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ABSTRACT The brain storm optimization algorithm(BSO) is a population based metaheuristic algorithm
inspried by the human conferring process that was proposed in 2010. Since its first implementation, BSO
has been widely used in various fields. In this article, we propose an agglomerative greedy brain storm
optimization algorithm (AG-BSO) to solve classical traveling salesman problem(TSP). Due to the low
accuracy and slow convergence speed of current heuristic algorithms when solving TSP, this article consider
four improvement strategies for basic BSO. First, a greedy algorithm is introduced to ensure the diversity
of the population. Second, hierarchical clustering is used in place of the k-means clustering algorithm in
standard BSO to eliminate the noise sensitivity of the original BSO algorithm when solving TSP. Exchange
rules for the individuals in the population individuals were introduced to improve the efficiency of the
algorithm. Finally, a heuristic crossover operator is used to update the individuals. In addition, the AG-BSO
algorithm is compared with the genetic algorithm (GA), particle swarm optimization (PSO), the simulated
annealing(SA) and the ant colony optimization (ACO) on standard TSP data sets for performance testing.
We also compare it with a recently improved version of the BSO algorithm. The simulations show the
encouraging results that AG-BSO greatly improved the solution accuracy, optimization speed and robustness.

INDEX TERMS Brain storm optimization algorithm, traveling salesman problem, hierarchical clustering,

optimization algorithm, combinatorial optimization.

I. INTRODUCTION
In the past two decades, swarm intelligence(SI) algorithms
have become highly influential. They mainly simulate the
group behavior of insects, birds, fish and other populations.
The main properties of an SI optimization algorithm are
inspired by the social behaviors of a natural population. In an
SI algorithm, each individual in the population represents
a solution in the search space. SI algorithms have been
extensively and effectively used to solve realistic problems,
but the generalization ability for specific scenarios is poor.
Therefore, more effective algorithms and search strategies
have been studied. Scholars have developed many novel SI
algorithms, such as particle swarm optimization(PSO) [1],
ant colony optimization(ACO) [2], gray wolf optimization
algorithm(GWO) [3], firefly algorithm(FA) [4], whale opti-
mization algorithm(WOA) [5] and so on [6], [7].

In 2011, Shi [8] proposed a new swarm intelligent opti-
mization algorithm at the second international conference on
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SI, named brain storm optimization(BSO), which simulated
the thought process of human creative problem solving. This
algorithm is also known as the intellectual incentive method.
Compared with other intelligent optimization algorithms,
BSO has the advantages of a compact mathematical model,
simple operation, clear process, fast convergence speed and
high optimization efficiency. Therefore, it is considered to
be a very promising method, and it has been favored by
many researchers and widely applied in practical optimiza-
tion problems in different fields such as power systems
[9]-[13], machine learning [14]-[19], combinatorial opti-
mization problems [20]-[22] and image processing [23]—[25]
and prediction [15], [26], [27].

In recent years, BSO has attracted attention due to its
unique and excellent performance for solving complex and
high-dimensional large-scale optimization problems. A large
number of scholars have paid increasing attention to BSO
and have conducted in-depth research on it. According
to the algorithm mechanism and application background,
the research on the BSO algorithm can be divided into the
following categories: (1) improving the clustering method of
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BSO [28]-[36]; (2) improving the new individual generation
strategy [34], [37]-[44]; (3) applying the research on BSO
[9], [12], [15], [18], [38], [45]-[47]. The improvement and
research of these algorithms from different directions not
only improve the optimization performance of BSO but also
promote the healthy development of BSO theory and appli-
cations.

The clustering method of the BSO algorithm directly
affects the convergence speed of the algorithm and is a major
factor affecting the performance of BSO. Therefore, many
scholars have focused their research on the choice of the clus-
tering methods of BSO. The purpose of the clustering method
in the BSO algorithm is to converge the solution to a certain
area. Different clustering algorithms can be used in BSO.
In the basic BSO algorithm. The k-means clustering algo-
rithm is used. However, this original clustering strategy has
been replaced by increasing number of convergence methods.
In 2015, Shi [30] introduced a new convergence operation
that replaced the k-means clustering method in the basic BSO
algorithm; therefore, a large reduction in the computation
time can be obtained. In 2016, Chen et al. [29] proposed an
improved affinity propagation (AP) clustering method and an
enhanced creation strategy for the structural information of
single or multiple clusters to adaptively change the number of
clusters during the search process. In 2018, Dash er al. [31]
introduced k-means++ technology to improve the BSO algo-
rithm, which solves the problem of the slow convergence of
the algorithm by using a random probability decision in the
river formation dynamics scheme to select the best clustering
centroid for population generation. In 2018, Duan et al. [32]
introduced a new clustering method based on metric dis-
tance into the basic BSO, proposed metric distance brain-
storm optimization (MDBSO), and applied the improved
algorithm. In 2018, Li et al. [33] proposed an improved BSO.
In the improved algorithm, the original clustering strategy
is modified, and a random grouping scheme is introduced
to shrink the computational cost and maintain the diversity
of the population. In 2019, Cao and Wang [35] proposed
active learning brain storm optimization(ALBSO) to enhance
the performance of the original BSO. The simulation results
show that the performance of ALBSO has been significantly
improved.

In the research on the individual generation strategy of
BSO, in 2017, El-Abd [40] described a global-best version
combined with per-variable updates to improve the perfor-
mance of BSO. At the same time, the proposed algorithm
incorporated a reinitialization scheme that was triggered by
the current state of the population. In 2018, Li er al. [41]
proposed a BSO algorithm with multi-information interac-
tions (MIIBSO) that addresses the issue of untimely conver-
gence for complex problems and balances exploration and
exploitation. In 2018, Papa et al. [42] introduced a variant of
the basic BSO. To increase the diversity of the population, this
method uses different transfer functions to map real-valued
solutions to Boolean hypercubes. In 2018, Song et al. [34]
proposed a BSO that used simplified individual combinations
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and improved step functions to update the individuals.
In addition, a quantum behavior mechanism was introduced
into the improved BSO, and a quantum-behaved individ-
ual strategy with periodic learning behavior was developed.
In 2019, Yu et al. [44] proposed distance-based diversity and
fitness-based diversity to improve the diversity of the BSO
population and to adapt the algorithm parameters. In 2020,
Guo et al. [43] proposed a grid-based multiple objective BSO
with a hybrid mutation operation, which drew on the idea of
Cauchy and chaotic mutation operators and generated new
individuals with wide diversity. In 2020, Sun et al. [37]
proposed a novel BSO (RMBSO) in view of the fact that the
original BSO tends to stagnate in the exploitation phase. The
algorithm used a slight relaxation selection and the creation
of thought sets based on multiple populations to improve the
performance of BSO for global optimization problems with
multiple landscapes.

In the application research on BSO, in 2016,
Wang et al. [15] combined principal component analy-
sis (PCA) and BSO for stock price prediction. In addition,
the improved BSO algorithm was used to search for the best
parameters for v-support vector regression(v-SVR). In 2018,
Xu et al. [48] proposed an improved BSO based on prior
knowledge(DBSO), and applied it to solve traveling salesman
problems(TSPs). In 2018, Ke [45] used BSO to solve the
cumulative capacitated vehicle routing problem which aims
to minimize the sum of arrival times for customers. In 2018,
Xiong et al. [12] proposed an improved BSO and applied
it to solve fault section diagnosis (FSD) problems in power
systems. In 2019, Palanikkumar and Priya [18] proposed an
improved BSO and applied it to reliably manage medical
information. In 2019, Hao et al. [47] proposed a hybrid BSO
and applied it to solve distributed hybrid flowshop scheduling
problems. In 2019, Chen et al. [46] introduced an improved
BSO with a composite index, and applied the algorithm to
solve the optimization problem in a hybrid renewable energy
system. In 2019, Revathi et al. [49] proposed a hybrid BSO
based whale optimization algorithm(BSO-WOA) for user
privacy data protection. In 2020, Peng et al. [38] proposed
a novel BSO, namely, the multicluster adaptive brain storm
optimization (MCaBSO) algorithm, and applied the novel
BSO to obtain the optimal combination of services based on
the quality of service (QoS).In 2020, Narmatha et al. [25] pro-
posed the fuzzy brain-storm optimization algorithm(FBSO)
for medical image segmentation and classification. Exper-
imental results showed that the proposed FBSO was effi-
cient and robust, and significantly reduced the segmentation
time. In 2020, Cervantes-Castillo and Mezura-Montes [21]
described the enhancement of the BSO algorithm with a
special operator and applied it to solve constrained numerical
optimization problems.

In summary, a large number of scholars have contributed
to the improvement of BSO which has proven to have value
in realistic applications in various fields. Although scholars
have made some progress in the theory and application of
BSO, there are still some key issues. The enhancement of the

201607



IEEE Access

C. Wu, X. Fu: Agglomerative Greedy Brain Storm Optimization Algorithm for Solving the TSP

BSO algorithm proposed in [29], [30], [34], and [43] involve
modifying only the clustering method and the strategy for
generating the population. However, most BSO algorithms
still tend to fall into local optima when solving complex
optimization problems. As mentioned above, BSO is rarely
applied to combinatorial optimization problems such as the
TSP. To address this gap in current research, this article
applies the improved BSO algorithm to the solution of the
TSP. The TSP is proven to have NP-hard characteristics. The
wide range ofvariants of the TSP encountered in the real
life has made this problem a popular focus for researchers;
however, solving the TSP quickly and effectively remains a
considerable challenge. In recent years, an increasing number
of algorithms have been used to solve the TSP [48], [50]-[52],
and this type of problem has also been used to test the per-
formance of algorithms. It should be noted that the literature
listed in this section represents only a small part of the related
work. Due to the large and growing number of relevant stud-
ies, summarizing all related work would be a difficult task.
Therefore, readers who wish to learn more about the possible
applications of BSO are referred to the article published by
Cheng et al. [53]. On the other hand, for a further understand-
ing of the TSP and related solution techniques, interested
readers are recommended to consult the work introduced
in [54] and [55]. A good BSO algorithm for soling TSP should
have the following characteristics: (1) The individual update
strategies should make full use of information on the fitness
of the current population and the number of algorithm itera-
tions. (2) When the algorithm is running, the loop statement
should be reduced to increase the solution speed of the algo-
rithm. (3) A balance between exploration and development
should be achieved throughout the iterative search process.
(4) For either a small-scale or large-scale TSP instances,
the algorithm should be able to converge to the global optimal
solution with high accuracy. Based on the above consider-
ations, this article proposes an agglomerative greedy BSO
algorithm (AG-BSO).
The main contributions of this work to research on the TSP
are as follows:
o We propose a greedy BSO algorithm based on agglomer-
ative hierarchical clustering. AG-BSO offers three main

improvements over the basic BSO algorithm:
1) We replace the original k-means clustering algorithm

with an agglomerative clustering algorithm, thereby
eliminating the influence of ‘noise’ and the sensitivity
of boundary data.

2) A greedy algorithm is introduced for population ini-
tialization.

3) Exchange rules and a heuristic crossover opera-
tor are adopted for updating the individuals in the
population.

o The AG-BSO algorithm and other classic algorithms
proposed in the literature have been used to calculate
results for the TSPLIB test set. The AG-BSO algorithm
is found to be superior to the other algorithms in terms
of solution time and solution accuracy.
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« We compare the proposed AG-BSO algorithm with other
improved BSO algorithms that have recently been pre-
sented and show that the proposed AG-BSO algorithm
has great advantages in terms of solution quality.

The rest of this article is structured as follows: a description
of the TSP and an introduction to the BSO algorithm intro-
duction are given in Section II. In section III, the proposed
improved BSO for solving the TSP is introduced in detail.
The experiments performed are described in Section IV.
Finally, a summary of the paper with conclusions and direc-
tions for future improvement, is presented in Section V.

Il. THE BASIC PROBLEM DESCRIPTION

A. TRAVELING SALESMAN PROBLEM

The TSP is the most famous and widely studied problem in
the history of computer science and operations research. Like
a great deal of other combinatorial optimization and routing
problems, the TSP is considered NP-hard. It is also a tool
for testing algorithm performance. The TSP can be simply
described as follows: a salesperson needs to visit n cities to
sell products, and the salesperson can visit each city only
once, randomly starting from one city and finally returning
to the same city, such that the total distance of the selected
route is the shortest pobsible. The mathematical model of the
TSP is formulated as follows:

C = (c1,¢2,---,¢5), 1<¢ci<n (1)
n—1
F(c;)) =Y D(circip1) + D (cn c1) 2)

i=1

where i is the number of the i-th city, with C represents the
set of all city numbers; D (c;, ci+1) represents the distance
between two cities and D (c¢;, ¢i+1) = D (ci+1, ¢i). The goal
of the problem is to find a Hamiltonian ring subject to the
given constraints such that the value of Eq.(2) is minimized.

In this article, we use the well-known path representation
to encode the TSP solution. Accordingly, each solution is
coded as an arrangement of numbers [56]. The order in which
the numbers are arranged indicates the order in which the
salesman visits each city, and the Euclidean distance is used
to calculate the distance between each pair of nodes.

B. THE PRINCIPLE OF BRAIN STORM OPTIMIZATION

BSO as an algorithm that gradually reduces the search space,
has attracted the attention of researchers around the world
because of its high convergence speed and solution accu-
racy. BSO is usually combined with individual clustering and
mutation mechanisms, and the algorithm relies on two main
operators: convergence operator and divergence operator. The
core of the algorithm when solving a problem consists of the
classification, selection and individual updating(mutation) of
the solution scheme. The details are as follows:

o Clustering strategy: The original BSO algorithm uses the
k-means clustering to cluster similar individuals into &
clusters and then uses an artificially specified individual
with the optimal fitness function value as the center
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of each cluster. To avoid falling into a local optimum,
a new individual will also be randomly generated to
replace one of the cluster centers.

o Selection strategy: A selection strategy is used to
maintain better solutions among all individuals. After
each new individual is generated, the selection strategy
retains better solutions, while the clustering strategy and
generation strategy are applied to add new solutions
to the species to maintain the diversity of the entire
population.

o Mutation strategy: there are four main mechanisms for
mutation in BSO:

1) Add arandom disturbance to a random class center to
generate a new individual,

2) Randomly select an individual in a random class and
add a random disturbance to generate a new individ-
ual.

3) Randomly combine two class centers, and add ran-
dom disturbances to generate new individuals.

4) Randomly fuse two random individuals in two
classes, and add random disturbances to generate new
individuals.

The probability of each cluster center being selected in the
above 4 mechanisms is shown in Eq.(3):
IKi]
M= — 3)
Q
where |K;| represents the size of population i in cluster K,
and Q is the number of clusters. Gaussian mutation is used to
generate new individuals in BSO, and the mutation operator
is as follows:
x4 =Xx4 4 ExN (O 1), )

new e

where X¢, is a new a-dimensional individual and X%, | is
the set of selected d-dimensional individuals. N (0, 1), is a
Gaussian distribution with mean 0 and variance 1, and £ is
a coefficient that weights the contribution of the Gaussian

random value which is calculated by Eq.(5).

& = logsig ((0.5 * Maxlter — Currentlter) /k) x R (0, 1)
Q)

where Maxlter and Currentlter are the set maximum number
of iterations and the current number of iterations, respec-
tively. log sig () is a sigmoid transfer function. k is the coef-
ficient of the slope of the adjustment function needed to
balance the convergence rate of the algorithm, and R (0, 1)
is a random number in the interval [0, 1].

Algorithm 1 presents the corresponding the pseudocode of
this procedure [8]. The implementation of the BSO algorithm
is a simple, consisting of the following steps:

1) The population is initialized.

2) The individuals in the population are evaluated and
clustered.

3) New individuals are randomly generated.

4) The population and cluster centers are updated;
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Algorithm 1 Pseudocode of the Basic BSO
1: Randomly generate N individuals and calculate their
fitness.
2: gen = 1( Record the number of iterations).
3: while gen < Maxliter do
4:  Use k-means clustering algorithm to divide N individ-
uals into K clusters.
5:  Record the best individual as the cluster center.
6: if random (0,1) < p = 0.2 then

7 Cluster center is replaced by randomly generated
individuals.
8: endif
9: fori=1toN do
10: if random (0, 1) < p_one = 0.8 then
11: Randomly select a cluster.
12: if random (0, 1) < p_one_center = 0.4 then
13: Determine cluster center X /e -
14: else
15: Randomly select other individuals.
16: end if
17: else
18: Randomly generate two different clusters k1 and
k2.
19: if random (0, 1) < p_two_center = 0.5 then
20: Choose a combination of two cluster centers as
Xselect -
21: else
22: Randomly select two individual combinations
as Xselect -
23: end if
24: Update the individual X;,jec+ by Eq.(4) and Eq.(5).
25: Compare new and old individuals
26: end if

27:  end for
28: end while

5) If the maximum number of iterations has been reached,
the optimal individual is output; otherwise, the algorithm
returns to 2).

Ill. IMPROVED BSO FOR THE TSP

A. INITIALIZATION OF THE TSP

The improved BSO is built on the basic BSO, and the
population is initialized through a greedy algorithm [57]
and a randomly generated population strategy based on
prior knowledge. When the number of nodes in the city is
small, the randomly generated population strategy is used to
generate the initial population; otherwise, the greedy algo-
rithm is used. In accordance with Meeran’s [58] research,
most individuals in the population are generated based on
prior knowledge, whereas only a small percentage are ran-
domly generated, such that mean that the updated popula-
tion is representative and the algorithm has good converges
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Algorithm 2 Pseudocode of Heuristic Crossover Operator

Input: parent_one, parent_two, dist
Output: child_one, child_two, start_c
1: for i = 1 to n (Individuals in the parent) do
2. Initialize child_one,child_two.
3:  Randomly generate n individuals, generate a random
number as the starting point for offspring, set start =
6.
4:  Update child_one, Find the right_one and right_two
cities of the parent individual 6.
if dist (right_one, 6) < dist (rigth_two, 6) then
Update the element at the second position of
child_one to right_one.
7. else
Update the element at the second position of
child_one to right_two
9:  endif
10:  Delete city 6 from the parent and update the parent.
11:  Continue the above loop until one element.
12:  Similarly, update Child_two.
13: end for

[}
-

FIGURE 1. City sequence.

properties, as. This has also been indicated through exper-
iments. Brief descriptions of the greedy algorithm and the
randomly population generation strategy for updating the
TSP population are provided as follows:

1) RANDOM POPULATION GENERATION STRATEGY

The generation of the initial population is the primary prob-
lem to be addressed when solving the TSP [59]. In this article,
when the number of city nodes is fewer than or equal to
150, a set of values is randomly generated. Each true value
represents the order in which the salesman travels [60]. For
example, consider a randomly generated sequence containing
8 true values, as shown in Fig.1. The salesman starts at city 8,
visits cities 4, 5, and so on until city 1, and finally returns to
city 8 from city 1 to complete the cycle.

2) GREEDY ALGORITHM FOR POPULATION INITIALIZATION
When the number of city nodes is greater than 150, the greedy
algorithm is used to generate the initial population to reach
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the best result quickly.The greedy algorithm starts by ran-
domly selecting of one city as the starting city, adding it to the
new population, and selecting the optimal population based
on a mechanism for removing the worst case. Then, among
all cities not included in the population, the city closest to the
current city according to the Euclidean distance is calculated
to update the current city. The above operations are repeated
until all cities are included in the new population, thereby
achieving population diversity [61].

B. SOLUTION CLUSTERING

The purpose of solution clustering is to make the solution
converge to a small region. Various clustering algorithms
can be used in the BSO algorithm [29], [53]. In the original
BSO algorithm, the basic k-means clustering algorithm is
used. However, due to the weak robustness of the k-means
algorithm, it can easily fall into local optima, and the cluster
centers have a great impact on the clustering results. There-
fore, this article proposes a hierarchical clustering algorithm
for population clustering in BSO for the first time.

The most obvious advantage of hierarchical clustering
compared with partitioned clustering is that it reduces the
chain effect [62]. In addition, a hierarchical clustering algo-
rithm can be used to cluster data sets at different scales (lev-
els). Hierarchical clustering algorithms may be agglomerative
or divisive, depending on whether the hierarchical divisions
are determined in the “bottom-up” or ‘“‘top-down’ [63]; a
brief description of the process is shown in Fig.2. In this
article the former type of algorithm is used to cluster the TSP
population. For a given data set L = (I1, I, - - - , I,), the spe-
cific steps implementation of the agglomerative hierarchical
clustering algorithm are as follows:

1) In the initial stage, each sample in the data set L is
regarded as itsown class [;,i = 1,2, ---n.

2) The matrix D of distance between each pair of samples in
the data set L is calculated;

3) Based on the calculated distance matrix D, first, the pair
of samples separated by the smallest distance is found,
the smallest distance between samples is stored, and the
two samples are merged into a new class; Second, the dis-
tance is recalculated. Finally, the distance matrix D is
updated according to the Ward linkage method, for which
the calculation formula is as follows:

200y
D(r,s) = m”)’r — ¥sll2 (6)
r S

where J, and J; represent the number of samples in cluster
r and cluster s, y, and y; represent the cluster center of
cluster r and cluster s, and the symbol || ||» represents the
calculated Euclidean distance.

Based on the operational principles of agglomerative hier-
archical clustering, it can be inferred that the time complex-
ity of the algorithm is O (n3).This is because two different
classes are merged each time, it is necessary to traverse the
distance matrix to search for the minimum distance, which
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FIGURE 2. Agglomerative and divisive process.

is a process with time complexity O (nz), and finally, all
classes are combined. For each cluster, this operation needs
to be performed n — 1 times. Experimental results indicate
that the noise-resistance of this algorithm and the shapes
of the resulting clusters are superior to those in the case of
those of k-means clustering. Therefore, the agglomerative
hierarchical clustering can improve the performance of the
BSO algorithm while maintaining its efficiency.

C. GENERATION OF NEW INDIVIDUALS

The core of the BSO algorithm is the mutation and selec-
tion of new individuals. As in other intelligent algorithms,
intergroup and intragroup interactions are considered [64].
By maintaining the diversity of the population, the BSO
algorithm can efficiently find the optimal solution when
solving the TSP. In this article, operators for exchanging
individuals and heuristic crossover are used to generate
individuals.

1) EXCHANGE INDIVIDUALS
To increase the diversity of the population, an exchange rule
is adopted to update the population in the initial stage of
individual cluster update process [65]. This exchange rule is
illustrated by the example below.

Suppose that § cities are generated randomly and that the
current solution is:

[1[2]3[4]5][6]7[8]

We randomly select two positions, 2 and 5, and exchange
the individuals in these two positions; then, the solution is
updated to:

[1[5]3[4]2][6]7[8]

2) HEURISTIC CROSSOVER OPERATOR
Considering the complexity of the TSP and referring to the
prior knowledge of Li et al., a heuristic crossover operator
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TABLE 1. Algorithm related parameter settings.

Related parameters BSO AG-BSO
Population: MM 100 100

Maximum number of iterations: MazIter 600,1000  600,1000

Number of clusters: cluster_num 5 5

Replace cluster center probability: p_replace 0.4 0.3
Choose a clustering probabilities: p_one 0.5 0.6
Choose two clustering probabilitie: p_two 0.5 0.4
Choose a cluster center: p_one_center 0.4 0.45
Select two cluster centers:p_two_center 0.45 0.5

TABLE 2. Results of the BSO and BSO1, BSO2 and BSO3 on four TSP
datasets.

Algorithm  Index  ulysses22  eil51 berlin52 pr226
MeanV 75.31 43191 754436 82174.13
BSO MeanT 15.05 24.97 12.48 187.33

Dev 0 1.39 0.03 2.25

MeanV 77.04 436.02 755321 82352.07
BSO1 MeanT 13.05 20.43 10.93 120.13
Dev 1.8 2.35 0.14 2.46
MeanV 75.3 428.87 7543.33 81242.39
BSO2 MeanT 25.38 37.63 24.65 211.47
Dev 0 0.67 0.02 1.09
MeanV 75.31 435.03 7544.36  81243.72
BSO3 MeanT 14.97 25.32 17.5 87.12
Dev 0 2.12 0.03 1.09

is used in this article to generate offspring from parents with
outstanding genetic information to accelerate the algorithm’s
optimization speed [66]. We choose parent 1 and parent 2
from the initial population and perform crossover between
them by means of the heuristic crossover operator to generate
child 1 and child 2. Algorithm 2 presents the pseudocode of
the heuristic crossover operator.

The flow of the improved BSO algorithm with hierarchical
clustering is shown in Fig.3.

IV. EXPERIMENTAL STUDIES

In this section, experiments conducted on the TSP to test the
improved BSO algorithm will be introduced in detail. First,
we analyze the parameters related to the algorithm and the
components of the improved BSO algorithm. For the TSP
data sets, the 28 instances used in this article come from the
TSPLIB benchmark [67]. The number of city nodes in these
28 instances ranges from 22 to 1291; the number in the name
of each instance indicates the number of nodes it contains.
For each instance, the algorithm introduced in this article
was independently run 30 times. To evaluate the performance
of AG-BSO, we compared it with the following advanced
intelligent optimization methods: (1) traditional intelligent
algorithms such as GA [68], SA [69], ACO [2], and PSO [1];
(2) the improved BSO algorithm [48], [70]; and (3) other
improved intelligent algorithms [71]-[74]. The simulation
experiments were run on a computer equipped with an Intel
Core 15-5200 processor, and the program was created in the
Windows 10 environment.
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FIGURE 3. The AG-BSO algorithm.

A. PARAMETER SETTINGS AND COMPONENT TESTING literature [8], [38], [41], [48], [71]. After in-depth discussion,
The adjustment of the parameters is crucial to the perfor- the parameters of the AG-BSO algorithm were determined
mance of intelligent optimization algorithms. The parame- through repeated tests and revisions. To ensure the rigor of
ter settings used for the original BSO algorithm and other this work, the relevant algorithm parameters are listed in
algorithms in the literature were adopted from the related TABLE.1.

201612 VOLUME 8, 2020



C. Wu, X. Fu: Agglomerative Greedy Brain Storm Optimization Algorithm for Solving the TSP

IEEE Access

TABLE 3. Results of the proposed BSO algorithm and the basic BSO algorithm.

Instance AG-BSO BSO
Name Optima Best Dev(%) Time(s) Best Dev(%) Time(s)
ulysses22 75.67 75.24 0 9.05 75.31 0 15.05
att48 33522 33538.34 0.05 6.54 34920.15 4.17 11.37
eil51 426 428.58 0.61 12.19 43191 1.39 24.97
berlin52 7542 7542 0 8.48 7544.36 0.03 12.48
st70 675 678 0.44 10.26 684.41 1.39 14.8
pr76 108159 108170.3 0.01 10.13 110816.35 2.46 15.29
eil76 538 540.69 0.5 9.32 555.98 3.34 12.94
rat99 1211 1211 0 114 1248.9 3.13 15.98
kroA100 21282 21070.09 0 11.88 21616.02 1.57 15.61
kroB100 22140 22152 0.05 11.5 22629.86 2.21 16.91
kroC100 20749 20749 0 11.92 20931.15 0.88 16.18
eil101 629 633 0.64 11.75 658.26 4.65 15.89
ch130 6110.86 6115.25 0.07 26.69 6233.18 2 67.11
ch150 6528 6528 0 17.5 6742.82 3.29 22.02
d198 15780 15951.29 1.08 74.85 16339.32 3.54 106.16
kroA200 29368 29507.35 0.47 49.31 30651.85 4.37 58.02
kroB200 29437 29678.92 0.82 64.37 30358.6 3.13 110.66
pr226 80369 80961.17 0.74 66.63 82174.13 2.25 187.33
gil262 2378 2394.98 0.71 82.1 2478.85 4.24 202.77
a280 2579 2583.12 0.16 83.82 2642.12 2.45 216.72
lin318 42090 43023.73 2.22 184.73 45687 8.55 245.31
417 11861 11936.25 0.63 257.88 12821.92 8.1 350.37
pr439 107217 113074.47 5.46 86.09 114774.9 7.05 102.31
pcb442 50778 52375.32 3.15 80.04 53268 4.9 96.58
d493 35002 36470.63 4.19 314.13 37568.59 7.33 437.01
rat575 6773 6929.25 2.31 373.28 7066.02 4.32 613.31
d657 48912 49204.51 0.59 445.99 51870.36 6.05 609.57
d1291 50801 51983.28 2.32 1321.59 53642.59 5.59 1768.56

Note: DEV indicates that the standard deviation.

To test the performance of the components of the AG-BSO
algorithm and observe their impact relative to the original
BSO algorithm, each of the three components was added
to the BSO algorithm individually for experimental com-
parisons with the original BSO algorithm on the data sets
ulyssses22, eil51, berlin52, ch150, and pr226. The results
are shown in TABLE.2. The detailed definitions of the algo-
rithm variants with the different components are given as
follows:

1) The improved BSO algorithm obtained by implementing
only hierarchical clustering is denoted by BSO1;

2) The improved BSO algorithm obtained by implementing
only the exchange rule and the heuristic crossover opera-
tor for updating individuals is denoted by BSO2;

3) The improved BSO algorithm obtained by implementing
only the greedy algorithm to initialize the population is
denoted by BSO3.

At the same time.we experimentally analyzed the character-

istics of the new components, and the results are presented

below:

1) The introduction of hierarchical clustering greatly reduces
the solution time of the original BSO algorithm, but the

VOLUME 8, 2020

2)

algorithm can easily fall into a local optimum, and the
solution accuracy cannot be guaranteed. When BSO1 is
used to solve the TSP instances ulysses22, eil51 and
berlin52, the solution times(in seconds) are 13.05, 20.43,
and 10.93, respectively. However, the solution accuracy
is poor because of the susceptibility to local optima; the
optimized values are lower than those achieved with the
original BSO algorithm. When BSO1 is used to solve the
TSP instance pr226, the time spent is 120.13, which is
67.2 seconds faster than the original BSO algorithm but
longer than the solution time of BSO3;

The incorporation of the exchange rule and the heuristic
crossover operator into the BSO algorithm can help the
algorithm jump out of local optima and enhance its global
optimization capability. However, this comes at the cost
of an increase in the solution time. When BSO2 is used
to solve the TSP instances ulysses22, eil51, berlin52 and
pr226, the optimized values are better than those obtained
using the original BSO algorithm, but the solution time
is significantly increased. When BSO?2 is used to solve
pr226, the solution time is 211.47, which is 24.14 longer
than that of the original BSO algorithm;
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FIGURE 4. Dynamic average convergence curves of AG-BSO and the basic BSO algorithm.

3) The use of the greedy algorithm to initialize the pop-
ulation for a large-scale TSP instance can effectively
reduce the solution time of the original BSO algorithm.
When BSO3 is used to solve the TSP instances ulysses22,
eil51 and berlin52, the solution time and solution accuracy
show no major changes compared with the original BSO
algorithm. However, the time taken to solve the large-scale
instance pr226 is 87.12, which is 100.21 faster than the
original BSO algorithm.

201614

B. COMPARISON OF THE ORIGINAL AND

IMPROVED BSO

As mentioned in the introduction to this section, an exper-
iment was conducted to prove that the improved BSO per-
forms better than the basic version of the original BSO. In this
experiment, 28 TSP instances were included. The experimen-
tal results are shown in TABLE.3. The best solution found by
the algorithm, the standard deviation (calculated as shwon in
Eq.(7)), and the average runn time (in seconds) are shown for
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FIGURE 5. Some examples of optimal paths obtained by the improved BSO.

each instance.

ov —-1v
Dey = —— (7
v

where Dev represents the deviation rate, OV represents the

best value found, and IV represents the known ideal value.
Based on the problem size, the TSP instances selected for
this experiment can be divided into two categories. When
the number of city nodes in a problem instance is fewer
than or equal to 150, the instance belongs to category 1;
otherwise, it belongs to category 2 and is considered a

VOLUME 8, 2020

large-scale TSP instance. When the number of city nodes is
fewer than or equal to 150, the maximum number of iterations
is 600; when the number of city nodes is greater than 150,
the maximum number of iterations is 1000. An algorithm
terminates when the preset maximum number of iterations is
reached.

From the results shown in TABLE.3, it can be concluded
that for these 28 examples, the improved BSO algorithm is
superior to the basic BSO algorithm in terms of the best
value, runn time and standard deviation. It can be clearly seen
from TABLE.3 that to solve the TSP with more than 100 city
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nodes, the improved algorithm takes significantly less time
than the basic BSO algorithm and the accuracy of the solution
is higher than that of the basic BSO algorithm.Furthermore,
AG-BSO achieves the known optimal values for ulysses22,
berlin52, rat99, kroA100, kroC100 and ch150. Notably,
the best values found for data sets ulysses22 and kroA100 are
lower than the known optimal values, which is normal. Most
of the data sets used in the existing literature on TSP problems
are derived from the TSBLIB test set released by Reinelt
in 1991 [67]. From a review of a large number of previous
studies, it can be found that the values obtained by many
algorithms in these studies are also lower than the known
optimal values. For example, in [74], a multiobjective ant
colony algorithm was used to solve ulysses22, and the opti-
mal value found was 75.31; in [72], a metaheuristic hybrid
algorithm was used to solve ulysses22, att488, and berlin52,
and the obtained values were 56.52, 13908.4, and 5970.83,
respectively, all lower than the known optimal values. respec-
tively. In the 20 experimental results, the standard deviation
was less than 1%, accounting for 71% of all instances. The
performance comparison between the improved BSO and
the basic BSO is shown in Fig.4. Fig.5 shows the exper-
imental results of some examples of the known optimal
solutions.
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C. EXPERIMENTATION WITH THE IMPROVED BSO AND
TRADITIONAL INTELLIGENT ALGORITHMS

To prove that the improved algorithm is better than the
traditional intelligent algorithms, the four specific instances
ulysses22, eil51, ch130 and pr226 were selected for the sim-
ulation experiments presented in this section. Each intelli-
gent algorithm was independently run 30 times on each TSP
instance. To ensure the fairness of the comparison and the
obtain statistical results quickly, for the same TSP instances,
all algorithms are tested on the identical operating system on
the same computer. Fig.6 shows the optimization processes of
the six tested algorithms for solving TSP instances ulysses22,
eil51, ch130, and pr226.

From the information presented in Fig.6, it can be intu-
itively seen that for testing TSP data ulysses22, eil51, and
ch130, the fixed number of iterations was set to 600. For
these problem instances, the AG-BSO algorithm proposed in
this article converges to the optimal value in the 44th, 184th
and 536th generations, respectively, while the optimal values
obtained by the SA, GA, and PSO algorithms continue to
constantly change with an increasing number of iterations.
When the maximum number of iterations is reached, these
algorithms have not yet converged; thus, it can be seen
that the optimization efficiency of these three algorithms
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TABLE 4. Experimental results of the BSO algorithm and other traditional algorithms.

Algorithm Index ulysses22 eil51 ch130 pr226
MeanV 75.24 428.58 6115.25 80961.17
AG-BSO MeanT 9.05 12.19 26.69 66.63
Dev 0 0.61 0.07 0.74
MeanV 75.31 431.91 6233.18 82174.13
BSO MeanT 15.05 24.97 67.11 187.33
Dev 0 1.39 2 2.25
MeanV 86.61 1244.29 39160.18 141984.76
GA MeanT 2.38 5.37 30.07 178.05
Dev 14.46 192.09 540.83 76.67
MeanV 76.09 461.81 10363.34 221305.62
SA MeanT 35.87 41.03 36.16 91.64
Dev 0.56 8.64 69.59 175.36
MeanV 76.06 449.72 6419.74 86529.16
ACO MeanT 12.13 36.9 156.2 191.87
Dev 0.52 5.57 5.05 7.66
MeanV 79.73 785.25 31516.05 109647.38
PSO MeanT 10.32 6.14 28.05 106.93
Dev 5.37 84.33 1315.99 36.43
TABLE 5. Parameter settings for three improved BSO algorithms. 200 u
—— AG-BSO P
180 BSO 7 e
Algorithm  Year Parameters - ®-GA )
160 [ [P SA -~ ! .
AG-BSO 2020 p_one=0.6, p_two=04, | |77 égg ; N
p_one_center=0.45, 14or ! ' |
p_two_center=0.5 120 - '," ,l
MDBSO 2019 P6b=0.5, P6biii=0.5, P6¢4=0.7 3 100 / N i
PKDBSO 2018 P6b=0.5, P6biii=0.5, P6¢=0.7 £ o ; K >
60
is worse than that of the AG-BSO. For the TSP instance ol |
pr226, the number of iterations was increased to 1000. The
optimization capabilities of GA, PSO, and SA are still far 201 & - 1
from those of the AG-BSO algorithm. The convergence speed 0 e---=% : ‘
of ACO is faster than that of other algorithms, however, there Hysseszz e”%P datascergso preee

is a large difference between the optimal value obtained by
ACO and that obtained by AG-BSO.

The k-means clustering method is sensitive to noise and
outliers. This causes the value found by that the origi-
nal BSO to oscillate around the optimal value in the later
stages of algorithm execution. The AG-BSO algorithm avoids
this problem by using agglomerative hierarchical clustering.
To further illustrate the advantages of AG-BSO in terms
of optimization efficiency and accuracy, the optimal values
found by each algorithm and the specific amounts of time
spent are presented in detail TABLE.4. In this table, Dev is
the standard deviation. MeanV represents the average of all
the best results in the 30 individual runs. MeanT represents
the average corresponding average run time.

Taking the eii51 data set as an example, it can be seen that
the deviation rate of the AG-BSO algorithm is only 0.61%,
representing a great advantage compared with the other algo-
rithms; in particular, this deviation rate is reduced by 83.72%
compared with that of the PSO algorithm. TABLE.4 shows
that the AG-BSO algorithm also has obvious advantages
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FIGURE 7. Run time visualization.

compared with the other algorithms in terms of the optimiza-
tion speed, deviation rate and stability when solving problems
involving small volumes of TSP data. Compared with the
original BSO algorithm, AG-BSO is superior in terms of
both solution time and solution accuracy, demonstrating that
the improved algorithm has better optimization ability and
greater robustness. Fig.7 illustrates the execution times of the
six algorithms for solving these four TSP instances.

D. COMPARISON OF AG-BSO WITH OTHER IMPROVED
ALGORITHMS
On the basis of the above comparisons the AG-BSO algorithm
with traditional algorithms, this section compares AG-BSO
with other improved algorithms.

First, AG-BSO is compared with two other improved BSO
algorithms in the literature that participated in the compari-
son are as follows: (1) the improved BSO in reference [48]
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TABLE 6. Experimental results.

Instance AG-BSO MDBSO PKDBSO
Name Optima Best Dev(%) Best Dev(%) Best Dev(%)
eil51 426.00 428.58 0.61 436.40 2.44 452.80 6.29
st70 675.00 678.00 0.44 685.50 1.51 694.30 2.80
kroA100 21282.00 21178.00 0.00 21339.00 0.26 22023.00 341
ch150 6528.00 6528.00 0.00 6939.00 6.29 7381.00 13.06
pr226 80369.00 80961.17 0.74 81606.00 1.53 85526.00 6.41
pcb442 50778.00 52375.32 3.15 52467.00 3.32 58516.00 15.23
TABLE 7. Parameter settings for the five improved algorithms.
Algorithm Year Parameters
AG-BSO(this paper) 2020 p_one=0.6, p_two=0.4, p_one_center=0.45, p_two_center=0.5
GACO 2020 a=1, =2, p=0.9, N=30,best N=30, M azxIt=1000, mutations=1000
IACO 2019 a=1, 8=2, p=0.05, Q=30, NCmax=1000
DWCA 2018 Psr=10, Pstr=38, R=5%
OMACO 2014 a=1, 8=2, p=0.05, Q=120,

TABLE 8. Statistical results of AG-BSO and four other algorithms for solving TSP instances.

Instance AG-BSO GACO OMACO IACO DWCA

Name Optima Best Dev(%) Best  Dev(%) Best Dev(%) Best  Dev(%) Best Dev(%)
ulysses22 75.67 75.24 0.00 NA NA 75.31 0 NA NA NA NA
att48 3352371 3353834 0.05 35298 5.29 34379.70 2.55 33522 0.00 NA NA
eil51 426.00 428.58 0.61 NA NA 428.87 0.67 426 0.00 426 0.00
berlin52 7542.00 7542.00 0.00 783530  3.89 7562.39 0.27  7542.00  0.00 7542.00 0.00
st70 675.00 678.00 0.44 NA NA 678.62 0.54 676.00 0.15 678.60 0.53
eil76 538.00 540.69 0.50 NA NA 556.94 352 538.00 0.00 543.00 0.93
kroA100  21282.00  21070.09 0.00 NA NA 21320.96 0.18 21308 0.12  21282.00  0.00
kroB100  22140.00  22152.00 0.05 NA NA 22196.53 0.26 NA NA 22178.00  0.17
kroC100  20749.00  20749.00 0.00 NA NA 21294.39 2.63 NA NA 21529.00  3.76
eil101 629.00 633.00 0.64 NA NA 642.03 2.07 631.00 0.32 639.00 1.59
pr226 80369.00  80961.17 0.74 NA NA 81382.45 1.26 NA NA NA NA
pcb4d2  50778.00  52375.32 3.15 NA NA 53842.84 6.04 NA NA NA NA
pr439 107217.00  113074.50  5.46 NA NA 113797.02  6.14 NA NA NA NA

Note: NA means that the algorithm is not running on the relevant TSP data set.

is abbreviated as PKDBSO; (2) the proposed reinforced
brain storm optimization in reference [70] is abbreviated
as MDBSO; among the three improved BSO algorithms,
the maximum number of iterations is 1000, and the pop-
ulation number is 100. The detailed parameter settings of
different algorithms are shown in TABLE.S.

TABLE.6 shows the simulation results of the different
algorithms at various scales. When tested kroA100, AG-BSO
finds a best value of 21178.00, better than the ideal value.
Obviously, the result for AG-BSO solving 51 cities is 0.69%,
which is 1.75% lower than the result for MDBSO(2.44%).
Similarly, for st70, AG-BSO has a deviation rate of 0.44%,
which is lower than the previous best deviation of 1.5%. For
kroA100, ch150, pr226, and pcb442, the deviation rate of
AG-BSO are reduced by 0.74%, 4.88%, 0.8%, and 0.78%,
respectively, compared with those of MDBSO. In summary,
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the experimental data show that the proposed method
achieves good results. As the problem complexity increases,
AG-BSO can jump out of local optimal solution faster,
improving the convergence performance and speed. The rea-
son for this is that hierarchical clustering is used to obtain
solutions close to the global optimum, thereby improving
the convergence properties in the population initialization
stage. The experimental results show that, compared with
the MDBSO algorithm, the AG-BSO algorithm can better
avoid falling into local optimal when solving TSP instances,
and thus can find better results more efficiently and stably.
It can be concluded that AG-BSO is significantly superior to
MDBSO and PKDBSO.

Finally, AG-BSO was compared with four improved
algorithms in the literature. The four improved algo-
rithms that participated in the comparison are as follows:
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(1) the proposed meta-heuristic hybrid algorithm in refer-
ence [72] is abbreviated as GACO; (2) the improved ACO
is abbreviated as IACO in literature [71]; (3) the proposed
discrete water cycle algorithm is abbreviated as DWCO in
literature [73]; (4) the proposed multi-role ACO is OMACO
in reference [74]. The detailed parameter settings of the dif-
ferent algorithms are shown in TABLE.7.

TABLE.8 shows the statistical results of AG-BSO and the
other improved algorithms. The conclusions obtained from
Table.8 are similar to the previous conclusions. Once again,
AG-BSO is the best-performing technique overall. Among
the small-scale TSP instances, better results are obtained for
ulysses22, att48, berlin52, st70, eil76, kroA 100, kroC100 and
eil101. Additionally, for the large-scale TSP instacnes pr226,
pcb442 and pr439, the AG-BSO proposed in this article per-
forms significantly better than the other improved algorithms.
In addition, as the problem scale increases, the computational
complexity also increases significantly, and the performance
of the other algorithms drops sharply; by contrast, AG-BSO
maintains good adaptability for all TSP instances.

V. CONCLUSION

The improved BSO proposed in the literature tend to have a
slow convergence speed, can easily fall into local optima and
have a low solution accuracy when used to solve complex
combinatorial problems. In addition, although most of the
current algorithms reported in the literature can achieve close
to ideal results when solving small-scale TSP instacnes, they
show poor performance for large-scale instances. To address
the above problems, this article proposes an improved BSO
algorithm named AG-BSO. The three core improvements of
AG-BSO are as follows: (1) the k-means clustering algorithm
used in the original BSO algorithm is replaced with agglomer-
ative hierarchical clustering; (2) the greedy algorithm is intro-
duced in AG-BSO; and (3) an exchange rules and a heuristic
crossover operators are adopted for updating individuals in
the population.

On the basis of in-depth theoretical research on the stan-
dard BSO algorithm and a deep analysis of the TSP, to address
the lack of robustness of the standard BSO algorithm and
other issues, an agglomerative greedy BSO algorithm is
proposed for the first time in this work for solving the
TSP. To prove that the proposed AG-BSO is a promising
approximate method for solving the TSP, we have compared
its performance with that of the basic BSO algorithm on
28 TSP instances. In addition, the results of the proposed
algorithm have been compared with four different traditional
metaheuristic algorithms: GA, SA, ACO and PSO, and with
the results of six improved intelligent algorithms. Overall,
the simulation results show that AG-BSO is superior in terms
of optimization efficiency, convergence speed and robustness.
The AG-BSO demonstrates excellent performance for solv-
ing the considered TSP instances, better than the performance
of the other improved algorithms in most cases.

The TSP is a classic combinatorial optimization problem.
However, the conclusions obtained based on the TSP for
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the improved algorithm proposed in this article cannot be
generalized to other combinatorial optimization problems.
Therefore, in future work, we plan to develop an improved
BSO to solve other routing problems such as vehicle rout-
ing problems. Moreover, there are a large number of meta-
heuristic algorithms available in the literature for solving the
TSP. Here, the AG-BSO algorithm has been compared with
six selected improved algorithms, and the simulation results
showed that the proposed AG-BSO is promising. Neverthe-
less, we believe that conducting more extensive experiments
on additional technologies is valuable to the scientific com-
munity. The efficiency of the AG-BSO algorithm in solving
large-scale TSP instances is exciting, but in most cases it
cannot reach the known optimal value. Further improving the
algorithm will be a major challenge to address in subsequent
work. Future strategies for improving the performance of
BSO will focus on the mechanism for updating the indi-
viduals in the population, the diversity of the population,
and the incorporation of other novel intelligent optimization
algorithms.
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