = 0Ti > 0 are the adaptive gain matrices,
γi > 0, σi > 0 are parameters.
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III. IMPROVED DYNAMIC SURFACE CONTROL DESIGN
Firstly, we present a standard dynamic surface control
method for the addressed control problem. From the standard
dynamic surface control method proposed in [7], the stable
tracking controller for system (1) is as follows, for 1 ≤ i ≤
n− 1

Si = xi − xid (4)

αi = −Ŵ T
i 9 (x̄i)− KiSi + ẋid (5)

τi+1ẋi+1d + xi+1d = −Ŵ T
i 9 (x̄i)− KiSi + ẋid (6)

Sn = xn − xnd (7)

u = ẋnd − Ŵ T
n 9 (x̄n)− KnSn (8)

where x1d = yd , and 9 (x̄i), Ki and τi are design parameters.
It can be seen from [7] that the stability of the system can

be guaranteed and the tracking error can be adjusted under
the condition that the initial values of Si and yi are bounded
and compact, where yi = xid − αi−1.
According to the basic idea of DSC method, the controller

we proposed, i.e. ‘IDSC’, is given as follows:

e1 = x1 − yd (9)

ei = xi − αi−1, for i = 2, . . . , n (10)

αi = −Ŵ T
i 9 (x̄i)− Kiei + ẋid , for i = 1, . . . , n− 1

(11)

τi+1ẋi+1d + xi+1d = −Ŵ T
i 9 (x̄i)− Kiei + ẋid

for i = 1, . . . , n− 1 (12)

u = −knen − Ŵ T
n 9 (x̄n)+ ẋnd (13)

Comparing the controllers of DSC method and IDSC
method, it is easy to see that the main difference between the
two methods is that the state error term ei (see (10) and (11))
of IDSC method is constructed directly by αi, while the error
term Si of DSC method is constructed by xi+1d generated by
αi through first-order filter (see (6) to (8)).
The reasons why we use αi to construct the state errors are

listed as follows.
1). The purposes of control designs are confining Si and

ei to zero. However, it should be known that actually the
idea values for xi is αi−1, rather than xid , since there will
be no residual terms in the dynamics of ei−1-subsystems.
The signals, αi−1, are called the ‘ideal control input’ of
ei−1-subsystems dynamics.
2). When τi+1 are chosen not small enough, the error for

xid and αi−1 may make the controlled system unstable.
3). xid is a signal produced by αi−1 passing through a

first-order filter. Therefore, there must be an error for xid and
αi−1. This error is actually unnecessary for the control design,
and it is cancelled in IDSCmethod. This fact makes the IDSC
more efficiently to confine the state errors.

IV. STABILITY ANALYSIS FOR IDSC METHOD
As for the IDSC given in this article, we will give the
main result in this section. Define the Lyapunov function as

follows:

V =
n∑
i=1

Vi +
n∑
i=2

y2i
2

(14)

Vi =
e2i
2
+

1
2
W̃ T
i 0
−1
i W̃i, i = 1, 2, . . . , n (15)

where yi = xid − αi−1. estimation error is W̃i = W ∗i − Ŵi.
We have the following theorem for system (1) with the

IDSC method.
Theorem 1: Consider the nonlinear system (1), and the

virtual controllers (11), the controller (13) and the first-order
filters (12). Given any p > 0, if V (0) < p, then there
exist Ki and τi such that all of the signals in the closed-loop
system are bounded. Furthermore, the tracking error e1 =
x1 − yd converges to a small neighborhood of the origin by
appropriately choosing design parameters.

Proof: Firstly, we will analysis the stabilities of ei,
respectively, by consider the time derivative of Vi. Secondly,
the stability of the whole closed-control system will be ana-
lyzed by using the analysis for each ei.

Noting (11) and (15), the time derivative of V1 is

V̇1=e1ė1+W̃ T
1 01
˙̃W1=e1 (ẋ1−ẏd )− W̃ T

1 0
−1
1
˙̂W1 (16)

Substituting (1) into (16), and then using (11), we have, for
1 ≤ i ≤ n− 1

V̇1 = e1
(
x2 +W ∗T1 9 (x1)+ ε1 − ẋ1d

)
− W̃10

−1
1
˙̂W1

= e1
(
e2+α1+W ∗T1 9 (x1)+ε1−ẋ1d

)
− W̃ T

1 0
−1
1
˙̂W1

= e1
(
e2 − K1e1 + W̃ T

1 9 (x1)+ ε1
)
− W̃ T

1 0
−1
1
˙̂W1

≤ e1e2 − K1e21 + W̃
T
1 0
−1
1

(
e1019 (x1)−

˙̂W1

)
+ e1ε1

(17)

which implies that the boundedness of e1 depends on e2.
Design the adaptive law for Ŵ1 as follows

˙̂W1 = γ101

(
e19 (x1)− σ1Ŵ1

)
(18)

Then, substituting (18) into (17) yields

V̇1 ≤ e1e2 − K1e21 + σ1W̃
T
1 Ŵ1 + e1ε1 (19)

In the sequel, the boundedness of ei, (2 ≤ i ≤ n − 1) will
be investigated by consider Lyapunov candidate functions Vi.
The time derivative of Vi for 2 ≤ i ≤ n− 1 is

V̇i = eiėi = ei (ẋi − α̇i−1)− W̃ T
i 0
−1
i
˙̂Wi, 2 ≤ i ≤ n− 1

(20)

Noting yi = xid − αi−1, i = 2, . . . , n, then we have

V̇i = eiėi = ei (ẋi − ẋid + ẏi)− W̃ T
i 0
−1
i
˙̂Wi, 2 ≤ i ≤ n− 1

(21)

In view of (11) and (12), we have

ẋid =
1
τi
(αi − xid ) = −

yi
τi

(22)
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ẏi = −
yi
τi
− α̇i−1 (23)

and by noting (11) and (23), we have

ẏi+1 = −
yi+1
τi+1
+ kiėi +

˙̂W T
i ψ(x̄i)+ Ŵ

T
i
∂ψ(x̄i)
∂ x̄i
˙̄xTi +

ẏi
τi

i = 1, . . . , n− 1 (24)

Define

Bi+1
(
e1, . . . , ei+1, y2, . . . , yi+1, Ŵ T

1 , . . . , Ŵ
T
i , yd , ẏd , ÿd

)
= kiėi +

˙̂W T
i ψ(x̄i)+ Ŵ

T
i
∂ψ(x̄i)
∂ x̄i
˙̄xTi +

ẏi
τi

(25)

where ēi = [e1, . . . , ei]T , ȳi = [y2, . . . , yi]T , K̄i =
[K1, . . . ,Ki]T and τ̄i = [τ2, . . . , τi]T .
It can be easily known from [7] that the arguments of

Bi+1(·) are the ones show in (25) and there exist unknown
continuous functions ηi+1, i = 1, . . . , n− 1 satisfying∣∣∣∣yi+1 + yi+1

τi+1

∣∣∣∣ = ∣∣∣Bi+1(ēTi+1, ȳTi+1, K̄i, τ̄i, Ŵ T
i yd , ẏd , ÿd )

∣∣∣
≤ ηi+1(ēTi+1, ȳ

T
i+1, K̄i, τ̄i, Ŵ

T
i yd , ẏd , ÿd )

(26)

Substituting (1) and (10) into (20), and then using (11), we
have, for 2 ≤ i ≤ n− 1

V̇i = ei
(
xi+1 +W ∗Ti 9 (x̄i)+ εi − ẋid + ẏi

)
− W̃ T

i 0
−1
i
˙̂Wi

= ei
(
ei+1 + αi +W ∗i

T9 (x̄i)+ εi − ẋid + ẏi
)

− W̃ T
i 0
−1
i
˙̂Wi

= ei
(
ei+1 − Kiei + W̃ T

i 9 (x̄i)+ εi + ẏi
)
− W̃ T

i 0
−1
i
˙̂Wi

≤ ei (ei+1 + ẏi)− Kie2i + W̃
T
i 0
−1
i

(
ei0i9 (x̄i)−

˙̂Wi

)
+ eiεi (27)

Design the adaptive law for Ŵi as follows:

˙̂Wi = γi0i

(
ei9 (x̄i)− σiŴi

)
(28)

Then, substituting (28) into (27) yields

V̇i ≤ ei (ei+1 + ẏi)− Kie2i − σiW̃
T
i Ŵi + eiεi (29)

And, similarly, we can obtain

V̇n = en
(
u− ẋnd +W ∗Tn 9 (x̄n)+ εn + ẏn

)
− W̃ T

n 0
−1
n
˙̂Wn

= −Kne2n + enẏn + W̃
T
n 0
−1
n

(
en0n9 (x̄n)−

˙̂Wn

)
+ enεn

(30)

Design the adaptive law for Ŵn as follows

˙̂Wn = γn

(
en0n9 (x̄n)− σnŴn

)
(31)

Then, substituting (31) into (30) yields

V̇i ≤ +enẏn − Kne2n − σnW̃
T
n Ŵn + enεn (32)

By using (25) and (26), we can know that the time deriva-
tive of V defined in (14) satisfies

V̇ ≤
n−1∑
i=1

eiei+1 +
n∑
i=2

eiẏi −
n∑
i=1

Kie2i

+

n∑
i=1

(
eiεi − σiW̃ T

i 0
−1
i Ŵi

)
+

n∑
i=2

yiẏi (33)

Using (26) and (33),

−σiW̃ T
i Ŵi ≤ −

σi

2

∥∥∥W̃i

∥∥∥2 + σi
2

∥∥W ∗i ∥∥2 (34)

eiεi ≤
1
2
e2i +

1
2
ε∗2i (35)

we have

V̇ ≤
n−1∑
i=1

eiei+1 +
n∑
i=2

eiẏi −
n∑
i=1

(
Ki −

1
2

)
e2i

+

n∑
i=1

(
−
σi

2

∥∥∥W̃i

∥∥∥2+ σi
2

∥∥W ∗i ∥∥2)+ n∑
i=2

yiẏi+
1
2

n∑
i=1

ε∗2i

(36)

From the definition of Bi+1(·), we have ẏi+1 =

−yi+1/τi+1+Bi+1(·). Therefore, (33) can be further rewritten
as

V̇ ≤
n−1∑
i=1

eiei+1 +
n∑
i=2

ei

(
−
yi
τi
+ Bi(·)

)
−

n∑
i=1

Kie2i

+

n∑
i=1

(
−
σi

2

∥∥∥W̃i

∥∥∥2 + σi
2

∥∥W ∗i ∥∥2)

+

n∑
i=2

(
−
y2i
τi
+ yiBi(·)

)
+

1
2

n∑
i=1

ε∗2i (37)

Noting (26) and using Young’s inequality, one obtains

ei

(
−
yi
τi
+ Bi(·)

)
≤

(
1
2τi
+
η2i (·)

b

)
e2i +

1
2τi

y2i +
b
4

(38)

yiBi(·) ≤
y2i η

2
i (·)

b
+
b
4

(39)

eiei+1 ≤
e2i
2
+
e2i+1
2

(40)

where b is any positive constant.
Using (38), (39) and (40), we can rewrite (37) as

V̇ ≤ − (K1 − 1) e21 −
n∑
i=2

(
Ki −

3
2
−

1
2τi
−
η2i (·)

b

)
e2i

−

n∑
i=2

(
1
2τi
−
η2i (·)

b

)
y2i + C0 −

σi

2

n∑
i=1

∥∥∥W̃i

∥∥∥2 (41)

where C0 =
n∑
i=1

σi
2

∥∥W ∗i ∥∥2 + 1
2

n∑
i=1
ε∗2i .

VOLUME 8, 2020 206177



H. Feng et al.: Improved Adaptive DSC for a Class of Uncertain Nonlinear Systems

Consider the sets

�i :=

{(
e1, .., ei, y2, .., yi, Ŵ T

1 , .., Ŵ
T
i

)
×

∣∣∣∣∣∣
i∑

j=1

e2j +
i∑

j=1

(
W̃ T
i 0
−1
i W̃i

)
+

i∑
j=2

y2j ≤ 2p

 ,
i = 2, 3, . . . , n (42)

It is obviously that�i and�i×�0 are compact sets. Notice
that ηi is a continuous function on�i×�0, therefore, ηi has a
maximum, sayMi on�i×�0. SelectK1 = 1+a0,Ki = 1.5+
1
2τi
+

M2
i
b + a1, where a0 > C0

/
2p and a1 > C0

/
2p. Choose

1
/
τi = 2

(
M2
i

/
b+ a2

)
, where a2 > C0

/
2p. Therefore

V̇ ≤ −2aminV + C0 −

n∑
i=2

(
1−

η2i (·)

M2
i

)
M2
i

b

(
e2i + y

2
i

)
(43)

where amin = min{a0, a1, a2, σi/2λmax{0
−1
i }} and amin >

C0/2p. It is easily known from (43) that on V (e1, . . . , en, y2,
. . . , yn) = p, ηi ≤ Mi. Therefore, V̇ ≤ −2aminV +C0. Since
amin > C0

/
2p, it follows that V̇ ≤ 0 on V = p. Therefore,

V ≤ p is an invariant set, namely, if V (0) ≤ p, then V (t) ≤ p
for all t > 0. Thus, e1, . . . , en, y2, . . . , yn are bounded, and it
is easily to conclude that αi and u are bounded. Additionally,
From (33), it can be seen that

V̇ ≤ −2aminV + C0 (44)

on �i ×�0. This implies

V (t) ≤ (V (0)− C1) e−2amint + C1 (45)

which yields

lim
t→+∞

|e1| ≤ lim
t→+∞

∣∣∣√2V (t)
∣∣∣ ≤ √2C1 (46)

where C1 = C0/2amin. Noticing that C1 can be adjusted
to arbitrary small by increasing K1, Ki and 1/τi, therefore,
the tracking error can be confined to arbitrary small. This
completes the proof.

V. SIMULATION RESULTS
In this section, a simulation example is presented to demon-
strate the advantages of our method by comparing DSC
method. Consider the following non-affine pure-feedback
nonlinear system:

ẋ1 = x2 + x1 + x1 cos(x1)
ẋ2 = u
y = x1

(47)

In (47), f1(x1) = x1 + x1 cos(x1),. Therefore, based on
the standard DSC method in [7], the tracking controller is
proposed as follows

S1 = x1 − yd
α1 = −Ŵ T

1 9 (x̄1)− K1S1 + ẏd
τ2ẋ2d + x2d = α1

S2 = x2 − x2d
u = ẋ2d − 15S2 (48)

According the IDSC method in our article and noting
Theorem 1, the controller of IDSC is proposed as follows

e1 = x1 − yd
e2 = x2 − α1
α1 = −Ŵ T

1 9 (x̄1)− K1e1 + ẏd
τ2ẋ2d + x2d = α1
u = −15e2 − Ŵ T

2 9 (x̄2)+ ẋ2d (49)

The time constants in both methods are τ2 = 0.1.
The weight vector of neural network in both methods are
Ŵ = 0.1. It can be seen that, for the purpose of compari-
son, all the design parameters of two method are the same.
Moreover, we set the initial conditions of two methods to be
the same as well. Specially, let the initial conditions of both
methods to be (x1(0), x2(0))T = (0, 0)T and x2d (0) = 0.
Let yd = sin t . Then, the simulation results are shown
in Figs. 1-3.

FIGURE 1. System output y and desired signal yd with τ2 = 0.1.

It can be seen from Fig. 2 that IDSC has smaller tracking
error than DSC under the same conditions. It can be seen from
Fig. 1-3, that both methods can achieve the control target, and
the IDSC method has better tracking performance than the
DSC method under the same conditions.

In order to further illustrate the advantages of the IDSC
method proposed in this article, we change the design param-
eters τ2 to be τ2 = 0.2, and all the other design parameters and
conditions are still the same and not changed. The simulation
results of DSC method with τ2 = 0.2 are shown in Fig. 4-6.
It can be seen from Fig. 4 and Fig. 5 that under the control
of DSC method, the system output y is unable to be tracked,
and the tracking error e1 is getting larger and larger. When
τ2 of DSC only changes from 0.1 to 0.2, the system becomes
unstable.

In the following article, we use the IDSC method to deal
with τ2 = 0.2 conditions. All other design parameters and
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FIGURE 2. Tracking errors with τ2 = 0.1.

FIGURE 3. Control input u with τ2 = 0.1.

FIGURE 4. System output y of DSC and desired signal yd with τ2 = 0.2.

conditions remain unchanged. Figure 7-9 reports the simula-
tion results of DSC method under τ2 = 0.2 condition. It can
be seen from Fig. 7 and Fig. 8 that the system output y still

FIGURE 5. Tracking error of DSC with τ2 = 0.2.

FIGURE 6. Control input u of DSC with τ2 = 0.2.

FIGURE 7. System output y of IDSC and desired signal yd with τ2 = 0.2.

tracks yd well under τ2 = 0.2, and the tracking error is
limited to a satisfactory range. Under the method of IDSC
with τ2 = 0.2, all signals of the system are stable.
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FIGURE 8. Tracking error of IDSC with τ2 = 0.2.

FIGURE 9. Control input u of IDSC τ2 = 0.2.

The simulation results show that IDSC method has bet-
ter tracking performance than DSC method under the same
conditions. When τi changes from 0.1 to 0.2, IDSC control
system is more stable than DSC control system. It should
be noted that τi is a key design parameter of DSC method
because it always affects the stability of the controlled system.
For example, the stability of the controlled system is always
weakening, while τi is decreasing. Therefore, we propose
IDSC method to achieve better tracking performance and
improve the stability of the controlled system.

VI. CONCLUSION
In this article, based on the traditional DSC method,
an improved DSC method is proposed, in which the virtual
control law is used to construct the system error directly. The
neural network is used to approximate the unknown nonlinear
system function, and the adaptive rate of the system control
rate and unknown parameters is derived. Based on Lyapunov
theorem, the stability of the closed-loop system controlled by
IDSC method is proved. Finally, the simulation results have

been given. Simulation results show that, comparedwith DSC
method, IDSCmethod can obtain more stable control system,
and has better tracking performance.
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