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ABSTRACT Detecting the signal of the antenna array is a major problem in theoretical research and
practical application. In this paper, several new methods are given for the number of signals detection at
first, secondly, a new method called Principal Component Analysis of Signal Estimation (PCASE) will be
introduced which can simultaneously detect the number of signals and the direction of arrival. In recent
decades, the signal detection method based on the information theory criterion has been widely studied. The
problem has been adequately solved under the assumption of uncorrelated white noise. However, considering
the actual situation of wireless communication, the noise is spatially correlated or the noise information is
unknown. In this case, traditional methods such as Akaike’s information criteria (AIC), minimum descriptive
length (MDL) and sparse and parameter approach (SPA) will often lead to a wrong estimation. Therefore,
this paper introduces an improved eigenvalue correction method for the number of signals, and applies it to
two new methods: the improved eigenvalue gradient method (Im-EGM) and the improved eigen-increment
stop rule (Im-EISR), and studies a new estimation algorithm based on signal cancellation (SC). In addition,
previous algorithms for estimating the direction of arrival (such as MUSIC, ESPRIT) require the number
of known signals to estimate the direction of arrival. Therefore, this paper proposes a new method called
PCASE, which can estimate the number of signals and the direction of arrival at the same time. This method
combines the SPA and the Principal Component Analysis method (PCA) in machine learning. Compared
with the existing methods, the accuracy of these new methods is verified by Monte Carlo simulation.

INDEX TERMS Correlated noise, eigen-increment stopping rule, Gerschgorin disk estimator, principal
component analysis, direction of arrival.

I. INTRODUCTION
Array signal processing is one of the critical technology
for wireless signal processing. The purpose of array signal
processing is to obtain some parameters of signal, such as the
number of signals, direction of arrival and frequency, by pro-
cessing the signal received by sensor array. In the research
of array signal processing, it is important and realistic to
determine the number of signals and signal locations. The
direction estimation algorithms widely used in radar, sonar
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and mobile communication, such as MUSIC proposed by
Schmidt [1], ESPRIT proposed by Roy and Kailath [2], all
need to know the exact number of signals. If the estimated
number of signals are not consistent with the actual number of
signals, the performance of the above algorithm will decline
sharply or even completely fail. Thus, this orientation direc-
tion has attracted the attention of many researchers in recent
decades [3]–[16].

Eigenvalues and eigenvectors of the observed covariance
matrix provides an effective method in multiple applica-
tions, such as pattern classification, econometrics, statisti-
cal inference and signal processing [3]. The well known
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methods of Akaike’s Information Criterion (AIC) and
Minimum Descriptive Length (MDL) were proposed in [17]
and [18], respectively. Both AIC and MDL criteria work
perfectly for the scenario of uncorrelated signal/noise and use
the same computational function but with different penalty
terms. To improve the AIC andMDL criteria, a new statistical
approach was introduced by Wax and Kailath in [19], which
does not require any subjective threshold settings and the
estimation of signals number is determined by minimiza-
tion of AIC and MDL criterion. Thereafter, the traditional
AIC and MDL criteria have been analyzed and improved
in [13], [20].

However, most of the frequency spectrum of noise is
mainly non-white low frequency spectrum, the white Gaus-
sian noise passing through the channel is affected by the
channel frequency and becomes colored, that is, the noise
with uneven power spectral density function, called colored
noise, which is correlated noise. The traditional criteria for
estimating the number of signals are based on information
theoretic criteria and perform well under the assumption of
white Gaussian noise, but they always fail to detect the correct
number of signals when the noise is spatially correlated.
It should be noted that when the noise is low-frequency band
white noise, it also can be correlated. Solving this problem
has triggered enormous research interests in recent years.

Assuming the noise has a band covariancematrix structure,
the signal estimation problem was studied in [4] and the
spectral matrices were computed by using delayed blocks to
eliminate the noise influence in [6]. Considering the corre-
lated noise, new detection approaches based on Gerschgorin
radii, called the Gerschgorin disk estimator (GDE), were
introduced in [5]. Lu used the Gerschgorin disk estimator to
estimate the number of sources for the minimal redundant
array in [9]. Furthermore, an improved Gerschgorin disk
estimator for source enumeration, which is robust to spatial
non-uniform noise, was proposed by [10], and the method
of applying the Gerschgorin disk estimator to blind source
estimation was proposed by [21]. However, it is not easy to
determine a threshold of the radii for the GDE algorithm to
separate the signals and noise in practice. Using the analysis
of the difference between different eigenvalues, the estimator
based on the eigen-increment was introduced in [7], while the
eigenvalue gradient methods (EGM) were investigated based
on the difference or ratio of different eigenvalues in [8], [11].
The traditionalK−means clustering algorithmwas applied to
estimate the number of signals in colored noise field in [12].
However, based on our tests, most of the methods mentioned
above do not provide acceptable accuracy estimation results.

In addition, various methods have been proposed and ana-
lyzed for the far-field narrow-band signal location problem
[1], [22]–[25], also known as direction of arrival (DOA)
estimation, for array observation snapshots in recent decades.
Parameter estimation is one of the main methods of DOA
estimation. Recently, parameter estimation is carried out by
studying the subspace of covariance matrix, which is imple-
mented as a large snapshot of maximum likelihood (ML)

method in the case of uncorrelated signal (see [26], [27]).
However, when the number of snapshots is small or there is a
correlation between signals, it also requires the number of sig-
nals, and there is no reliable performance. Moreover, the tra-
ditional direction finding algorithms (such as MUSIC and
ESPRIT) require an accurate number of direction finding sig-
nals to estimate DOA. Therefore, an exact discretization-free
method which is a sparse and parametric approach (SPA)
proposed for uniform and sparse linear arrays in [28]. In the
case of uncorrelated signals, SPA is a large number snap-
shot implementation of ML estimation, and the number of
snapshots is consistent. SPA is suitable for any number of
snapshots and is robust to signal dependencies, especially it
does not require known user parameters. However, all the
above methods are based on the assumption of white Gaus-
sian noise. Therefore, assuming spatial correlation of noise,
the introduction of Principal Component Analysis (PCA)
method in [29] to deal with correlated noise can well solve
the problem. Hence, DOA estimation under noise correlation
is a practical problem to be solved in signal processing.

In this paper, the problem of how to reliably detect the
number of co-channel signals in the presence of spatially cor-
related noise is investigated and new algorithms and methods
are introduced. The main contributions of this paper are as
follows:
• Two new approaches, improved Eigenvalue Grads
Method (Im-EGM) and improved Eigen-Increment
Stopping Rule (Im-EISR) will be introduced based on
an improvement of eigenvalue correction. Increasing
the difference between the eigenvalues will improve the
accuracy of the signal detection algorithm.

• A new estimation algorithm is investigated based on
Signal Cancellation (SC), which the robust threshold SC
can be set for particular direction and frequency after
the short time of training to achieve high estimation
accuracy.

• A newmethod of principal component analysis of signal
estimation (PCASE) is proposed, which combines SPA
and PCA to solve the problem of spatial correlation
noise. Different from other methods, this method can
simultaneously detect the number of signals and esti-
mate the DOA.

The rest of this paper is structured as follows: in section
II, we describe the system model. Several new algorithms for
detecting signals are presented, and the validity is verified by
numerical experiments in section III. In section IV, we present
the PCASE for detecting signal and estimating direction of
arrival. Finally, section V concludes this paper.

Notation: In this paper, lowercase boldface letters represent
vectors, while uppercase boldface letters represent matrices.
AT ,AH andA indicate the matrix transpose, conjugate trans-
pose and Hermitian of A, respectively. Cm×n and tr(A) are
denoted as the vector space of all m × n complex matrices
and the trace of a matrix A, respectively. || · ||F , j =

√
−1

and diag(x) represents the Frobenius form operator, imag-
inary unit and a diagonal matrix with x as the principal.
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Furthermore, A− B � 0 means matrix A− B is a positive
semidefinite and x � 0 means xj ≥ 0 for all j.

II. SYSTEM MODEL
In this section, we introduce two kinds of antenna arrays,
the uniform circular array (UCA) and uniform linear array
(ULA). UCA is suitable for estimating the number of signals,
while ULA is suitable for simultaneously detecting the num-
ber of signals and estimate the DOA. First, we give the form
of the observation model

Y = AS+ E, (1)

where Y ∈ CN×L represents the received signal matrix,
the matrix S ∈ CM×L and E ∈ CN×L represent the trans-
mitted signal and noise, respectively. L is the number of
snapshots,M is the number of signals and N is the number of
sensors, respectively.

The theoretical covariance matrix is defined as

Ryy = E[YYH ]

= ARssAH
+ Rnn

= 9 + Rnn, (2)

where Rss = E[SSH ] is the signal covariance matrix, which
is diagonal in the case of uncorrelated signals.1 The noise
covariance matrix is Rnn = E[EEH ]. And denote the sample
covariance:

R̂yy =
1
L

L∑
i=1

yiyHi . (3)

A. CIRCULAR ARRAY
We consider the antenna array system equippedwith 8 receive
antennas located in a circle with a radius of d meters as shown
in Figure 1. The time delay is given by

τn =
rTn u
c
=

1
c
[xncosθcosφ + ynsin θcosφ + znsinφ], (4)

where c is the speed of light, θ and φ are defined in Figure 1,

rn = [xn, yn, zn]T ;

u(θ, φ) = [cosθcosφ, sinθcosφ, sinφ]T . (5)

The wave number vector is defined by

k(θ, φ) =
ω

c
u(θ, φ) =

ω

f λ
u(θ, φ) =

2π
λ
u(θ, φ), (6)

where ω is temporal angular frequency of the wave, f and λ
are the frequency and wavelength of light, respectively. The
nth element of steering vector is given by

an(θ, φ) = e−j
2π
λ
[xncosθcosφ+ynsinθcosφ+znsinφ]

= e−jr
T
n k(θ,φ). (7)

The received signal is given by

y(t) = A(θ, φ) s(t)+ n(t), (8)

where the columns of matrixA(θ, φ) are the steering vectors.

1We assume that the signals are in our future work.

FIGURE 1. System model.

B. UNIFORM LINEAR ARRAYS
Considering the ULA with M narrow-band far-field signals
impacting the sensor from direction θm ∈ [−90◦, 90◦), m =
1, 2, . . . ,M , the spacing of the sensor is not less than λ

2 .
The DOA estimation problem is to estimate the direction
vector θ = [θ1, . . . , θM ]T . Denote ϑm =

sin(θm)+1
2 ∈ [0, 1),

m = 1, 2, . . . ,M . As the relation θ ↔ ϑ is one-to-one, so the
estimate of ϑ = [ϑ1, . . . , ϑM ]T is equivalent to θ . θ can be
obtained by the inverse solution ϑ . If we adjust the spacing of
the antennas to always keep the wavelength λ

2 , then ϑ is the
frequency parameter.

For an N -element ULA, themth element of steering vector
is given by

a(ϑm) = [1, ei2πϑm , . . . , ei2(N−1)πϑm ]T . (9)

The array manifold matrix A(ϑ) = [a(ϑ1), . . . , a(ϑM )] con-
tains the steering vectors.

According to [22], [30], a simple phase shift is used to rep-
resent the time delay of different sensors, and an observation
model is obtained:

y(t) = A(ϑ) s(t)+ n(t), (10)

where t indexes the snapshot.
Based on the above assumptions, in order to better estimate

the effective parameters. Let

9 = A(ϑ)diag(p)AH (ϑ), (11)

where p = [p1, p2, . . . , pN ]T is the signal power parameter.
It can be seen that 9 � 0. So 9 is a Toeplitz matrix
determined by 2N−1 complex numbers, which can bewritten
as 9 = T (u) for some u ∈ CM ,

T (u) =


u1 u2 · · · uN
ū2 u1 · · · uN−1
...

...
. . .

...

ūN ūN−1 · · · u1

 . (12)

III. DETECTING THE NUMBER OF SIGNALS
This section presents several algorithms for detecting the
number of signals.
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The additive white Gaussian noise covariance matrix is
Rnn = E{n(t) nH (t) } = σ 2I, with noise variance σ 2. With
the independence assumption and applying traditional AIC
and MDL criteria, the number of signals can be estimated
which is very important for setting the partition of the eigen-
vectors of the covariance matrixRyy in MUSIC, ESPRIT, etc.
However, if the noise is correlated, the expression ofRyy is

rewritten as

Ryy = A(θ, φ)RssAH (θ, φ)+6,

=

M∑
i=1

(λi)vivHi +
N∑
j=1

σ 2
j njn

H
j , (13)

where 6 = E{n(t) nH (t) }, λi and vi, i = 1, . . . ,M are the
ordered eigenvalues and eigenvectors ofA(θ, φ)RssAH (θ, φ),
σ 2
j and nj, j = 1, . . . ,N are the eigenvalues and eigenvectors

of 6.
As the following, two new methods of detecting the num-

ber of signals are introduced, which are Eigenvalue Correc-
tion Improvement and Signal Cancellation.

A. EIGENVALUE CORRECTION IMPROVEMENT
Considering the existing methods, the differences between
the eigenvalues of R̂yy are not obvious enough for detection,
because of the noise correlation. The idea of eigenvalue cor-
rection is to try to update the eigenvalues of the covariance
matrix R̂yy to enlarge the difference between the eigenvalues
of the signals and noise.

If we can estimate the matrix Ryy by considering the
off-diagonal elements in 6 and deal with the mixture of
signals and noise, the signal number can be estimated directly
by using the log-likelihood function F as [19],

F = −L log det(Ryy)− tr
[
(Ryy)−1R̂yy

]
, (14)

However, it is very hard to separate information of sig-
nal and noise from Ryy. Because of that, we provide new
applicable approaches and improved methods based on the
eigen-decomposition of R̂yy.

Assuming ei, i = 1, . . . ,N , to be the correction value of
the eigenvalues and order the eigenvalues of R̂yy in ascending
order as: λmin = l1 ≤ l2 ≤ · · · ≤ lN = λmax . On the
one hand, considering physical meaning of correction value,
we need to add white noise to arrays, such that

ei ≤ λmax , i = 1, 2, . . . ,N ; (15)

and on the other hand, in order to smoothen colored noise
effectively,

ei ≥ λmin, i = 1, 2, . . . ,N . (16)

Based on the idea of eigenvalues correction, we define a
new correction method as followings:
• Order the eigenvalues in ascending order: l1 ≤ l2 ≤
· · · ≤ lN .

• Define the correction factor as

e1 =
√
l1, (17)

ei =

√√√√√ i∑
j=1

lj, i = 2, . . . ,N . (18)

• Update the corrected eigenvalues as

ci = li + ei, i = 1, 2, . . . ,N . (19)

• Rearrange ci in descending order: c1 ≥ c2 ≥ · · · ≥ cN .
According to this correction, the difference between eigen-

values of the signals and noise can be enlarged and it will
contribute to improve the estimators. This is because, by per-
forming the eigenvalues correction as above, large value cor-
rections are added to enlarge the bigger eigenvalues (normally
they represent signals) and small value corrections are put to
the smaller eigenvalues. Increased difference between eigen-
values will improve the accuracy of signal detection algo-
rithms. Two algorithms based on the corrected eigenvalues
are introduced in the following.

1) IMPROVED EIGENVALUE GRADS METHOD (IM-EGM)
Considering the traditional eigenvalue grads method based on
the eigenvalues correction mentioned above, the number of
signals can be estimated as follows:

Firstly, we calculate the average grads of all corrected
eigenvalues as

c =
c1 − cN
N − 1

. (20)

Secondly, each grad between adjacent eigenvalues is cal-
culated as

ci = (ci − ci+1), i = 1, . . . ,N − 1. (21)

Finally, comparing ci with c from i = 1 to N −1. If ci ≤ c,
the algorithm finishes and the estimate number of signals is
equal to i− 1. The computational complexity of the core step
of the method is O(N 3

+ N 2
+ 7N ).

2) IMPROVED EIGEN-INCREMENT STOPPING RULE
In this subsection, a stopping rule is provided for the grads of
eigenvalues to improve the accuracy of estimation.

A single eigen-increment stopping rule (EISR) is defined
as

EISR = f (N ,L)
CEISR

(1+
√
CEISR)2

, (22)

where CEISR is the estimation of the signal power and is given
by

CEISR =
c1 − cN
N

, (23)

and f (N ,L) is a coefficient function with the following fea-
tures [7]:

1) f (N ,L) = 1 when L →∞
2) f (N ,L) increases as L reduces
3) f (N ,L) decreases as N increases.
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Using the EISR, the detection criterion can be described as
follows: if

ĉi = (ci − ci+1) ≥ EISR, i = N − 1,N − 2, . . . , 1, (24)

it stops and the estimate of the number of signals is i. The
computational complexity of the core step of this method is
O(N 3

+ N 2
+ 3N ).

B. SIGNAL CANCELLATION (SC)
The observed covariance matrix R̂yy includes the mixture
information of signals and spatially correlated noise. The
idea of signal cancellation is to subtract the signals based on
their eigenvalues and eigenvectors which are larger than the
eigenvalues and eigenvectors of noise, and stop at particular
step when only the noise is left.

Obviously, after subtracting all the signals, the covariance
matrix R̂yy should only have the noise, and this can be mea-
sured by comparing the Frobenius norm of covariance matrix
at each step.

Assuming there are d signals, the algorithm can be
expressed as

R̂j
yy = R̂yy − ljujuHj , j = 1, 2, . . . , d, d + 1, . . . ,N , (25)

where uj, j = 1, 2, . . . , d, d + 1, d + 2, . . . ,N are the
eigenvectors of R̂yy according to the eigenvalues l1 ≥ l2 ≥
· · · ≥ lN .

It should be noticed that when j > d , we can derive the
covariance matrix R̂j

yy by subtracting only one item of noise.
Furthermore, considering the practical properties of noise,
the difference of the generalized Frobenius norm of R̂d+1

yy and
R̂d+2
yy is very small. To cope with the wide value range of the

real data, we normalize their Frobenius norms by

N (R̂1
yy) = 1,

N (R̂j
yy) =

||R̂j
yy||F

||R̂1
yy||F

, j = 2, . . . ,N . (26)

Assuming that the stopping threshold is SC , the algorithm
will stop when

N (R̂j
yy)− N (R̂j+1

yy ) ≤ SC . (27)

Then the estimated number of signals is j− 1.
Another advantage of signal cancellation method is that

the robust threshold SC2 can be set for particular direction
and frequency after short time of training to achieve high
estimation accuracy.

C. NUMERICAL RESULTS
In this section, first, simulation results are presented by show-
ing the successful detection probability of new estimation
methods. The system is simulated as shown in Figure 1. Eight
antennas are uniformly located on the circle with radius 3.5

2The threshold SC can be set by the experience based on different
scenarios.

m. In all simulations, we assume that there are two indepen-
dent signal sources impinging from 45o and 90o respectively,
but the noise is spatial correlated. Parameter Settings are
shown in Table 1. We assume that the correlation matrix of
noise is a Symmetric Toeplitz matrices (or called as cen-
trosymmetric matrix), and the correlation matrix element is
α|i−j|, i, j = 1, . . . ,N . The correlation of noise is generated
by correlation matrix and controlled by the parameter α,
smaller value of α means less correlation between the noise
and the correlation is stronger when α increases. The optimal
parameter settings are shown in Table 2. After determining
the two values, the value with the probability reaching 1 is
selected according to the probability of successfully estimat-
ing the number of signals. The best value is greater than or
equal to this value.

TABLE 1. Parameter setting.

TABLE 2. Best value comparison of SNR, sensors, and snapshots.

Figure 2 presents the success estimation probability of
EGM algorithm, where EGM denotes the estimation based
on original eigenvalues, and Im-EGM denotes the corrected
eigenvalues based estimator. The noise correlation parame-
ter α varies from 0.5 to 1. For the spatial correlated noise
scenario, EGM works well when SNR is greater than 0 dB,
while there is no obvious difference that can be seen between
EGM and Im-EGM. Generally speaking, the Im-EGM per-
forms similarly to EGM.

FIGURE 2. Success Estimation Probability of signals detection based
on EGM.
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The estimation algorithm based on EISR is shown
in Figure 3, where the estimator based on original eigenvalues
is denoted as EISR and Im-EISR represents the estimation
using corrected eigenvalues. The correlation between noise
is varying from weak α = 0.5 to strong α = 1. The estimator
based on EISR can provide accurate detection when SNR
is greater than 5 dB and noise correlation is weak, while it
requires high SNR to provide acceptable detection results
when the noise correlation increases. It worth to notice that
Im-EISR works better than EISR when there are weak spatial
correlations between noises.

FIGURE 3. Success estimation probability of signals detection based
on EISR.

Simulation results of success estimation probability of sig-
nal detection by applying the signal cancellation algorithm
is illustrated in Figure 4. First of all, comparing to EGM,
Im-EGM, EISR and Im-EISR, the simulation results show
that the estimation algorithm based on signal cancellation
works better in low SNR regime, but the success estimation
probability increases slowly with SNR.

FIGURE 4. Success estimation probability of signals detection
applying SC.

The simulation results of new estimation algorithms are
compared with each other and existing well known methods

GDE [10] and K−means [12] in Figure 5. The noise corre-
lation parameter is α = 1 for all the curves. It can be seen
that the estimation algorithm based on signal cancellation
performs the best in low SNR regime, but the successful prob-
ability of GDE method increases more quickly when SNR
increases. The K−means algorithm and estimation based on
Im-EISR are worse than the others. Comparing to the original
criteria, effective methods have been found in the correlated
noise environment and they are verified by the simulation.

FIGURE 5. Comparison of success estimation probability of different
estimators.

IV. PCASE
The methods shown in section III can only improve the accu-
racy of signal number estimate, in this section, the PCASE
algorithm will be introduced simultaneously to detect the
number of signal sources and estimate DOA. Based on the
popular machine learning method PCA [29] and the basic
idea of SPA (see in [28]), we study the new estimation
method PCASE. The flow chart is shown in Figure 6, which
is described in detail below.

FIGURE 6. PCASE flowchart.

Remark 1: In this paper, we assume that rough information
of the noise is known, which mean it is not necessary to

202000 VOLUME 8, 2020



L. Wang et al.: Intelligent Signal Detection Under Spatially Correlated Noise

know the exact information of noise.3 Herein, we apply the
pre-whitening technique by using the information of noise at
different times slot, but adjacent frequencies and bandwidths.
At least, it is applicable and could improve the detection
accuracy, which is verified by the simulations.

A. PRINCIPAL COMPONENT ANALYSIS (PCA)
Principal component analysis (PCA) is a technology widely
used in dimensionality reduction, lossy data compression,
feature extraction and data visualization, and is an unsuper-
vised linear method. PCA uses orthogonal transformation
to transform a group of variables which may be correlated
into a group of linearly uncorrelated variables. If the noise is
correlated, the covariance matrix of the noise is not a diago-
nal matrix. Therefore, in order to obtain independent noise,
PCA was used to reduce the noise dimension.

The spatially and temporarily white Gaussian noise covari-
ance matrix is Rnn = E{n(t1)nH (t2)} = diag(σ )δt1,t2 , with
noise variance parameter is σ = [σ1, . . . , σN ]T ∈ RM+ and
δt1,t2 is a delta function that equals 1 if t1 = t2 or 0 otherwise.
And the date snapshots are uncorrelated with each other.

Now, if the noises are correlated, Rnn does not have this
form. In order forRnn to have this form, let’s do the following
for noise E:
• Centralize all samples of E:

e(tn)← e(tn)− e;

• Calculate the noise covariance matrix EEH ;
• Eigenvalue decomposition of the covariance
matrix EEH :

• Take the eigenvalue vector corresponding to the
maximum K eigenvector w1,w2, . . . ,wK .

The final form is

Ê = WB

= [w1,w2, · · · ,wK ][bt1, bt2, · · · , btK ], (28)

where wi is the eigenvector corresponding to the largest K
eigenvalues of S0 = 1

L

∑L
n=1(e(tn) − e)(e(tn) − e)T , e =

1
L

∑L
n=1 e(tn). B is the coefficient matrix, and its covariance

matrix should be the diagonal matrix, which can be set as
diag(σ 0), σ 0 = [σ01, . . . , σ0K ]T ∈ RK+.
The expression of Rnn is rewritten as

Rnn =Wdiag(σ 0)WH .

In this way, the number of parameters does not increase
when solving SDP problems in the next subsection. SDP was
explained in the next page.

B. SPARSE AND PARAMETRIC APPROACH (SPA)
Based on the established covariance fitting criterion and
convex optimization, SPA performs parameter estimation in

3The exact information of noise means we know all the information of
noise at the time of doing detection. The rough information of noise means
we only have to know the information of noise around detection frequency
at the time before the detection

the continuous range. It is a sparse parameter method with-
out discretization. Unlike existing parameterization methods,
SPA method can detect the number of signals and estimate
the DOA. The method consists of the following parts.

1) SEMI-DEFINTE PROGRAMMING (SDP)
When bothRyy and R̂yy are invertible, in order to estimate the
unknown parameters, we consider the following covariance
fitting criterion (see [23], [31], [32]):

f (ϑ,p, σ 0) =

∥∥∥∥R− 1
2

yy (R̂yy − Ryy)R̂
−

1
2

yy

∥∥∥∥2
F
, (29)

where R−1yy is present with the noise and σ0j > 0 for j =
1, 2, . . . ,N , and f is the distance between Ryy and R̂yy.
Remark 2: The covariance fitting criterionmakes use of the

assumption that the information signal is not correlated, thus
obtaining the expression of Ryy in (2). However, the theoreti-
cal explanation proposed in [23], [31] proves that the criterion
is robust to the correlation of signals. Therefore, the proposed
method maintains this robustness under the same criterion.

It can be derivedwith some simple algebraic manipulations
that

f = tr
[
(R
−

1
2

yy (R̂yy − Ryy)R̂
−

1
2

yy )(R
−

1
2

yy (R̂yy − Ryy)R̂
−

1
2

yy )H
]

= tr(R−1yy R̂yy)+ tr(R̂−1yy Ryy)− 2N . (30)

According to equation (12), the structure of Ryy under
constraint conditions T (u) � 0 and σ 0 � 0 is obtained as

Ryy = T (u)+Wdiag(σ 0)WH . (31)

Under the condition of semi-positive definite T (u), the
distance f is expected to be the minimum, and the problem
can be converted into the following optimization:

min
u,σ 0�0

f (ϑ,p, σ 0)

s.t. T (u) � 0. (32)

The number of 2N has been expressed in Ryy, which will
lead to the redundancy ofRyy. However, the redundancy prob-
lem will not affect the currently estimated Ryy. The handling
of this problem is described in the next subsection. So the
above optimization problem can be written as

min
u,σ 0�0

tr(R−1yy R̂yy)+ tr(R̂−1yy Ryy)

s.t. T (u) � 0. (33)

After a series of derivations (see in [28]), the above opti-
mization problem is finally converted into the following
SDP problem

min
X,u,σ 0�0

tr(X)+ tr(R̂−1yy Ryy)

s.t.

 X R̂
−

1
2

yy

R̂
−

1
2

yy Ryy
T (u)

 � 0. (34)

where X � R̂
−

1
2

yy R−1R̂
−

1
2

yy .
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Therefore, the problem in (33) can be expressed as an
SDP problem and thus is convex, so the SDP problems
can be iteratively solved using the standard CVX toolbox,
aMatlab package for specifying and solving convex programs
([33], [34]). We can get the estimated value R̃yy = T (u∗) +
Wdiag(σ ∗0)W

H of Ryy, where u∗ and σ ∗0 are the solutions of
the SDP problem.

2) POSTPROCESSING
The signal and noise in the estimated covariance matrix can
be separated by the post-processing method, so that the signal
part can be represented by as few signals as possible on
the basis of the minimum description length principle. Since
there is redundancy on the diagonal of Ryy, and the effect of
redundancy is double, the solution of SDP problem cannot
be guaranteed to be unique, so it cannot be directly used as
the final estimation of noise variance. Therefore, the solution
needs to be processed by using post-processing.
R̃yy is expressed as follows

R̃yy = T (̃u)+Wdiag(σ̃ 0)WH , (35)

where T (̃u) = A(̃θ )diag(̃p)AH (̃θ ) � 0 and σ̃ 0 � 0 are the
estimate of9 and nosie covariance. The ũ and σ̃ are satisfing
that

ũ = u∗ −
[
δ

0

]
, σ̃ = σ ∗ + δI, (36)

this is one form of decomposition, but it actually lists all the
possible forms. Based on T (̃u) = T (u∗) − δI ≥ 0, and
δ = λmin(T (u∗)) is the smallest eigenvalue of T (u∗), so the
decomposition is unique. In this way, the solution of SDP is
unique. In this condition, it is possible to conclude that the
final (u, σ 0) estimates have good statistical properties.

3) SOLVING ϑ AND p
The next step is to estimate parameters ϑ̃ and p̃ for given T (̃u),
which is based on the classical Vandermonde decomposition
for semi-definite Toeplitz matrices ( [28], [35], [36]).

According to Vandermonde decomposition, ϑ̃ and p̃ can
be uniquely determined by T (̃u). In practice, ϑ̃ and p̃
can be obtained by the following method. Given T (̃u) =
A(ϑ̃)diga(̃p)AH (ϑ̃). It’s easy to prove that[

A(ϑ̃)
A2,...,M (ϑ̃)

]
p̃ =

[
ũ

ũ2,...,M

]
. (37)

where p̃ � 0, and A2,...,M (ϑ̃) just takes the first row of the
matrix Aϑ . According to [37], Prony’ s method can be used
to solve ϑ̃ and p̃ in this kind of equations. For details of the
process, please refer to [37].

C. SIMULATION RESULTS
In this section, we illustrate the performance of the proposed
PCASE method. In simulation, we consider M = 2 uncorre-
lated signals with power p◦ = [3, 1]T and frequency vector
ϑ◦ = [0.10, 0.50]T . Each signal is generated with constant

amplitude and random phase, according to the general set-

tings in [31]. The SNR defined as 10log10
min(p◦j )
σ ◦0

(in dB).
Parameter Settings are shown in Table 3.

TABLE 3. Parameter setting.

In the first case, we consider an array with 8 sensors.
Figure 7 shows the PCASE algorithm’s probability of suc-
cess estimation.4 The noise correlation parameter α ranges
from 0.5 to 0.9. It can be seen from the figure that PCASE
can provide acceptable test results when the SNR is less
than 0 dB, regardless of the strong or weak noise correlation.
When the SNR is greater than 5 dB, 100% accurate detection
results can be provided.

FIGURE 7. Success estimation probability of signals detection
applying PCASE.

As shown in Figure 8, we compared the simulation results
of three algorithms: the PCASE, Im-EISR, SC, GDE and the
existing well knownmethods K-means. The noise correlation
parameter of all curves is α = 0.5. It is easy to see that in the
case of low SNR, the estimation algorithm based on PCASE
has the best estimation effect, but the PCASEmethod’s proba-
bility of success grows slowly when SNR increase. However,
PCASE can not only detect the number of signal sources, but
also estimate the Direction of arrival. Therefore, PCASE is
effective in detecting the number of signals.

In following, we show that PCASE can detect the number
of signal sources and estimate DOA (θm = arcsin(2ϑm − 1))
at the same time. Considering M = 3 and three signals have
p◦ = [3, 2, 1]T and ϑ◦ = [0.10, 0.15, 0.50]T . In Figure 9,
when N = 8 and α = 0.5, the simulation result shows
that PCASE is more effective and accurate than SPA under
correlated noise.

4Our simulation is different from spectrum perception under the premise
of assuming a signal, so the results show the probability of success estima-
tion.
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FIGURE 8. Comparison of success estimation proability of different
estimators.

FIGURE 9. Frequency and power estimates of PCASE for estimating M = 3
uncorrelated signals when N = 8 and L = 512.

Considering large scale antenna array, we increased the
number of receiving antennas and the noise correlation coef-
ficient, which a ULA with N = 30 is used to receive
the signals and α = 0.9. The simulation result is shown
in Figure 10. The SPA approach does not work well in this
case. However, our method can accurately detect the number
of signals and give their directions. In addition, We have
regressed our experimental results with a function (y = a ∗
xb), which is able to classify the signal and noise into two
distinct categories. Therefore, the validity of our method is
verified.

According to the linear regression curve in Figure 10,
the boundary value and the middle of this curve are
selected as thresholds to judge the number of signals.
Figure 11 shows false alarm rates under different thresh-
olds. As shown in the figure, false alarm rate will increase
with the decrease of threshold value. When we select
the appropriate threshold value, false alarm rate will be
reduced.

FIGURE 10. Frequency and power estimates of PCASE for estimating
M = 3 uncorrelated signals when N = 30 and L = 512.

FIGURE 11. False alarm rate under different thresholds.

V. CONCLUSION
In this paper, the problem of detecting signals with correlated
noise has been investigated. The traditional criteria of AIC
and MDL were reviewed and the reason of their failure in
correlated noise environment was discussed. Furthermore,
new criteria were introduced, such as Im-EGM, Im-EISR
and SC. Im-EGM and Im-EISR can improve the accuracy of
the signal detection algorithm by increasing the difference
between the eigenvalues. SC can set a robust threshold for
a specific direction and frequency when the training time is
short, and achieve high estimation accuracy. The simulations
show that all the methods perform well when SNR is greater
than 5 dB. At low SNR regime, the estimation based on
SC works better than the others. For future work, the SC
method will be improved based on robust threshold setting.
In addition, we also propose amethod that can simultaneously
detect the number of signals and estimate DOA. This method
combines machine learning and sparse parameter method.
Simulation results show that this method can not only detect
the number of signal sources accurately, but also estimate the
DOA of signal sources. Compared with other methods for
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detecting the number of signals, this method is effective in
the case of low SNR. Therefore, the newmethod is a powerful
tool for detection. We will be considered to extend our work
and try to derive effective methods to study coherent signal
estimation in our future work.
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