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ABSTRACT Recent advances in deep learning have shown impressive performances for pan-sharpening.
Pan-sharpening is the task of enhancing the spatial resolution of a multi-spectral (MS) image by exploiting
the high-frequency information of its corresponding panchromatic (PAN) image. Many deep-learning-based
pan-sharpening methods have been developed recently, surpassing the performances of traditional pan-
sharpening approaches. However, most of them are trained in lower scales using misaligned PAN-MS
training pairs, which has led to undesired artifacts and unsatisfying visual quality. In this paper, we propose
an unsupervised learning framework with registration learning for pan-sharpening, called UPSNet. UPSNet
can be effectively trained in the original scales, and implicitly learns the registration between PAN and MS
images without any dedicatedly designed registration module involved. Additionally, we design two novel
loss functions for training UPSNet: a guided-filter-based color loss between network outputs and aligned
MS targets; and a dual-gradient detail loss between network outputs and PAN inputs. Extensive experimental
results show that our UPSNet can generate pan-sharpened images with remarkable improvements in terms
of visual quality and registration, compared to the state-of-the-art methods.

INDEX TERMS Pan-sharpening, pan-colorization, image restoration, deep-learning, convolutional neural
networks (CNN), satellite imagery.

I. INTRODUCTION
With the advent of deep-learning, many deep-learning-based
methods have been proposed to solve various image restora-
tion problems, i.e., super-resolution [7], [18], [20], [22], [35],
showing state-of-the-art performances in terms of reconstruc-
tion quality. Likewise, the growing usage of deep-learning
for satellite imagery research can be observed recently. Satel-
lite imageries contain various scenes around the world. The
research areas for satellite imagery include prediction of
forest growth, classification of crops, buildings and roads,
environmental monitoring, and many other applications.
To achieve high performance for solving such problems,
it is essential to obtain high-quality, high-resolution satellite
image datasets. However, due to the constraints of intrin-
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sic satellite sensor resolutions and transmission bandwidths,
most satellites acquire multi-spectral images with varying
resolutions for the same geographical regions. In general,
satellite images are comprised of pairs of low-resolution (LR)
multi-spectral (MS) images of a larger ground sample dis-
tance (GSD) and high-resolution (HR) panchromatic (PAN)
images of a smaller GSD. Pan-sharpening or pan-colorization
is the task of generating pan-sharpened (PS) multi-spectral
images which have the same spatial resolutions as the PAN
images, by fusing the high-frequency details from the PAN
images and the color information from the MS images. Fig. 1
shows an example pair of PAN, MS and PS results from
various pan-sharpening approaches, including the proposed
method.

Recently, several works on pan-sharpening have been pro-
posed that incorporate learning models with convolutional
neural networks (CNN) [4], [6], [12], [15], [19], [21], [28],
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FIGURE 1. Pan-sharpening results using various methods and the proposed method.

[33], [38], [43], [44]. These methods are based on super-
vised learning (Fig. 2-a) that often requires a degradation
model to prepare a training dataset of PAN-MS pairs. For
this, the original PAN-MS pairs are degraded (down-scaled)
to LR PAN-MS pairs which are then used as inputs to the
networks, and the original MS images are used as pseudo
ground truth for training. In doing so, the networks are trained
to output down-scaled PS images of input MS scales in
such a lower scale scenario. Therefore, when these networks
are tested under the original scale scenario, they perform
poorly where the networks yield the PS images of input PAN
scales. To overcome the scale (resolution) mismatch between
training and testing, we propose an effective unsupervised
learning framework for pan-sharpening, where a ground truth
is not required for training. This enables the network to be
trained and tested on the same scales, resulting in better visual
quality.

Since the ground truth data are not available in pan-
sharping, conventional supervised PS methods could not
help but utilize the lower scale scenario. These methods
optimize their PS outputs with mean absolute error (MAE)
or mean squared error (MSE) loss using pseudo ground
truth MS image. In our unsupervised PS (Fig. 2-b), where
no ground truth image is required, we design two novel
loss functions so that our UPSNet can effectively learn the
high-frequency details from PAN inputs and color informa-
tion from MS inputs in the original scale scenario without
any pseudo ground truth: one is a dual-gradient detail loss
between network outputs and PAN inputs; and the other is a

guided-filter-based color loss between network outputs and
our aligned MS targets.

One of the main difficulties of the pan-sharpening task
is a misalignment between PAN and MS image pairs. PAN
and MS images often have the misalignment of some pixel
distances due to inherent limitations in satellite sensor arrays
and acquisition time difference. A misaligned dataset used
for training often entails undesired artifacts in pan-sharpened
results such as double edge and color spread artifacts. To rem-
edy this problem, we incorporate a preprocessing step only
during the training where each MS image is registered to
its corresponding PAN image in the sense of correlation
maximization. The aligned MS images are not used as inputs
to the network but are used as targets for the color loss.
By doing so, our UPSNet can learn to implicitly match the
high-frequency information from PAN inputs and color infor-
mation from misaligned MS inputs during training, without
any dedicatedly designed registration module. The trained
UPSNet can then properly handle misaligned PAN-MS input
pairs during testing. As shown in Fig. 1, the output image
from UPSNet shows that structures and colors of the objects
are better well-aligned compared to the other five methods.
We can also observe that the produced pan-sharpened image
from UPSNet has the most similar color compared with that
of the inputMS image while preserving the strong edges from
the corresponding PAN image.

Furthermore, we found that a patch-based normalization
can effectively deal with non-stationary PAN and MS input
images of various pixel intensity distributions depending on

201200 VOLUME 8, 2020



S. Seo et al.: UPSNet: Unsupervised Pan-Sharpening Network With Registration Learning Between PAN and MS Images

geographical features, which often leads to color distortion in
the pan-sharpened results. Similar to a batch normalization
[13], this reduces the internal covariate shift and enables
faster and more stable training of the network, which could
possibly result in higher performance. Besides, applying local
normalization helps maintain the color information of theMS
input. This allows the network trained on the images acquired
by a specific satellite to bewell generalized for unseen images
of other satellites. Our contributions can be summarized as
follows:
• We propose a novel unsupervised learning framework

for pan-sharpening where our proposed UPSNet can
achieve state-of-the-art performance for most metrics
and shows significantly better visual quality when tested
on the original scale.

• Two novel loss functions for pan-sharpening are pro-
posed, which effectively fuse the high-frequency details
from PAN images and color information from MS
images: a dual gradient detail loss and a guided-filter-
based color loss. The dual gradient detail loss can appro-
priately handle different characteristics of PAN and MS
image signals, so that UPSNet can effectively learn the
details of PAN images. The guided-filter-based color
loss allows UPSNet to effectively learn the color infor-
mation from aligned and upscaled target MS images.

• With a preprocessing step of correlation-based align-
ment between PAN and MS images only for training,
UPSNet can be trained to implicitly handle the inherent
misalignment between PAN and MS input images with-
out the preprocessing step in testing.

• We propose a simple yet very effective patch-based nor-
malization technique that boosts up the generalization
capability of our UPSNet for PAN-MS images of various
satellites.

II. RELATED WORKS
A. TRADITIONAL PAN-SHARPENING METHODS
Before the advent of deep-learning, pan-sharpening algo-
rithms were based on component substitution, multiresolu-
tion analysis, and model learning. Component substitution
methods [5], [9], [17], [34], [42] apply spectral transforma-
tions on an interpolated MS input, and its spatial channel
is replaced with a modified PAN. Multiresolution analysis
based methods [27], [36] fuse the high-frequency details of
PAN images into up-sampled MS input images. To decom-
pose such high-frequency components, wavelet or undec-
imated decomposition techniques are utilized. Then these
decomposed components are incorporated into interpolated
MS input images to form pan-sharpened images. These meth-
ods have relatively low computational complexity but tend
to produce the resulting images with mismatched spectral
information and artifacts because they do not consider local
properties of MS and PAN images. Model learning-based
methods [11], [29], [31] learn pan-sharpening models by
using regularization terms. In these methods, pan-sharpening
is defined as an ill-posed problem, where a certain model is

optimized to generate an output image so that a similarity
metric between the output and target pan-sharpened image is
maximized. These methods tend to produce pan-sharpened
images with better quality having well-preserved spectral
information, but require high computational complexity com-
pared to the previously mentioned methods.

B. DEEP-LEARNING-BASED PAN-SHARPENING METHODS
Recent pan-sharpening methods incorporate various types of
CNN structures. Pan-sharpening CNN (PNN) [28] is known
to be the first CNN-based pan-sharpening method, showing
competitive performance compared to conventional methods.
The PNN adopted a shallow 3-layered network structure from
SRCNN [7], which is the first super-resolution method to use
CNN. Inspired by the success of ResNet [10] in classifica-
tion, Yang et al. [43] proposed PanNet that has adopted the
ResNet structure as their backbone network, where residual
connection enables the network to focus on preserving the
high-frequency details. PanNet applies high-pass filtering to
MS and PAN inputs, and their edge components are used as
network inputs. This enables better network generalization,
being robust for unseen satellite datasets.

By adopting the network architecture of the state-of-the-
art SR network, EDSR [22], Lanaras et al. [19] proposed a
deep network (DSen2) and a deeper network (VDSen2) for
super-resolution of the Sentinel-2 satellite images. DSen2 and
VDSen2 are not exactly pan-sharpening methods since they
super-resolve the images in 9 lower-resolution bands using
the images in 4 higher-resolution bands as guidance. PAN
images are not included in the Sentinel-2 dataset. PanNet and
DSen2 show top performance in various quantitative metrics,
producing PS images with high visual quality. Zhang et al.
proposed a bidirectional pyramid network [45] that processes
the MS and PAN images in two separate branches, which
allows the spatial detail features from the PAN branch to
be fused into the spectral information features of the MS
branch, finally generating the output pan-sharpened images.
This type of feature fusion has improved the preservation of
high-frequency spatial information from PAN images.

Recently, Choi et al. proposed an S3 [6] loss, which con-
siders the correlation between PAN and MS images. The S3
loss is devised to be applied adaptively for the areas according
to the correlation values between MS and PAN images, thus
reducing the ghosting artifacts around moving objects such
as cars on the roads. Although the aforementioned deep-
learning-based methods have greatly enhanced the perfor-
mances and visual qualities over the traditional methods, they
still have some limitations that those methods were trained in
lower scales in a supervised manner, resulting in suboptimal
PS outputs.

Recently, a few attempts have been made to tackle the
drawbacks that come from supervised learning with pseudo
ground truth.Ma et al. [26] proposed an unsupervised scheme
based on a generative adversarial network with spatial and
spectral discriminators. PercepPan [46] adopted an auto-
encoder architecture into their unsupervised PS network
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FIGURE 2. Comparison between two different learning frameworks (a) Conventional supervised learning framework for pan-sharpening
(b) Unsupervised learning framework.

design, and utilized a perceptual loss to improve visual qual-
ity. Qu et al. incorporated a self-attention mechanism [32]
that estimates spatially varying detail extraction and injection
functions. Luo et al. also proposed an unsupervised pan-
sharpening method [25] with an iterative fusion network.
Although these unsupervised PS methods resolved the draw-
backs of training in lower scales, none of them considered the
inherent misalignment between MS and PAN inputs.

III. PROPOSED METHOD
As aforementioned, the pan-sharpening (PS) is defined as a
task to obtain high-quality PS images using high-resolution
(HR) PAN images and their corresponding low-resolution
(LR) MS images. The resulting PS images should have the
high-frequency detail information of the PAN images and the
color information of the MS images as similar as possible.
To avoid the drawbacks that come from training PS net-
works using pseudo ground truth images, our UPSNet learns
the pan-sharpening in the original scale scenario, as shown
in Fig. 2(b). Another root cause of inferior visual quality
of previous pan-sharpening methods is a misaligned PAN-
MS input pair. To allow UPSNet to implicitly handle the
misalignment between PAN and MS images, which we call
‘‘registration learning’’, a data preparation step is introduced
with a correlation-based alignment between PAN and MS
images, which is only used during the training. To effectively
train our UPSNet, we present two different types of loss func-
tions, which allow the network to learn spatial information
from PAN inputs and spectral information form MS inputs
to produce high-quality PS images. Note that the training
of UPSNet is done in the original scales of PAN and MS

images, where the testing is also taken place. In order to
handle diverse characteristics of PAN and MS images taken
from different satellites with UPSNet, we propose a simple
but very effective patch-based normalization technique to
have a generalization capability for PAN-MS images from
various satellites. More details for loss functions, registration
method, and normalization will be thoroughly explained in
the following subsections.

A. FORMULATIONS
In general, satellite imagery datasets include PAN images
of higher resolution (smaller GSD), denoted as P0, and the
corresponding MS images of lower resolution (larger GSD),
denoted asM1. The subscript number denotes a level of reso-
lution, where a smaller number indicates a higher resolution.
Our final goal in pan-sharpening is to utilize P0 and M1 to
generate a high-quality pan-sharpened image S0 which has
the same resolution as P0 and similar spectral information of
M1. This requires a pan-sharpening model g which takes P0
and M1 as inputs and yields a pan-sharpened image S0 as an
output. In the conventional CNN-based pan-sharpening based
on supervised learning, their models are trained using P0 and
M1 as targets and their down-scaled version P1 and M2 as
inputs, where their training is done in a lower scale scenario.

B. UNSUPERVISED LEARNING FRAMEWORK FOR
PAN-SHARPENING
One of the main limitations of the previous CNN-based pan-
sharpening methods is that the PAN-MS pairs are down-
scaled to enable supervised learning. These networks are only
trained in the lower scale scenario, so they perform poorly
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FIGURE 3. Proposed PAN-MS registration method based on correlation maximization.

when tested in the original scale scenario which is always a
realistic case. Since the misalignment between MS and PAN
images would be more severe in their original scales, the
networks trained in such a lower scale scenario are not able
to appropriately handle the PAN and MS input images with
larger misalignment.

On the contrary, the proposed unsupervised learning
framework can overcome this problem, as our network is
trained and tested under the same original scale scenario. The
conceptual difference between conventional methods and the
proposed framework is depicted in Fig. 2.
Unlike the conventional methods in Fig. 2-(a) for pan-

sharpening that are trained under a lower-scale scenario,
UPSNet is trained and tested under the same original scale
as depicted in Fig. 2-(b). For the training, unlike the lower-
scale scenario, the original PAN images are used as targets
for a detail loss, and the aligned MS images of the same scale
as PAN images are used as targets for a color loss. By doing
so, our UPSNet can be trained in the original scale scenario.
Here, one of the main points is how to obtain the aligned MS
images of the same scale as the PAN and PS images. This will
be detailed in the following subsections.

C. REGISTRATION
The conventional pan-sharpening methods that were trained
with L1 or L2 loss functions on the misaligned datasets tend
to produce the PS images of inferior visual quality, including
double edge and spread color artifacts. To remedy this, it is
necessary to use aligned datasets for the training of pan-
sharpening networks. For the alignment between PAN and

MS images, we propose a novel correlation-based PAN-MS
registration on the PAN scale, which is done off-line. The
resulting MS images have the same size as PAN images
and are aligned to the PAN images. It should be noted that
the aligned MS images are used as targets in the color loss
function during training, not as the input for the network.
In doing so, UPSNet internally learns the registration for
the misaligned PAN-MS input pairs. That is, the aligned MS
image is not required during the test.

Fig. 3 shows the off-line alignment steps. For a given
pair of an original PAN image P0 and a grayed MS image
Mg

1, a PAN-sized aligned MS image M̃0 is constructed via a
correlation-based searching process. For each pixel location
of the PAN image, an optimal multi-channel (e.g., RGB)
pixel value in the MS image is selected and placed in the
corresponding pixel location of the aligned MS image of the
PAN scale. The optimal pixel is determined as the center
pixel of a searching window that finds the highest correla-
tion value between the PAN and gray MS images is found
by searching the grayed MS image within a search region.
When the searching window size for the gray MS image is
M×M, the corresponding window size for the PAN image is
set to dM×dM where d is a dilation equivalent to the scale
difference between PAN and MS images.

The details of the searching process are as follows: First,
we obtain a grayed MS image (Fig. 3-(b)) where a searching
window of size 27×27 with dilation 1 is applied. The search-
ing window slides in a pixel-wise manner of stride 1 within
a pre-defined search region of size 7× 7. The corresponding
window size applied for the PAN image is of size 27×27 with
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FIGURE 4. Overall training process and loss functions for our UPSNet.

dilation 4 due to the 4 times resolution difference between
PAN andMS images. The goal of this registration is to replace
all pixels in PAN with the best matching MS pixels, so that
we can get MS images that are well aligned to their corre-
sponding PAN images. Therefore, for a current pixel location
of the PAN image, we search for the best matching patch
with the highest correlation value in a search region of the
grayedMS image. The 49 correlation values are calculated by
sliding the searching window of size 27× 27 with stride 1 in
the 7 × 7 pixel grid (search region) centered at the current
pixel location. When the best match is found, the MS pixel
corresponding to the center pixel of the searching window is
placed in the corresponding pixel location of the aligned MS
image of the PAN scale. The searching process is repeated
for all pixel positions of the PAN images. The aligned MS
images of the PAN scales will then be used as MS targets for
the color loss during training.

The above correlation-maximization-based registration
involves two hyper-parameters: the searching window size
(27× 27) and the search range size (7× 7) that are set empir-
ically through extensive experiments. The searching window
size should be large enough to capture a sufficient amount of
local structures for correlation calculation but at the expense
of computational complexity. A too small-sized searching
window will ignore neighboring pixel correlation, and a too
large one may ignore some misaligned pixels in correlation
matching because the amount of misalignment gets relatively
small. For the search range, a larger search range would be
beneficial in handling larger misalignment but also at the
expense of computational complexity. The search range size
of 7× 7 is large enough to handle the inherent misalignment
between PAN and MS images for our experiments because it

can cope with up to 3-pixel misalignment in MS scale that
corresponds to a maximum 12-pixel misalignment in PAN
scale.

It is worthwhile to mention some other alignment options
to perform alignment in theMS scale. In this case, the compu-
tation of color loss can have two possible options for match-
ing the scale (resolution), where PS images and MS images
have different resolutions. The first option is to downscale the
PS images to the MS scale by applying a degradation model,
which causes the resulting trained PS networks to yield PS
outputs with checkerboard artifacts. The second option is to
upscale the aligned MS images (aligned in the MS scale) to
have the same resolution as PS images. However, this causes a
new misalignment due to the upscaling process, thus leading
to the degraded quality of the PS output. The experimental
results for these options are provided in Sec. IV-C2.

D. LOSS FUNCTIONS
Previous deep-learning-basedmethods in supervised learning
have applied a degradation model to the input images P0
and M1, which yields P1 and M2. Then, the network output
S1 is compared to the pseudo ground truth MS images M1
by using a simple L1 or L2 loss between them. On the
other hand, to train the network in an unsupervised man-
ner, we propose two different types of loss functions: First,
a detail loss that enforces the network output to have sim-
ilar details (high-frequency information) with PAN images
P0; Secondly, a color loss that helps the network match
the spectral information of the network output S0 and the
aligned PAN-resolution MS image M̃0. More details for
the proposed loss functions will be thoroughly explained in
the following.
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1) DETAIL LOSS
We now define a detail loss that minimizes spatial distortions
between network outputs S0 and PAN inputs P0. We first
obtain grayed PS outputs Sg0. In general, a vanilla detail loss,
which is a simplified version of the spatial loss [6], can be
defined as

Ld =
∑
||d(Sg0)− d(P0)||11 (1)

where d(·) is a gradient extractor using horizontal and vertical
difference (e.g. [1, -1]) operators.

One of the difficulties in pan-sharpening tasks is inherent
differences in image signal characteristics between the PAN
and MS images. PAN images generally cover a wide range
of wavelengths by merging a broad spectrum of visible lights
into a single-channel image. Therefore, luminance values in
MS images considerably differ from the PAN images. For
example, certain objects that appear bright in an MS image
(e.g., water) can appear dark in a corresponding PAN image or
vice-versa (e.g., trees, grass). When we consider three bands
(R, G, B) in MS images separately, the luminance difference
between each of the bands and PAN images would be even
larger than comparing with the grayscale versions of the MS
images.

This inherent luminance difference between PAN and MS
images generates not only dissimilar luminance values but
also opposite directions of intensity gradients between them,
which hinders deep-learning networks from properly learning
the task of pan-sharpening. To solve this, we propose a novel
loss function, called a dual-gradient detail loss, which is
specially designed to handle such opposite gradient direc-
tions. This loss is utilized to enforce the PS outputs to have
similar edge details with PAN images, together with the
vanilla detail loss. Our dual-gradient detail loss is defined
as

Ldg =
∑

min(||d(P0)|! −d(SR0 )||
1
1, || − d(P0)− d(SR0 )||

1
1)

+ min(||d(P0)− d(SG0 )||
1
1, || − d(P0)− d(SG0 )||

1
1)

+ min(||d(P0)− d(SB0 )||
1
1, || − d(P0)−d(SB0 )||

1
1), (2)

where −d(P0) is the reversed gradient map of PAN input
d(P0), and SR0 , S

G
0 and SB0 are R, G, B channels of the

network output PS image respectively. The gradient map of
the output PS image is compared to both the gradient map
and the reverse gradient map of the PAN image. Then, the
smaller gradient differences (in absolute value) are chosen
to be included in the loss computation. The proposed dual-
gradient detail loss enables the network to handle the opposite
directions of gradients which frequently occur between PAN
and each channel of an MS image. The loss then enforces
the PS output to have similar edge details with PAN, while
preserving the gradient directions as those of the color chan-
nels. This prevents the double edge artifact which happens
due to the gradient direction mismatch, resulting in better
visual quality.

2) COLOR LOSS
In addition to the two detail loss functions, we propose
a guided-filter-based color loss to impose color similarity
between the MS input and the network PS output. Here we
utilize previously aligned PAN-resolution MS images M̃0 as
color targets to avoid any artifact that comes from the mis-
alignment between P0 and M1. The previous deep-learning-
based methods in supervised learning have used L1 or L2 loss
between the network PS output S1 and the pseudo ground
truthMS imageM1, under the assumption that those two have
similar high-frequency details and colors.

However in our unsupervised learning setting (original
scale scenario), there exists no ground truth, but the network
output S0 is supposed to have high-frequency details learned
from the PAN image P0, where such high-frequency details
are not present in the input MS imageM1. So as to ensure that
the network produces the PS output S0 having similar colors
as the aligned PAN-resolutionMS image M̃0 while not losing
the high-frequency information, we first apply a guided filter
to the network output S0 using the previously aligned MS
target M̃0 as guidance. Then the resulting guided-filtered PS
output GF(S0) is compared with the aligned MS target M̃0
using L1 loss. Without the guided-filtering step, this becomes
a direct comparison between the network output S0 and the
aligned MS image M̃0, which would result in a substantial
loss of the high-frequency details that are learned from the
PAN image P0. Our guided-filter-based color loss is defined
as

Lc =
∑
||GF(S0)− b(M̃0)||11 (3)

where GF(S0) is a guided filtering operation on the network
PS output S0 with guidance M̃0, and b(·) is a Gaussian
blurring operation with the filter size of 3 with σ = 2/3.
The values are set empirically to apply a mild blur as strong
blur often leads to a loss of detail information. The Gaus-
sian blur is applied to reduce the pixel blocking artifact
introduced during the alignment and upscaling operation
described in Sec. III-C. The proposed guided-filter-based
color loss enforces the PS output to have a similar color as that
of the MS image, while avoiding the checkerboard artifacts
that may come from a down-sampling operation and loss of
high-frequency details due to a direct comparison between PS
and MS images.

3) TOTAL LOSS
The total loss function to train the network is defined as a
weighted sum of the aforementioned loss functions, which is
given by

Ltotal = Ld + wdgLdg + wcLc (4)

where wdg and wc are empirically set to 1 and 2, respectively.
Our total loss function is simple yet effective.

E. NORMALIZATION
Throughout the whole training and test processes, the inputs
are normalized by the mean and standard deviation values
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FIGURE 5. Network architecture of our proposed UPSNet.

at each pixel computed within a local patch around the
pixel. We have conducted extensive experiments for various
types of normalization, such as uniform normalization for all
images using the dataset statistics, and global normalization
by computing mean and standard deviation values for each
image. But local normalization per patch has shown to be the
most effective method.

As mentioned earlier, PAN and MS input images are
non-stationary, having various pixel intensity distributions
depending on geographical features. Also, pixel intensity dis-
tributions can be very different according to satellite sensor
types. It is time-consuming and costly to train dedicated PS
networks for different satellite datasets. Motivated by this,
we propose a simple but effective patch-based normalization
technique that allows the network trained on the images
acquired by a specific satellite to be well generalized for
unseen images of other satellites. Applying our normalization
helps maintain the color information of the MS input.

Our proposed normalization downscales the PAN and
aligned MS images to the MS scale, and computes the mean
and variance values in a local window of size 9 × 9 over
downscaled images for complexity reduction. Then upscaled
mean and variance maps are used to normalize the PAN
and MS input images. Denormalization is applied to the
network output to yield the final PS result images. The val-
ues that are used for the denormalization are the upscaled
mean and variance map of the MS input that were used for
normalization. Local window size should be large enough
to capture the regional characteristics of geographical fea-
tures, as the goal of local normalization is a generalization
to unseen datasets. However, the computational complex-
ity quadratically increases as the window size goes bigger.
Through a set of experiments, we found that a local window
of size 9 × 9 shows good generalizability without being
computationally too expensive. Our normalization technique
can be easily adopted to any PS networks. This allows the
network to maintain the low-frequency color information
of the MS input, having a similar effect as the residual
connection.

F. NETWORK ARCHITECTURE AND TRAINING DETAILS
Our network, UPSNet, comprises of 28 residual blocks, each
of which has one leaky ReLU (negative slope= 0.1), one con-
volution layer, and one identitymapping. In total, our network
has 30 convolution layers with about 1M filter parameters.
To reduce the computational complexity, a single channel
PAN input is de-shuffled and transformed into an MS-sized
16-channel input, which is an opposite operation of the sub-
pixel convolution layer [35]. The de-shuffled PAN image is
then concatenated with the 3-channel MS input. Therefore,
the MS-sized 19-channel data is fed into the first convolution
layer of UPSNet. The last convolution layer generates 48-
channel feature maps, which is then converted to a PAN-sized
3-channel (if MS is RGB) residual output via a shuffle layer.
Finally, a nearest-neighbor interpolatedMS image is added to
the residual output to generate the final pan-sharpened image.
Fig. 5 illustrates the network structure of our UPSNet.

IV. EVALUATION
A. EXPERIMENT SETTING
1) DATASETS
We evaluate the performance of UPSNet using two different
remote sensing image datasets that are captured with the
WorldView-3 (WV3) andKOMPSAT-3A (K3A) satellite sen-
sors. The WorldView-3 satellite provides 0.31m PAN resolu-
tion and 1.24m MS resolution. The KOMPSAT-3A satellite
provides 0.55m PAN resolution and 2.2m MS resolution.
Both sensors have a resolution ratio equal to 4 between PAN
and MS images. Randomly cropped patch pairs of PAN-MS
images were used for training of the networks, where var-
ious data augmentations were conducted on the fly. Each
cropped MS image patches have a size of 32 × 32, while
the corresponding PAN image patches have a size of 128 ×
128. As mentioned earlier, the training of our UPSNet is
done in the original scale scenario, while the other deep-
learning-based PS methods under comparison are trained in
a lower scale scenario according to their original settings in
their papers. For testing, 100 PAN-MS image pairs that were
unseen during training were randomly selected.
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2) TRAINING
We trained UPSNet using the ADAMW [23] optimization
technique with the initial learning rate of 10−4 and the weight
decay of 10−7. For training other deep-learning-based PS
methods, we followed the training details provided in their
original papers. We employed the uniform weight initializa-
tion technique in [14] for training. All the networks were
implemented using TensorFlow [1], and were trained and
tested on NVIDIA TITANTM RTX GPU. Our network is
trained for 106 iterations, where the learning rate was lowered
by a factor of 10 after 5× 105 iterations. The mini-batch size
was set to 2. Training of UPSNet takes about 10 hours, and
it takes 0.237 seconds for testing an image of size 648× 648
(PAN) on average.

B. RESULTS AND DISCUSSIONS
1) QUANTITATIVE COMPARISON
a: PS METHODS FOR COMPARISON
We compare our UPSNet with seven non-deep-learning
PS methods including Brovey transform [9], affinity PS
[37], guided-filtering-based PS [39], intensity-hue-saturation
(IHS) PS [5], principal component analysis (PCA) PS [34],
P+XS PS [3] and variational PS [8], and five deep-learning-
based PS methods including PNN [28], PanNet [43] and
DSen2 [19], and their variants trained with S3 loss [6], called
PanNet-S3 and DSen2-S3, respectively. UPSNet trained
without the registration learning (UPSNet w/o align) is also
evaluated for comparison, which is trained with bicubic inter-
polated original MS image for guided-filter-based color loss
instead of the aligned MS image.

b: LOWER-SCALE VALIDATIONS
Due to the unavailability of ground-truth pan-sharpened
images, we evaluate the performances of UPSNet and other
PSmethods under two different settings: lower-scale and full-
scale (original-scale) validations. We use the full-reference
metrics under the lower-scale validation following theWald’s
protocol [40]. For this, the downscaled versions of PAN
and MS images are fed as input to all the methods under
comparison, and the resulting output PS images of lower-
scale are compared with their corresponding pseudo-ground-
truth original MS images. Four different metrics are used for
the lower-scale validations: (i) spatial correlation coefficient
(SCC) [47]; (ii) erreur relative globale adimensionnelle de
synthèse (ERGAS) [24]; (iii) Q index [41]; and (iv) peak
signal-to-noise ratio (PSNR).

c: FULL-SCALE VALIDATIONS
For the full-scale validation, SCC is also measured between
original PAN inputs and grayscale versions of PS output
images. The SCC values measured at full-scale indicate how
much a pan-sharpening method can maintain the sharpness
of the input PAN images in the PS output images. We also
measure the quality-with-no-reference (QNR) [2] which
is a no-reference metric for pan-sharpening, and another

no-reference metric called a joint quality measure (JQM) [30]
metric, which is known to better coincide with the perceived
visual quality of PS output images than QNR.

d: MISALIGNMENT ISSUE BETWEEN PAN AND MS IMAGES
In general, the PAN and MS images are misaligned due to
inevitable acquisition time difference and mosaicked sensor
arrays. However, none of the above seven metrics for lower-
and full-scale validations considers the inherent misalign-
ment between PAN and MS images. On one hand, UPSNet is
designed to correct the inherent misalignment between them
by aligning the color (MS) of an object with the objects’
details (PAN). So, it can produce output PS images that have
very well aligned colors and shapes of objects. In this case,
it is important to note that directly measuring the spectral
distortion of the PS output with respect to the color of the
original MS input is meaningless for the aligned PS output.
This is because the colors of the PS output generated by
UPSNet are moved (aligned) to match the shapes (details).
Therefore, in addition to such conventional direct measures
with respect to the original MS inputs, we also measure the
distortions with respect to the aligned MS images created by
the alignment method in Section III-C for fair andmeaningful
comparison.

e: ANALYSIS FOR EXPERIMENTAL RESULTS
Tables 1 and 2 show the average metric scores for 100 ran-
domly chosen test image pairs from the WorldView-3 dataset
measured with respect to the original MS input without align-
ment and with the aligned MS image, respectively. ↑ and ↓
indicate that the higher the better, and the lower the better per-
formance, respectively for each metric. In Table 1, UPSNet
(w/o align) outperforms all other methods for all lower-scale
validations and JQM when measured with the original MS
input. When measuring full-scale SCC metric for original
scale validation, the SCC values in Table 1 are the same as
those in Table 2. This is because MS images are not used in
measuring the SCCmetric, as mentioned earlier. As shown in
Tables 1 and 2, UPSNet performs the best in terms of SCC.
DSen2 shows the highest QNR value in Table 2, however
it shows poor perceived visual quality, which will be later
discussed in Sec. IV-B3. In Table 2, UPSNet outperforms all
other PS methods in terms of all quality metrics except QNR,
and UPSNet (w/o align) achieves the highest value of QNR.

2) QUALITATIVE COMPARISON
Fig. 6 and 7 show visual comparisons for our UPSNet against
the previous state-of-the-art methods. It is clearly shown in
Fig. 6-(p) and 7-(p) that the PS output image from UPSNet
well preserves the high-frequency details of PAN inputs and
the color information as similar as possible with MS inputs,
also havingminimal distortions. The effectiveness of registra-
tion (alignment) learning by our UPSNet can be clearly seen
around the pool area in Fig. 6-(h). Since the pool is located
at a slightly up-right position in the MS image (Fig. 6-(b))
compared to the PAN image (Fig. 6-(a)), most of the previous
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TABLE 1. Quantitative comparison (measured with original MS input without alignment).

TABLE 2. Quantitative comparison (measured with aligned MS image created by the alignment method in Section III-C).

SOTA PSmethods show artifacts (color of the water is placed
at slightly up-right position compared to the shape of the
pool) due to this misalignment, but the output PS image of
UPSNet shows no such artifacts. Also, UPSNet produces the
most similar color with the original MS images, especially
the color of the water in the pool (Fig. 6-(h)). The effective-
ness of the registration learning is even more emphasized in
Fig. 7-(h). As can be seen in Fig. 7-(a) and (b), the color of
the orange roof in the MS image is placed slightly upward
compared to the shape of that in the PAN image. UPSNet is
the only method that is able to fuse the colors of the orange
roof from the MS image with their appropriate shapes in
the corresponding PAN image. More visual comparisons are
provided in Figs. 13 and 14.

3) CONSIDERATIONS FOR NO-REFERENCE METRICS: QNR
AND JQM
In this paper, we have utilized two full-scale no-reference
metrics, QNR and JQM. However, several previous works

have pointed out the drawbacks and unexpected properties
of QNR [16], [30], [40], especially when perfect alignment
between the MS and PAN images is not assured. As known,
PAN andMS images in theWorldView-3 dataset are not well-
aligned, so it can be expected that the values of the QNR
metric are not well agreed with the observed visual quality.

We have intensively investigated this discrepancy between
QNR metric and subjective quality for PS output. Figs. 8
and 9 show visual comparison on PS outputs obtained by
various pan-sharpening methods. As shown, it is impor-
tant to note that, although the PS output images of PNN,
PanNet and Dsen2 relatively exhibit higher QNR scores
than those of PanNet-S3, DSen2-S3 and UPSNet, their per-
ceived visual qualities are much worse, showing severe
ghost artifacts in Fig. 8 and the misalignment between
colors and shapes (details) in Fig. 9. It is also worth-
while to point out that the PS output of UPSNet in Fig. 9
shows the best visual quality but has the lowest QNR
value.
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FIGURE 6. Result images for pan-sharpening using various methods and our UPSNet.

To remedy this problem, we additionally adopted another
metric (JQM) which is known to be better agreed with the
perceived visual quality on PS images [32]. As shown in
Figs. 8 and 9, it can be easily noticed that the values of
the JQM metric are very well agreed with the perceived
visual qualities of the PS output. As opposed to the QNR
metric, PNN, PanNet and Dsen2 relatively exhibit lower JQM
scores than those of PanNet-S3, DSen2-S3 and UPSNet in
Figs. 8 and 9. In both figures, PS outputs from our UPSNet
yield the highest JQM scores, coinciding with the perceived
visual quality. The visual qualities of the PS outputs pro-
duced by DSen2-S3 and PanNet-S3 are ranked the sec-
ond and the third in terms of JQM values, which are very
reasonably ranked in agreement with the perceived visual
qualities.

The discrepancy between QNR and perceived visual qual-
ity comes from the fact that QNR does not directly reflect

the spectral and spatial distortions in its calculation form [2].
The spectral distortion term (Dλ) of QNR indirectly obtains
the spectral distortion index by taking the difference between
inter-band similarity measures of the MS and PS images.
Similarly, the spatial distortion term (DS ) of QNR is mea-
sured indirectly by taking the difference between the two
relations: (i) each channel of an MS image and its corre-
sponding low-pass-filtered and downscaled PAN image; (ii)
each channel of a PS output image and a PAN image. On the
other hand, JQM [30] directly measures both the spectral
distortion between MS and downscaled PS images, and the
spatial distortion between PAN and fused PS images. The
JQM was argued that it is better agreed with perceived visual
quality than QNR [30]. Throughout our intensive experi-
ments, we also have found that the JQM is better correlated
with perceived visual quality for various PS output images,
as shown in Figs. 8 and 9.
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FIGURE 7. Result images for pan-sharpening using various methods and our UPSNet.

C. ABLATION STUDIES
Ablation studies have been conducted in a few different set-
tings to show the effectiveness of key aspects of our proposed
UPSNet. Throughout the experiments, only one component
has been changed, and others remained the same. Evalua-
tion of different models has been conducted under full-scale,
using original MS and PAN input as inputs for the network.
We measure two different criteria for measuring the perfor-
mance of output PS images: high-frequency detail similarity
with PAN images (SCC) and color similarity withMS images
(ERGAS). ERGAS is measured between aligned MS images
and PS output images. We denote this as ERGAS-A.

1) LEARNING FRAMEWORK
First, we provide ablation study results on learning frame-
work including unsupervised learning, training in original
scales, and alignment. Experiment conditions are as follows.

Condition 1 is for training on lower scales using our unsu-
pervised framework and testing on original scales. Condi-
tion 2 is for training without alignment, using the bicubic
interpolated original MS image as a target for the color loss.
In Condition 3, we train UPSNet in a supervised manner,
similarly to PanNet [43] and DSen2 [19], where each training
pair of PAN andMS images is downscaled by a scale of 4, and
the original MS input is used as a pseudo ground truth. The
network for Condition 3 is regularized by L1 loss between
output PS images and original MS inputs to have similar
settings as PanNet [43] and DSen2 [19].

As shown in Table. 3, all conditions entail substantial
performance drops in terms of all metrics. Fig. 10 shows
the visual comparison for Conditions 1, 2, and 3. Due to the
scale mismatch between training and testing, and the absence
of alignment between MS and PAN images, it is clear that
the results in Fig. 10-(b), (c), and (d) suffer from misaligned
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FIGURE 8. Visual comparison of various pan-sharpening methods including their QNR and JQM values.

FIGURE 9. Visual comparison of various pan-sharpening methods including their QNR and JQM values.

TABLE 3. Performance of UPSNet under different settings of learning at
original scales, at lower scales, without alignment, and in an supervised
manner.

colors, especially on the areas pointed by the red arrows.
As can be seen in Table. 3, UPSNet trained in a supervised
manner has shown a substantial amount of performance drop,
especially in terms of SCC. Fig. 10-(d) clearly shows that
supervised training in lower scales causes inferior visual
quality, also showing artifacts in the homogeneous region.

2) REGISTRATION SCALE
In Sec. III-C, we have discussed other possible alignment
options to perform the registration step in the MS scale. The
aligned MS, the output of the registration step, is only used
as a target for the proposed guided-filter-based color loss
and has the same size as the PAN image, as explained in
Sec. III-C. Then, the PS output images from UPSNet and
their corresponding aligned MS images are compared by
the guided-filter-based color loss function without any scale
conversion. However, when the registration is performed in
the MS scale, aligned MS images would have the same
size as input MS images. Therefore there exists a scale
mismatch between the PS images and the corresponding
aligned MS images. In this case, the computation of color
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FIGURE 10. Visual comparison for ablation study.

FIGURE 11. Qualitative comparison between our proposed UPSNet and its variants trained with registration in MS scale for a cropped
region of an image ‘AOI_2_Vegas_Roads_Test_public_img161.tif’ in WorldView-3 dataset.

loss can have two possible options for matching the scale
(resolution).

The first option is to downscale the PS images to the MS
scale by applying a degradation model, and the second option
is to upscale the aligned MS images (aligned in the MS
scale) to have the same resolution as their corresponding PS

images. Since both options require scale conversion, a new
type of misalignment is introduced inevitably during the scale
matching process.

Table 4 provides the quantitative experiment results for
UPSNet and its variants trained under two options men-
tioned above. The values of ERGAS-A and SCC metrics
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FIGURE 12. Qualitative comparison for ablation study on loss functions.

are lowered in the two options. Figs. 11 shows the arti-
facts introduced by the scale conversion. UPSNet can effec-
tively handle the misalignment between the PAN and MS
images, especially on the moving cars, but variants of
UPSNet that included scale conversion (Fig. 11-(c), (d))
failed because they could not properly learn to handle
the misalignment. The overall experiment results show
that registration in the PAN scale yields the best pan-
sharpening performance in both quantitative and qualitative
perspectives.

3) LOSS FUNCTIONS
In this section, we discuss the effectiveness of the proposed
loss functions. Two loss functions have been newly proposed
to train our UPSNet: a guided-filter-based color loss (Lc)
between network outputs and our aligned MS targets; and a
dual-gradient detail loss (Ldg) between network outputs and
PAN inputs.

Ablation studies have been conducted under two different
conditions to show the effectiveness of the proposed loss
functions. Condition 1 is training the network without the

VOLUME 8, 2020 201213



S. Seo et al.: UPSNet: Unsupervised Pan-Sharpening Network With Registration Learning Between PAN and MS Images

FIGURE 13. Qualitative comparison between our proposed UPSNet and other SOTA methods for a cropped region of an image
‘AOI_3_Shanghai_Bldg_Test_public_img2434.tif’ in the WorldView-3 dataset.

TABLE 4. Ablation study on registration scale.

TABLE 5. Ablation study on loss functions.

dual-gradient detail loss. Condition 2 is applying Gaussian
blur kernel instead of the guided-filter used for the color
loss. We denote the Gaussian blur kernel-based color loss as
Lgb. The parameters of a Gaussian blur kernel are adequately
adjusted so that the PS images after applying the Gaussian
blur kernel to have similar visual quality with the correspond-
ing aligned MS images.

Table 5 shows the average metric scores of ERGAS-A
and SCC. The performance drops are observed for both
Condition 1 and Condition 2, showing that the proposed
loss functions are essential for training our UPSNet. Fig. 12

TABLE 6. Evaluation of PS networks (Train: WorldView-3, Test:
WorldView-3).

TABLE 7. Evaluation of PS networks (Train: K3A, Test: WorldView-3).

shows the visual comparison regarding the ablation study
on loss functions. Condition 1 seems to produce reason-
able visual quality, but it tends to disturbingly enhance the
local contrast, introducing some artifacts in the output PS
images. Condition 2 introduce rainbow-like artifacts in all
images. Both quantitative and qualitative experiments show
the effectiveness of our proposed loss functions in training
UPSNet.
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FIGURE 14. Qualitative comparison between our proposed UPSNet and other SOTA methods for a cropped region of an image
‘AOI_2_Khartoum_Bldg_Test_public_img1522.tif’ in the WorldView-3 dataset.

TABLE 8. Evaluation of PS networks (Train: K3A, Test: K3A).

TABLE 9. Evaluation of PS networks (Train: WorldView-3, Test: K3A).

4) CROSS-DATASET EXPERIMENT
Cross-dataset experiments have been conducted to show
the generalization capability of our UPSNet. Each pan-
sharpening network is trained and tested in four different
settings using the datasets acquired from two different satel-
lites, KOMPSAT-3A (K3A) and WorldView-3, as described
in Tables. 6, 7, 8, and 9. The upward and downward
arrows ↑↓ indicate that higher and lower values imply better

performance, respectively. The best and second-best results
are highlighted in bold and underline, respectively. It can be
seen that UPSNet is showing a good generalization capability
while other methods show performance drop when tested on
the dataset that is different from the training dataset.

V. CONCLUSION
In this work, we propose an effective unsupervised learn-
ing framework with registration learning for pan-sharpening,
called UPSNet. To resolve a misalignment between PAN and
MS, we first propose a simple PAN-MS registration based on
correlations to obtain an alignedMS target of PAN-resolution
from each misaligned PAN-MS input pair. The aligned MS
target is then used to enforce the network to learn how to
handle the misalignment between PAN and MS images by
giving it as a target for the color loss. It should be noted that
the registration for training is no longer required in testing.
Additionally, we designed two loss functions for the training
of our network: a guided-filter-based color loss between the
network’s PS outputs and our aligned MS targets; and a dual-
gradient detail loss between the network’s PS outputs and
PAN inputs. Intensive experimental results show that our
UPSNet can generate pan-sharpened images with remarkable
improvements in terms of color similarity and texture details
compared to the state-of-the-art pan-sharpening methods.
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