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ABSTRACT The dropout rate of massive open online courses (MOOC) has been significantly high, which
makes its prediction an important problem. In this article, we try to transfer the knowledge gained in the
field of Natural Language Processing into the field of MOOC dropout prediction, due to the high similarity
between them. More specifically, we attempt to study and show the powerful use of attention and conditional
random field, both of which have been very popular architectures when solving NLP problems. A novel
neural network structure is designed as the combination of these techniques. Extensive experimental results

demonstrate that the proposed approach is effective.

INDEX TERMS Deep learning, MOOC, conditional random field.

I. INTRODUCTION

Massive Open Online Courses (MOOC for brief), is a concept
of a large number of courses online and accessible to every-
one, no matter where, who and when. It has been growing
so fast that attracts much attention of teachers, students,
workers, investors and even the governments [1],[2],[3]. And
the most famous and important MOOC providers should be
Coursera, Udacity and edX.

A prominent problem of MOOC since its day of birth is
the rather high dropout rate [4]. Since studying online cost
little based on the fact that most courses on the MOOC
platform are free, and there are usually no supervisors to
push the learners, and last but not least, no punishment is for
dropping out the course. Thus, making accurate and effective
predictions can help much to manage the course on MOOC,
and corresponding measures can be taken to strengthen the
learning will of the learner. The interest of researchers on
this problem never stopped, and some methods have been
proposed, basically based on models of machine learning
and deep learning [5],[6]. Some of them have achieved high
accuracy on specific scenarios [5].

However, the method proposed by previous researches
mostly either focus on statistical features only, or use Long
Short-Term Memory architecture (LSTM for brief), to make
use of the sequential features. One interesting architecture is
the ConRec Network proposed by Wei Wang et, 2017 [7].
It only focuses the sequential semantic information, using
convolutional layer and LSTM layer to achieve their goal.

LSTM has once been popular when dealing with sequential
information, due to its extraordinary ability to extract sequen-
tial features of the data [8],[9],[10]. As its variant, the Gated
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Recurrent Unit is also popular, because of its speed [11]. Feng
Xiong et al. (2019) dealt with the MOOC dropout prediction
problem as a time series prediction problem, and utilized
LSTMs on features from back-end records data which not
only contains learners interaction on forums, but also contains
learners interaction with resources and assignments, with an
average accuracy of prediction of about 90 percent [12].
In the work of Shaojie Qu et al.(2019), a multi-layer long
short-term memory (LSTM) neural network was employed
to predict student achievement [13]. The experimental results
revealed that this method achieved an accuracy rate of 91%
and a recall of 94% on their datasets. Di Sun ef al. (2019)
used a GRU-RNN model formulated based on progress of
the course content, instead of presence learning activity [14].
Byungsoo Jeon et al. (2019) proposed a time series model that
constructs an evolving student state representation using both
clickstream data and a signal extracted from the textual notes
recorded by human mentors assigned to each student [15].
Despite the effectiveness and successful applications of
LSTM and GRU, they have significant shortcomings. Their
architecture applies recurrent connections. They firstly pro-
cess the present input with some kinds of operations and then
pass the output to the next layer where the architecture and the
weights which the operations use are exactly the same. Thus,
they are recurrent. The output produced by the last layer to
pass to the next layer is called the hidden state of the recurrent
unit. The main idea of recurrent connections, including the
unidirectional connections and the bidirectional connections,
is that different parts of the sequence should be able to
influence each other. In a unidirectional recurrent network
from backward to forward, the hidden state of the previous
layer contains all the information of all the previous layers.
To make the architecture practical, the hidden state must be
of a fixed shape, usually above 256 [16],[11],[18],[19],[20].
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Obviously, every time a recurrent operation is being applied,
the information is being squeezed. Therefore, there will be
less information passing through from the more previous
layers. That is why LSTM sometimes does not work and need
many residual connections [21],[22]. This is its structural
flaws which cannot be easily overcome.

Comparatively, the approaches that abandon recurrent
architectures avoid such problems. They use attention mech-
anism as an alternative [23]. Instead of applying recurrent
connections and use hidden states to pass the sequence infor-
mation in a squeezed way, the attention applies a connection
which is kind of like fully-connected networks. In such kind
of connections, each output is computed from all the inputs,
which means letting different each part of the sequence influ-
ences each other directly. On the one hand, as the information
is not squeezed, the model has stronger representation for
sequence information. On the other hand, such connections
are surely more reasonable and more organic than the bidi-
rectional recurrent connections to grasp the information from
both directions [24].

The most important work when it comes to Attention archi-
tecture should be Attention Is All You Need [23]. In this article,
the researchers proposed several remarkable architectures or
techniques, including the self-attention architecture and the
multi-head attention architecture. They consider attention as
mapping from value to output, parameterized by a pair of
key and query. In a more understandable way to explain,
attention is a technique to determine how much one part
should contribute to the whole.

In a specific case, we get a sentence formed by some words.
It is easily recognized that the meaning of one specific word
is influenced by others. So we get every word a original
meaning, say, value. Then we need to compare one word with
another to get their relevance, so we get every word two other
features, say, query and key, to be used to compare and be
compared. Have got the relevance, we can at last compute
a new representation for each word using its original value,
its relevance to other words, as well as the original value of
the other words. That is how self-attention works and how it
makes use of the sequential features. Plus, there is another
technique in their work to make use of the position feature,
which we see as a kind of sequential feature. They encode
the sequence element’s position into a vector and then simply
concatenate it with their original feature. The mathematical
form of this was given in our detailed model.

Thus, we attempt to apply this technique of attention into
the field of MOOC dropout prediction. There are some excel-
lent examples to learn from, most of which is the model of
Transformer and the model of BERT [23],[24]. Both of them
are widely used in Natural Language Processing. In the task
of MOOC dropout prediction, the major challenge is how to
mask the information from the future.

Models like BERT use Transformer architecture as one of
their minimal units and Transformer uses an architecture of
encoder-decoder [23]. Such architecture is reasonable in most
problem’s solutions, but does not work in MOOC dropout

202994

prediction where the prediction should be made without the
information from the future. For example, a student’s learning
process is along time period which can be divided into several
subsections. For each subsection, we want to know whether
this student will dropout or not in the next subsection. If we
use the encoder-decoder architecture, the input contains all
the course information including the students’ actions in the
next subsection where the model should be aware of. That is
because that in such architecture, different parts of the input
influence each other. Therefore we need to propose a solution
to this problem.

Another challenge is how we preprocess the data and
extract the features. There are two typical ways of feature
selecting. The first is to use statistical features [6]. And
the second is to use convolutional layers to extract features
from one-hot encoded log data [7] (Another similar way is
to assign a weight to every type of actions and use the sum
of the weights of the logged actions as the input feature
[25]). Statistical features are designed and selected manually,
which may not have that strong representation or lack some
important information; while taking one-hot encoded log data
as input reduces the model’s interpretability and makes it even
harder to train. Even though it can reach similar performance
to that of feature-carefully-designed models, it hardly goes
beyond that. Thus, how to design and use features effectively
and reasonably is a problem.

To solve these problems, in this article, we introduce a
novel deep neural network model for MOOC dropout pre-
diction, using attention to replace LSTM. We use statistical
features to construct our feature vector, which is used to
predict the label, followed by a linear transformation layer
and self-attention layer to strengthen its ability of representa-
tion. Different from the Transformer and the BERT model,
we abandon the encoder-decoder architecture to mask the
information from the future. Instead, we apply a separated
attention technique first and then add a masked self-attention
layer to make use of the information from the past as well
as prevent from the date leakage from the future. Conditional
Random Field layer is applied in the end to make better use
of the information and prediction from the past. Thus, the two
challenges, i.e., to avoid the disadvantage of encoder-decoder
and to construct a better representation of features, are solved.

The necessity and advantage of each layer are illustrated
as following. The first layer, linear transformation layer,
is utilized to map statistical features into a high-dimension
space. From the experience from NLP field, such train-
able work embeddings help improve the performance. This
advantage is quite intuitive: the trainable word embedding
enables the word representation to be semantic. The second
layer, the self-attention layer enables low-level features to
interfere with each other to form high-levels features that
could representation both low-level feature and the influence
among them. This leads to feature enhancement. The third
type of layer is Convolutional neural network (CNNs), which
would squeeze the output of the last layer. This enables pat-
tern recognition and produces time-unit-level representation.
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Fourthly, again, we used a self-attention layer to reveal the
relevance relationship among time series. Surely here it is not
desirable if the time units that is supposed to be predicted also
get involved; consequently, the masking trick is used here.
In this way, future time units no longer contribute information
to our present output. Then, transformation, normalization
and SoftMax layers are used to convert the output to masked
self-attention layer into the label vector and at the same
time avoid gradient-vanishing problem. Lastly, a Conditional
Random Field layer is used to perform the prediction. Since
the labels are predicted sequentially, the sequence features of
predictions are taken into account.

We experimentally evaluate our model with other classical
models based on an open dataset, and the results show that
our model makes a better performance.

Il. RELATED WORK
In this section, we review some related work.

A. MODELS IN DROPOUT PREDICTION

The work done by Fisnik Dalipi et, 2018 [5] has concluded
the most used machine learning techniques in the problem
of MOOC dropout prediction. Since deep learning is sub to
machine learning, this also includes some deep models used
on this problem. And we will select some to go into more
detail. And to make it less confusing, we will separate the
deep learning models from machine learning models.

Machine learning models used in this work vary from
Linear Regression models, Support Vector Machine models,
to Logistic Regression models [5]. Such models usually use
statistical features extracted from the original data. To give
an example, we have a course and multiple actions a student
done over it, like watching lecture videos, asking questions
and doing exercises. Then, we could count how many times
this student take each action, which can be concatenated into
a vector of three integer numbers. At the same time, we get a
label which could also be an integer number, where 1 denotes
the dropout result, and 0 denotes the non-dropout result. Now
the features and the labels prepared, models can be used to fit
them and then make predictions.

What we mentioned above is a very simple example. In a
real research, features are carefully extracted, where lots of
feature engineering tricks are applied. However, work done
by Wei Wang et, 2017 [7] is very impressive. They apply
an embedding technique which simply denotes user actions
with one-hot vectors and piles them in the order of time,
forming a two-dimensional array. (One hot vector is a vector
where all the elements are 0 except one. The non-zero element
is used to to distinguish each other.) This 2-D array then
is convolved with a convolutional layer to extract the most
important features. Then it is followed by a LSTM layer
to grasp the sequential feature of the input. The output is
designed to be the user’s dropout rate. The difference their
work made, is to simplify the manual work done by humans
originally, that is, the feature engineering. The model roughly
reaches the performance of feature-well-designed machine
learning models.
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B. CRF

CREF is short for Conditional Random Field, which is a
probability model. We don’t go deep to its principles in
this article. But we are going to mention that in a simple
one-dimension CRF model applied into the field of deep
learning, it’s assumed that the output of the present posi-
tion or timestep is relevant to the output of last position or
timestep.

So in deep learning language models, it’s often used with
Viterbi Algorithm, which is a dynamic routing algorithm.
Specifically, CRF layer takes in the output of the previous
layer, which should be a sequence of labels predicted. Each
predicted label vector is a n-length vector, where n denotes the
number of kind of labels. Then, start from the first position,
compute the probability that the predicted label of position
1 convert to other labels, which is also a n-length vector, then
add them correspondingly. That should be a n-length vector
which denotes the probability of output being each kind of
label. After training, we can use the Viterbi Algorithm to
compute the best sequence which has the best score computed
from the CRF output.

In our model, we will use both self-attention architecture
and CRF model with Viterbi Algorithm as well as convolution
layers to help improve the performance.

Ill. MODELS
In this section, we overview the model for prediction.

We designed three network architectures for this problem.
The only difference between the first two architecture is
whether to use the technique of position embedding. Position
embedding emphasizes the position feature of input. The
difference of the performances of these two models will tell
whether the technique of position embedding is needed in this
architecture. And to further explore the effectiveness of the
first linear transformation layer of our model, we remove this
linear layer and retrain the model to see whether this layer
contributes to the accuracy. That’s our 3rd model.

A. THE MODEL WITHOUT POSITION EMBEDDING
This model is designed based on the idea of feature
enhancement for the proper use of attention and CRF.
Firstly, we treat the statistical features as high-level fea-
tures and apply a linear transformation layer to map statistical
features to high-dimension space. In other words, the first
layer of our model is a linear transformation layer, and the
goal of this layer is to enhance the feature’s ability of repre-
sentation. Actually, this is an idea originally inspired by word
embedding models [26]. In the field of natural language pro-
cessing, the word was once represented by one-hot vectors.
But it turns out that if we represent each word with trainable
vectors of high dimensions, the language models will work
better. This technique is called word embedding. It’s believed
that with word embedding, the word vector’s representation
ability is enhanced, thus bringing about better performance
of the model. So this linear transformation layer performs
as a feature embedding layer through mapping every feature
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FIGURE 1. Graphical representation of the whole model.

scalar into a high-dimension vector. Consider a single user’s
dropout prediction. The input is a matrix M of m rows and
n columns. M denotes the n features extracted from m time
units separately. Then, to obtain a high-dimension represen-
tation of each feature, we apply a linear transformation layer
with output as a triple (m, n, d), where d is the size of
dimensions selected for each feature.

Secondly, we then use attention techniques to reconstruct
high-level features from the low-level features obtained, and
thus achieve the goal of feature enhancement. After the linear
transformation, a self-attention layer is applied to each single
feature, with the output as the same shape as the input. The
formulation is shown as follows:

One single feature is a vector of several digital numbers
like this:

feature = [fo  fi fio fo] (1

self attention first computes the weights of the different units
of feature vector influencing each other by using the formu-
lation below:

@

where feature” is the transpose the feature matrix and o (x)
means to apply every element of the matrix with the following
operation:

weight = o (feature - featureT)

1

Ther @

ox) =
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and then, multiply the weight with the feature matrix:
“

The reason why we do not use feed forward neural network
is based on the assumption that different low-level features
may have relevance to each other and they should be able
to influence each other. For example, watching 2 hours of
lecture videos in a week is absolutely different from watching
them in a single day and rest for the last 6 days. However,
when converting to statistical features which is used as input,
they are all the same. However, we can use the other statistical
features, like frequency, to modify it, thus making the predic-
tion more precise.It is like that the same word in different
sentences may have various meanings, but we can always
maintain the right one by looking at the context.

We then use convolutional layers to extract useful features
and apply attention layer and CRF layer to finally predict the
labels. Figure 1 demonstrates our model.

To give an example in a single user’s dropout prediction,
firstly the input is an array with m rows and n columns, each
row of which is a feature vector of n digital numbers in a
single time unit. Next, we pass the input through a linear
layer to map each feature, which is originally just a single
scalar, into a vector of several numbers. Then, we add one
self-attention layer to it, which operates on the last dimension
of the input matrix. This helps to strengthen the ability of
feature representation.

NewFeature = feature - weight
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Thirdly, a convolutional layer is applied to squeeze the
output of the last layer. Various convolutional layers are used,
and their outputs are concatenated to generate the final output
of this layer.

With all the features well constructed, predictions are made
over them. The first thing to do is to compute the time-unit-
level feature vector for future processing. The time-unit-level
feature vector should be able to represent the user’s action
pattern of the specific time unit. And because of convolu-
tional layer’s strong ability of pattern recognition, we choose
convolutional layers to complete this task. To better represent
each feature, we apply three different convolutional kernels
to accomplish this job, and by using appropriate paddings,
to make their outputs all in the same size. We simply con-
catenate their outputs together. In this step, we use group
convolution and set the number of groups equals to the num-
ber of input channels, which should be the number of time
units. Otherwise, information of different time units will be
mixed together, and data leakage will be caused. The data
leakage here means the features used contain something that
the model should not have known, which is the information of
the time units to predict. The group convolution can handle
this problem properly since every filter only operates on a
specific channel of the input [23], which is the information
of a specific time unit in the problem we’re talking about.

For our fourth step, to grasp the potential sequential feature
of different time units, we apply another self-attention layer
on a time-unit-level representation, which is the output of the
convolutional layer.

With the representation for each time unit, we can now
think about how to use the sequential features between time
units. Since attention mechanism is good at finding the rele-
vance relationship among sequence units, we choose to apply
another self-attention layer. To prevent the model from using
the information of the time units we are going to predict,
we use a trick here. Attention mask is being used to mask
the information of the time units which the model is going to
predict, which should be like the matrix below:

0 —-o0 —-00 -0
, 0 0 —00  —00
AttentionMask = 0 0 0 00 (%)

0 0 0 0

ATTENTION FORMULATION To explain why the use of
attention mask can prevent the model from using the informa-
tion of the time units to predict, we need to discuss the atten-
tion functions. The principle of self-attention is described in
the following formulas:

Value = Query = Key = InputFeature (6)

where in this case, InputFeatures is described as follows:

X0,0 X0,1 to X0,83 X0,84

X X R ¢ X
InputFeature = 1.0 1.1 1,83 1,84 @)

X2,0 X2,1 te X2,83 X2,84

X3,0 X3,1 te X3,83 X3,84
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then, weight of different time units influencing each other is
calculated as follows:

Weight = o (QueryA - KeyT) (8)

here, o refers to apply the following operation to the matrix
element-wise:

1
ox) = m )

now, the output of self-attention is calculated as follows:
Attention(Query, Key, Value) = Weight - Value  (10)
So, with all the knowledge how it works, below is the explana-

tion of how we mask the information from the future. We just
add the mask to the Weight:

MaskedWeight = Weight + AttentionMask 1D

And the previous weight is like:

wo,0  Wo,1  Wo2 W03
wio o Wi w2 wigs
w20 w21 W22 w23
w30 W31 W32 W33

Weight = (12)

where w j refers to the weight score of time unit j influencing
time unit i
The weight is shown as follows:

MaskedWeight = Weight + AttentionMask (13)
Wpo —00 —0O0 —O0O

MaskedWeight = wLo o wir —eo =00 (14)
w20 W21 w2y  —OQ0

w30 w31 w32 w33

As we can see, the weights of future time units on present time
unit becomes negative infinity, which means they no longer
contribute information to our present output.

In our fifth step, we use linear transformation,
normalization and softmax layers to get the label vector.

Now we explain why these layers are adopted. With the
output of the masked self-attention layer, we need to convert
it to label vector. The straightforward way to obtain this vector
is to apply a linear transformation. Then, to let it be possibility
score like, which should be in the range of 0 and 1, a softmax
layer is applied. However, when in practice, softmax layer can
easily cause gradient vanishing of the optimization course.
To handle this problem, an additional normalization layer
is applied between the linear layer and the softmax layer
[28],[29].

Lastly, after linear transformation, normalization and soft-
max layer processing, the output is fed to the Conditional
Random Field layer, where the labels are predicted sequen-
tially. When the label vector is ready, the CRF layer can be
applied.

In the CRF layer, the output of the previous layer is taken
as the basis of the prediction, while at the same time, learn
various sequence patterns. This enables the prediction of the
present time unit not only dependent on the features of the
present and previous time units (in the masked self-attention
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FIGURE 2. Graphical representation of the position embedding layer
( The highlighted “PE” module represents for “position embedding”).

layer, the features of previous time units are already used),
but also to take the predictions of the previous time units into
account.

For example, suppose we have the input of CRF layer as
the following tuple.

loo lo1 lp2 los
ho ha ha hg3

0 Ll2 4, 15
ho hi by b3 (15
o B1 bz B3

input =

where l; j denotes the probability score of the ith label being j.
In the MOOC dropout prediction problem, there was origi-
nally only 2 labels, representing the completion and dropout,
respectively. However, in the CRF algorithm, there must be
two other labels representing START and STOP flag of the
prediction sequence, respectively.

The CRF’s idea is to learn another matrix which is called
transition matrix as below:

fo,o0 ‘o1 fo2 103
o ha1 h2 03 (16)
ho N1 b2 B3
;30 131 B32 133

transition =

where ¢; ; denotes the probability score of label i transiting to
label j. If the output is like below:

output:[oo 01 02 03] (17)

then the score of the prediction sequence is defined as:

score = Z li,o,- =+ Z 1oi_1,0i (18)
i=0 i=1

When training, the model will try to make this score as
large as possible. Thus, the sequence features of predictions
are taken into account.

When predicting, we use Viterbi Algorithm to get the
best label sequence, which should be the target label
sequence [26].

B. THE MODEL WITH POSITION EMBEDDING

To explore the necessity of position embedding which is
always applied with attention architecture, we develop a dif-
ferent architecture. The only difference to the former one is
to apply a position embedding technique and the then con-
catenate the vector embedded from the position of each time
unit with the feature vector obtained from the first layer of the
model. Such function is performed by a linear transformation
layer aiming to obtain the high-dimension representation of
each feature.
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FIGURE 3. Graphical representation of the linear transformation layer
( The highlighted “Linear” module is the layer we’re talking about).

The position embedding is only applied to the 2nd model
we design so as to explore whether position embedding is
needed in our model. Position Embedding aims to make use
of the position feature of the input sequence. In this problem,
we add an additional vector to every input feature, which
denotes their position in the input sequence. The dimension of
the input will thus be bigger than those who don’t adopt this
operation, but the dimension will be squeezed in the linear
layer at the end of the model.

C. THE MODEL WITHOUT LINEAR TRANSFORMATION
With all these models, we still cannot determine whether
the application of the first linear transformation layer
which maps the original low-level statistical features into a
high-dimension space contributes something to the accuracy.
Is it just the power of attention? So we remove the first linear
transformation layer of the original model, and then train it to
see whether the result differs a lot from the original one, thus
exploring the effectiveness of this linear layer.

IV. EVALUATION AND ANALYSIS
In this section, we conduct extensive experiments to test the
performance of the proposed approaches.

A. EXPERIMENTAL SETTINGS

1) ENVIRONMENT

We implement the algorithms by python using the package
scikit-learn, numpy pytorch 1.3.0 and CUDA 10.1. We con-
duct the experiments on a PC with an Intel Core i5 2.40GHz
CPU of 8.00GB memory, a GeForce GTX 1650 GPU
of 8.00GB memory and 64bit Windows 10.

2) DATASET AND PROBLEM

The dataset is a subset from the dataset once used in the
KDD up 2015. The original dataset contains 39 online courses
with 79,186 users participated. The most participated course
involves 12,004 users, and we use this part of data for
experiments.

The data contains 12,004 users’ action information, each
pair with a label where 1 denotes dropout, and O denotes non-
dropout. Each user’s information is composed of a series of
user actions, details are shown in Table 1.

The time period of this course is roughly divided into
4 weeks. We add each week a label which denotes whether
the user has any actions next week. The 4th week’s label is
the label that the original dataset provides. And our goal is to
predict these labels and see whether our model outstands or
not.
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TABLE 1. The description of user action data.

Time Source  Event Object
2014-06-14T09:38:29  server navigate  Oj6eQgzrdq- - -
2014-06-14T09:38:39  server access 3T6XwoiMKg:- - -
2014-06-14T09:38:39  server access agxvBNYTfiR- - -

3) FEATURE ENGINEERING

As stated above in the Introduction section, we use statistical
features as the input of the model we design. For each week,
we count the number of different sources, events, objects
involved. Operate objects or do events from different sources
or may have different meanings, so we count them separately.
At last, to somehow grasp some sequential features, we com-
pute a position score for each event type, which is simply the
sum of their position indexes. So every week is represented
as a vector of 247+ 16+ 2%7 +22*16 4+ 22*7 = 85 integer
numbers.

The models selected as the baseline include a Linear
Regression Model, a Support Vector Machine Model,
a Logistic Regression Model and a CNN-LSTM model.

The last model mentioned above, the CNN-LSTM model,
uses the same form of training data as that used in our origi-
nally designed model. The other three uses slightly different
data to train, which will be clarified below. For each one of
the three machine learning models, it trains 4 independent
sub models to predict the 4 labels so that there will not be
any data leakage. We need to process the original train data
used in our originally designed model. The original input
is a matrix of shape [4, 85], each line of which denote the
information of one week. We extract the first line, which is
the information of the first week, and the first label, to be a
training set. Then we extract the first two, then first three,
and so on. Finally, we will get 4 training sets, used to train 4
independent machine learning models.

4) MEASUREMENT
Another statement which has been made, is how we define
the measure for evaluation. Here we will use the accuracy
rate as the only evaluation measurement. In our originally
designed models, the output can only be O or 1 because of
the existence of the CRF layer since CRF takes labels as
output. Therefore, the accuracy is the proportion of the cor-
rectly predicted labels. For other models, the output is a float
number denoting the probability of dropout. The accuracy
rate here is the mean of the probability of correct prediction.
For example, the output is [0.5, 0.2, 0.7, 0.3], and the label is
[1, 0, 1, 0], the accuracy is:

(output x label + (pad — label) x output)/4 (19)

where

pad=[1 1 1 1] (20)

B. COMPARISONS WITH CLASSICAL METHODS
We select classical models including a Linear Regres-
sion Model, a Support Vector Machine Model, a Logistic
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TABLE 2. The accuracy comparisons.

Model Epoch ACC ACC1 ACC2 ACC3 ACC4
Attn 10 0.8425 | 0.7338 | 0.8779 | 0.9146 | 0.8438
Attn 1 0.8097 | 0.7087 | 0.8629 | 0.8650 | 0.8021

CNN+LSTM 60 0.6557 | 0.6299 | 0.5809 | 0.6994 | 0.7904
CNN+LSTM 100 0.6303 | 0.5649 | 0.5790 | 0.6117 | 0.7652
CNN+LSTM 10 0.6303 | 0.5667 | 0.5830 | 0.6099 | 0.7449
svm -1 0.6348 | 0.6004 | 0.5795 | 0.6020 | 0.7575
LogR -1 0.6275 | 0.6000 | 0.5750 | 0.5795 | 0.7554
LR -1 0.5501 | 0.5223 | 0.5139 | 0.5106 | 0.6535

where "Epoch" is the epoch number we choose to train the model. "ACC",
"ACCI1", "ACC2", "ACC3", "ACC4" are the total accuracy and the separated
accuracy of week 1 to 4, "Attn" is the model we designed. "LogR" represents
for "Logistic Regression" and "LR" represents for "Linear Regression".
When "Epoch" equals to "-1", it means that we continuously train the model

until it converges.
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FIGURE 4. Graphical representation of accuracy.

Regression Model and a CNN-LSTM model as he competitor.
The experimental results are shown in Table 2.

And to make it more clear to see, Figure 4 is the graphical
representation of accuracy of different models. The num suf-
fix of the model’s name, if any, refers to the number of epochs
it trained.

As shown above, we not only evaluate the total accuracy,
but also compute the model’s accuracy on 4 weeks separately.
This make it easier to analyze the performance of different
models.

From the result, we can observe that our model reaches the
best performance in both total accuracy and weekly separated
accuracy, which proves the effectiveness of our designed
architecture. This means the proper and reasonable use of
attention architecture can significantly improve the perfor-
mance. And the result also shows us the strong ability of
Conditional Random Field to handle sequence problems.

Another observation is that deep learning models usually
make less better performance when predicting the first two
labels. This because the lack of data. The first two weeks have
many all-zero vectors. This is because many dropouts occur
in the early period of the course. And many participants may
have not participated yet. Contrary to this, the performances
of machine learning models are average. This shows that the
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TABLE 3. The accuracy of attention models.

TABLE 4. The accuracy of attention models.

Model Epoch ACC ACC1 ACC2 | ACC3 | Acc4 Model | Epoch ACC ACC1 ACC2 ACC3 ACC4
Attn 10 0.8425 | 0.7338 | 0.8779 | 0.9146 | 0.8438 Attn 10 0.8425 | 0.7338 | 0.8779 | 0.9146 | 0.8438
Attn 1 0.8097 | 0.7087 | 0.8629 | 0.8650 | 0.8021 Attn 1 0.8097 | 0.7087 | 0.8629 | 0.8650 | 0.8021

Attn+pos 10 0.8070 | 0.7192 | 0.7788 | 0.9250 | 0.8050 Attn-L 10 0.7479 | 0.6983 | 0.6779 | 0.7854 | 0.8300
Attn+pos 1 0.7408 | 0.7079 | 0.6796 | 0.7533 | 0.8225 Attn-L 1 0.7434 | 0.6992 | 0.6633 | 0.7867 | 0.8246
where "Epoch" is the epoch number we choose to train the model. "ACC", —e— Attn_10
"ACC1", "ACC2", "ACC3", "ACC4" are the total accuracy and the separated 0:30:1 B x:—i -
accuracy of week 1 to 4, "Attn" is the model we designed, and "Attn+pos" is = Atn L1

its variant with position encoding.
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FIGURE 5. Graphical representation of accuracy of attention models.

deep models perform better when the data is richer, while
machine learning models may get an average performance.
The richness of the data is not only decided by the amount,
but also by the quality. Considering MOOC platform will
have more and more users, deep models should be the main
stream on dropout prediction task. When this problem still
exists, it could be solved in a straightforward way. That is
to add a weight to the learning rate, so that we can enhance
the zero label’s impact on the model when training first-week
prediction.

C. COMPARISON WITH POSITION EMBEDDING MODEL
Position embedding is proposed with attention technique
[23], it adds an additional feature to each input feature vector
which denotes their position of the input sequence, so as to
make use of the position features. We therefore add a position
embedding layer to the model, and then train it to see whether
position embedding is needed in this problem. Here are the
results.

And to make it more clear to see, Figure 5 is the graphical
representation of accuracy of different models. The num suf-
fix of the model’s name, if any, refers to the number of epochs
it trained.

What impresses us the most is that the model without
position embedding, Artn, reaches significantly higher per-
formance than model with position embedding, Attn_pos.
We can find from the table that the performance of Artn
which has been trained 1 epoch is already better than that
Attn_pos which has been trained 10 epochs. That means that
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FIGURE 6. Graphical results.

the technique of position embedding may be redundant in this
architecture. From our point of view, it is because the position
embedding is originally used to denote the position of the
word in the sentence, while in our input, the length and the
position is always fixed. So the weights are already influenced
by the position feature. Or put it another way, the network
already memorizes the positions.

D. COMPARISON WITH NO LINEAR TRANSFORMATION
MODEL

The first linear transformation layer of our model was
inspired by word embedding as we have stated. To further
verify its effectiveness, we removed the linear layer and then
retrain the model to see the difference.The result can be seen
in Tabel 4, where Attn-L is the model of which the first linear
layer was removed.

The graphical results are shown in Figure 6.

The results show that, the Attn_L model performs well
when the number of epoch of training is 1. However, it con-
verges so fast that its performance rarely varies after another
9 epochs of training. That means it’s ability of representation
and modeling is far too weaker than those with a linear
transformation layer, thus proves the necessity of map the
feature into a high-dimension space.

On this issue, we can discuss it with more depth. We think
when applying the linear transformation layer to map the
original feature into a high-dimension space, we are actually
making the model to learn the semantic features of various
statistical features. Among the discussion above, we talk
about this kind of features using the word relevance, which is
exactly a rough definition of semantic relations. In the field
of Natural Language Processing, people often use the word
co-occurrence to describe or model this feature, but the rel-
evance is obviously more precise. Attention is so good at
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maintaining features of relevance, that’s why the attention is
more powerful in training word embedding models, and why
attention can be properly applied into our model.

V. FUTURE WORK

In this article, we are talking about a problem of predicting
the dropout label weekly. Here the time granularity is week,
but can we predict the dropout label in a smaller granularity?
For example, can we predict the daily dropout label? If we
can make the prediction result practical, it will bring about
great changes in the online education sector.

Another research interest is about feature construction or
feature engineering. In the model we proposed, we use arti-
ficial designed features, basically a kind of statistical fea-
tures. There are attempts to use raw log data of the user to
extract features using convolutional networks, as we stated
in the introduction section. Since attention has strong power
of feature extracting, can we use attention architecture to
replace it or combine the two together? What’s more, all
the feature construction method I have mentioned above use
either the statistical features like our model, or the sequential
semantic features like CNN or LSTM. It’s hard for CNN
and LSTM to grasp the statistical features reasonably, so we
may either make significant changes to the network architec-
ture, or to design and adopt a brand new one. Plus, we can
reasonably infer that the network which meets the above
requirements can be a step to the Interpretable Deep Neural
Network.

VI. CONCLUSION

In this article, we propose a deep learning model for MOOC
dropout prediction. The model uses Attention, mainly self-
attention, and Conditional Random Field architecture to grasp
the features and predict the label. We also apply a method to
map a single feature into high-dimension feature space and
then use attention and convolution to reconstruct it, so as to
obtain better representation of the original feature. We then
test the position embedding technique and prove it to be
redundant in some kind of sequence problems like MOOC
dropout prediction. At last, we test a model without the first
linear layer to prove the necessity of the linear transformation.
Our model achieves the best performance compared to other
four classic models shown by the test result.

The traditional research about dropout rate always predicts
one label, i.e., whether students drop out at last. However
in this work, we predict a label for each week. This is useful
because in real life teachers need to adjust the teaching policy
in real time. We believe that finer time granularity prediction
should be the future of MOOC dropout prediction and we
hope our model can provide some base techniques for this
task.

Our study also shows the powerful use of attention.
Attention technique is highly useful when dealing with
context-sensitive features, and our work provides a strong
proof of this. In real life, many problems are context-
sensitive, so attention can be applied in many fields. Our work
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should be an encouragement for people to explore the wide
usage of it.

When it comes into details, our work contributes to two
aspects. The first is about position embedding. It shows that
for fixed-length inputs, position embedding should be unnec-
essary since the shift of input sequence is not needed. The sec-
ond is about linear transformation. Experiments proves that
it can really enhance the representation ability of the inputs.
This is intuitive because a vector can always hold more infor-
mation than a scalar. We suggest that a linear transformation
should always be applied when using statistical features,
since such features always hold rich information.

In the future, we plan to combine the statistical features
and the sequential semantic features more organically, and
try to reach a practical performance when it comes to finer
time granularity.
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