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ABSTRACT Recently, intelligent Android malware avoids being analyzed using anti-emulator, anti-
debugging, and rooting detection. Existing emulators have problems to be easily detected by malware that
check with hardware or sensor information. This paper proposes an efficient analysis system A-Pot, to deal
with intelligent Android malware. A-Pot applied the Android container technology. It’s made to be similar to
a real phone using ARM-based hardware. A-Pot is equipped with sensor modules such as USIM, Bluetooth,
and Wi-Fi module. In order to respond to the environment analysis, the properties of the Android OS are
made to be the same as the real mobile phone. In addition, A-Pot is designed to connect to a mini base
station for supporting SMS and phone calls with the 3G network. Moreover, with the advantages provided
by the container technology, A-Pot is able to support non-ADB, non-debuggers, and non-root environments.
To prove the efficiency of our platform, we analyzed using intelligent Android malware, antivirus, Google
Play apps, and general malware. This model had an operating rate of about 97.36% for 5000 malware. The
proposed A-Pot can be efficiently applied to defend against intelligent Android malware analysis.

INDEX TERMS Android security, malware analysis, intelligent malware, android, evasion techniques.

I. INTRODUCTION
Google analyzes the apps registered in the Play store using
the Google bouncer [1]. Malware detection rates increased
about 40% before and after the introduction of Google
Bouncer. Google also provided another solution, Google
Play Protect, to support the verification of released appli-
cations [2]. Google Play Protect using AI technology.
It can analyze 50 billion apps a day. However, even with
Google Play Protect, malware apps still cause damages due
to post-detection. In December 2018, 22 apps with more
than 1 million downloads on Google Play Store were clas-
sified as malicious and deleted [3]. There are various tech-
nologies related to malware analysis, but there are intelligent
malware that cannot be analyzed due to the limitations of the
analysis environment. For this reason, the development of a
tool for dynamic analysis of Android is an important research
subject. For Android static analysis, we provide Android-
Manifest.xml file analysis and source code analysis [4]–[6].
Android dynamic analysis is conducted using either an real
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device or an emulator [7]–[9]. When using real devices, it is
possible to cope with malware that checks hardware, sensor,
and CPU information. However, it is difficult to construct
an environment for analysis, and initialization takes a long
time following the analysis of an application. In the case
of the emulator analysis, environment configuration, such
as construction and initialization for analysis, is efficient;
however, it is difficult to cope with malware that identifies
various environments unlike real devices. Recent intelligent
malware not only verifies environmental information, but
they also send SMS to verify their functionality, and various
methods are being used to evade the analysis environment
such as debugger detection and root detection [10]–[12]. And
a lot of research on how to deal with intelligent malware
have been done, but each scheme has some limits. Therefore,
we propose A-Pot to detect intelligent Android malware.
A-Pot utilizes an Android container-based emulator to build
an environment similar to a real phone, and thereafter per-
form dynamic analysis. The contributions of this study can
be summarized as follows: (1) We built an analysis envi-
ronment similar to real phones by implementing Android
container technology on ARM hardware. (2) Sensor modules
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such as Wi-Fi and Bluetooth are connected to the Android
container. And the build process is configured to emulate a
real device so that the return value for various environment
search results can be the same as that of the actual phone.
In addition, it is built to enable SMS and phone calls using
the mini base station. In non-root environments, we utilize
the hooking technology without the debugger, and we can
analyze not only the JAVA area but also the system call in
the native development kit (NDK) area. (3) It operates in
the rooting environment, emulator environment, and A-Pot
environment for many apps, and confirms the operation rate.
It is also designed to cope with activity-aliases. The rest of
this paper is organized as follows: We briefly introduce the
background of the Android malware analysis technique in
Section 2 and describe the architecture of the system in 3.
In Section 4, we describe the implementation environment
and contents. In Section 5, we discuss and evaluate the per-
formance. Finally, we conclude our findings and state the
limitations of our study in Sections 6 and 7.

II. RELATED WORK
A. PROBLEMS WITH ANDROID MALWARE DYNAMIC
ANALYSIS
For the dynamic analysis of Android malware, various virtual
environments (emulators) are designed, or analysis systems
using a real device is deployed. The analysis environment can
be largely divided into Bare QEMU, a real device incorpo-
rating an analysis tool, and Intel CPU-based Android virtual
machine (VM). Examples of Bare QEMU-based malware
analysis technologies are Android virtual device (AVD), Blue
Stack, AMIDuOS, and Nox. QEMU is an emulator and vir-
tualization tool that can be used to virtualize the hardware
of an AVD. With QEMU, the emulator can configure a
virtualized environment [13]. However, with QEMU, it can
be difficult to analyze the malware, because the malware
can easily recognize the emulator environment by checking
directories such as /dev/qemu pipe, /dev/socket/qemud or
QEMU inspection command through the getprop command.
Intel-based Android VMs can be analyzed in notebook and
PC environments, and there are Android-x86 types such as
Remix OS [14]. Because Intel-based Android is provided
as ISO (Operating System Image) files, it can run on vir-
tualization tools such as Virtualbox or VMware. But it is
easily evaded by malware that detects virtual environments.
There are various strategies to circumvent dynamic analysis;
the following strategies are used to determine the virtual
environment [15].

It is noteworthy that using Google Bouncer, in 2015,
more than 1 million users were harmed by malware
using build.MODEL == ‘‘google_ sdk’’, the source code
of the Brain Test malicious apps that bypassed Google
Bouncer [16]. In addition, in the case of the Intel CPU-based
emulator, analysis is difficult due to problems such as fre-
quent interruption of execution, avoidance of analysis when
an application is executed, slower speed than a real device,
and the impossibility of executing an SO file. Because of

TABLE 1. Emulator evasion technology.

these issues, analysts conduct analysis using real devices,
including analysis tools. However, the actual device must be a
rooting environment. In addition, it needs to connect to ADB
for analysis. It is difficult to analyze malware using analysis
evasion techniques.

B. RELATED PAPERS AND RESEARCH
There are various on-going research endeavors on the anal-
ysis of Android malware. This section introduces existing
research on Android malware analysis and contemplates its
applicability to intelligent Android malware [17]. Previous
studies have used on-device, off-device, and distributed anal-
ysis methods for malware analysis.

1) ON-DEVICE
This is a method of analyzing an Android phone using a real
terminal. However, the challenge of the on-device analysis
is that it is difficult to analyze the file system because it is
difficult to hook up the system to monitor the file systems or
perform network access without root authorization.

2) OFF-DEVICE
This involves simple signature-based detection, which cor-
responds to static analysis. Although signature-based detec-
tion is similar to the current practice of many companies,
static analysis hampers source code analysis by obfusca-
tion and packing. The efficiency of static analysis is hin-
dered by its various interrupting techniques such as junk
code generation or the insertion of code or goto command;
sequence change between opcode functions; package, class,
and method name change; and string encryption. Thus, many
studies have adopted a method of detecting malware by per-
forming dynamic analysis.

3) DISTRIBUTED ANALYSIS METHOD
This analysis method is conducted partially on the real termi-
nal and partially on the emulator. The analysis results are then
integrated. Although this analysis method can be effective,
it is vulnerable to a timing attack that confirms the time of
the operation. The heap and stack status information of the
Android running on the emulator is sent to the real terminal,
and traffic and time delay occurs in the process of returning
the result by operating the real area such as NDK in the real
terminal. In this case, it will not function.

Therefore, various studies have chosen instead to attempt
to construct an emulator environment and analyze Android
malware to avoid this situation.
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TABLE 2. Feature availability of intelligent malware (O means it is support to feature, X means it is not suuport to feature.).

4) DroidBox
The DroidBox runs the APK file in a sandbox environment,
monitors its activity, and then displays the result to the
user [18], which may include incoming / outgoing network
data, file read and write operations, confirmation of file
information outgoing via network or SMS, checks for dan-
gerous permissions, and SMS and call log checks. However,
a DroidBox emulator can easily be verified in the process of
examining the Android build process.

5) DroidScope
DroidScope is a dynamic analysis Android framework based
on VM Introspection (VMI) [19]. DroidScope monitors the
OS and Dalvik status using the emulator. It is characterized
by the detection of elevated privileges for the Android kernel.
Based on the QEMU emulator, the Android malware variants,
DroidKungFu and DroidDream, were analyzed and detected
using DroidScope. However, the effect of DroidScope on
other malware products has not been proven. Furthermore,
it has the disadvantage of being easily analyzed for QEMU
emulator detection.

6) TaintDroid
TaintDroid monitors applications that leak sensitive infor-
mation inside the phone in real time [20]. It performs the
dynamic taint analysis to track the flow of data in real-time.
However, it tracks only some sensitive data, such as phone
status and location information, because it has a large over-
head handling the dataflow in its entirety; it can also affect the
battery consumption and speed of the smartphone. Another
limitation of the TaintDroid is that although it can trace the
flow of sensitive data and detect an external leak, it cannot
block this flow. Because it operates in a real terminal, various
dynamic analysis environments can be searched. It also has
the disadvantage of requiring rooting.

7) ANDRUBIS
Andrubis is a web-based malware analysis platform that pro-
vides analysis results using DroidBox, TaintDroid, APKtool,
and Androguard [21]. Users can submit suspicious apps via a
web-based interface. Andrubis analyzes the applications on
the remote server and returns detailed static and dynamic
analysis reports to the web page. However, the platforms it
is comprised of, such as DroidBox and TaintDroid, already

have their individual limitations; thus, Andrubis cannot be the
perfect solution.

8) SANDROID
Sandroid performs the static analysis of authorization, com-
ponent, malware class, camera, and call [22]. Through
dynamic analysis, it monitors file operation, network behav-
ior (for instance, GET / POST request, TCP / UDP connec-
tion), and personal information leakage while an application
is running, including file operations. Sandroid performs emu-
lator based analysis and has been proven to be bypassed by
CPU checks.

9) PARANOID ANDROID
Paranoid Android is a method of detecting abnormal behavior
that occurs in the terminal by transmitting and analyzing the
responses that occur during every execution of the terminal to
the external server [23]. A proxy is used to quickly transfer
network traffic between the terminal and the external server.
The terminal exports the data, and the external server ana-
lyzes the received data to identify the security vulnerability.
The external server executes an emulator of the terminal
and detects abnormal behavior by applying various abnormal
behavior detection methods utilizing components such as
memory use and system call.

10) COOPERDROID
Cooperdroid is a VMI -based automated dynamic analysis
system designed to aid a better understanding of the behavior
of malicious apps [24]. It is a system that performs system
call center dynamic analysis for Android apps using VMI; it
proves that system call center analysis can effectively detect
malicious behavior. However, a method for identifying the
virtual environment of CooperDroid has been disclosed by
Vidas et al.

III. A-POT ARCHITECTURE
We propose the A-Pot system to solve the difficulty of
Android malware analysis described in Section 2. The A-Pot
system was developed to make it possible to analyze applica-
tions using evasion technology through a dynamic analyzer.
It is similar to the real device and easily determines the
analyzed result. Figure 1 shows the architecture of A-Pot.
The server includes a web server, DB, static analyzer, Soft-
ware AP. ODROID performs dynamic analysis and sends
the results to the server. The mini base station contains a
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FIGURE 1. A-Pot architecture.

module to handle 3G network and SMS. Network processing
is performed through the USIM connected to ODROID.

Some intelligent malware evades analysis through string
searches like Frida and Xposed. Therefore, A-Pot was con-
verted and applied to the string of Xposed. When A-Pot
analyzed Vulnerability analysts, the characteristics of Xposed
were not found. Based on existing research, we’ve done
API hooking that was often used for Android malware. Fur-
thermore, the hooking of the system call of the NDK area
is conducted by utilizing the advantage of the ARM-based
hardware. It hooks 164 in the Java layer and 35 in the NDK
layer to provide the result. In addition, dynamically loaded
files are stored by checking for changes in the inode value of
a specific folder. If a dynamically loaded file has the DEX,
SO, APK, and Zip extensions, it provides additional analysis
results on the file. ODROID is connected to theWi-Fi, USIM,
Bluetooth, GPS, and cameramodules in dongle form. Sensors
respond to intelligent malware that performs a variety of
sensor tests. When the sensor is connected, it attaches itself
to the Linux environment. In the Linux environment, the
attached sensor module is detached, and then attached to the
container, so that the sensor can be detected on the actual
Android OS. Some intelligent malware may detect Ethernet
networks, Ethernet is only connected to the Linux OS, and
is used to communicate with external networks; it does not
use Ethernet in the Android container. We used Huawei
e160 USB dongle and USB Wi-Fi module as a network.
We installed additional Wi-Fi for the Wi-Fi connection of the
Android container, and programmed the Wi-Fi information
to connect tomisc/Wi-Fi/wpa-supplicant.conf file. The wlan0
device was compiled with the i802-related kernel module,
along with some settings to be passed from the host OS
to the Android container and applied to the Android con-
tainer. Because the Android container does not automatically
launch Wi-Fi during booting, we changed the Wi-Fi state
via the svc Wi-Fi-enable command after booting. With this

function, IP management for the Wi-Fi connection from the
ODROID to the access point (AP) is performed. To monitor
network communication through Wi-Fi, the network traffic
generated in the Android container can be monitored by
installing the Software AP in the Mini server. We use GPS,
Bluetooth, and Camera for ODROID provided by Hardkernel
without any connection. The mini base station is installed
in the mobile base station using the Yate BTS program and
BladeRF. BladeRF is widely used as a device for implement-
ing mini base stations. We implemented a mobile network
using nuand BladeRF x40 and yateBTS for system construc-
tion. It is operated by 3G and connected with the 3G module
of Android container for SMS processing and other functions.
Two ODROIDs are connected because one user performs
automatic analysis continuously, and it is possible for the user
to manually input data, receive input, and perform an action
in one ODROID.We attempted to circumvent the code cover-
age, the limitation of dynamic analysis, and to provide various
conveniences to the analyst emulating the screen of the real
phone. The mini server includes the Apache2 web server and
MySQL for user management, and MongoDB for managing
analysis results; it performs static analysis, NFS server and
dynamic daemon operations. For the dynamic daemon, the
command is achieved through the execution of the daemon for
dynamic analysis. Static analysis is performed while upload-
ing the apk, but the dynamic analysis is difficult because
it needs to additionally check the status of the ODROID.
Therefore, it operates as a separate daemon process. A thread
is created every 20 seconds, and the MySQL query is used
to see if there is an APK file that needs to be analyzed. Then,
after checking whether there is a resting host if resting host
and APK are found, it is necessary to change the state of
the host to analyze mode, create the Android container, and
execute the command. ODROID uses the container template
to create a container with the name of the APK hash value,
and invoke the dynamic analysis trigger API on the web. The

VOLUME 8, 2020 199641



J. Park et al.: A-Pot: A Comprehensive Android Analysis Platform Based on Container Technology

FIGURE 2. General information.

APK between the ODROID and A-Pot server and the internal
network file system (NFS) server are used to transmit the
dynamic analysis result information.

IV. IMPLEMENTATION
Our analysis server and mobile network server used INTEL
NUC Kits NUC8i3BEH and have 1TB of HDD capacity is
8GB RAM. ODROID, a dynamic analyzer, is ARM-based
hardware for Android and Linux, provided by Hardkernel;
it uses ODROID XU4 version [26]. ODROIDs use the Sam-
sung Exynos5422 Cortex -A15 2Ghz and Cortex -A7 Octa
core CPUs and eMMC5.0 HS400 flash storage. For the mini
base stations, bladeRF x40, which is capable of full-duplex
40 MSPS 12-bit quadrature sampling, is used. It can also
be easily applied to Linux, Windows, Mac, and GNURadio
software [27].

We used 1000 Android malware datasets (AMD)
and 1136 Google Play Store apps to measure performance
and malware running rates [28]. We used VirusTotal to scan
the downloaded app in the Google Play Store. VirusTo-
tal provides an API for scanning services. If all the virus
scanners of VirusTotal adjudged the app to be good, it was
regarded as a normal app and used. We also received and ana-
lyzed 5000 malicious apps from NSHC, a Korean malware
analysis company. A-Pot provides results using a separate
dashboard to provide analysts with efficient analysis results.
First, it displays the APK name, the user name, the size,
and the MD5 hash value that was uploaded. Furthermore,
it describes the start time and end time, and the operation
status is visually displayed on the right side of the dashboard.
Figure 2 shows the general information of the analysis result.
General information displays the Android version, start time,
overall analysis duration, uploaded APK name, sample file
name, APK package name, and shows the number of per-
missions and activities. In addition, it reports the sensitive
information and helps the user to intuitively judge it. It also
provides risk scores based on risky APIs, permissions, and
dynamic analysis. The basic analysis shows the results parsed
from the static analysis. Our static analysis parses and lists
the main activity, package name, minimum version, target
version, version name, receiver list, service, and permissions.
In addition, the contents of the code feature are provided in
the static analysis process.

TABLE 3. Intelligent malicious code operation rate.

TABLE 4. Intelligent commercial app operation rate.

Code feature analyzes and provides codes with predefined
characteristics from the source code of the APK file. It ana-
lyzes the Dex binary file at the source code level and makes
the characteristics of the code parsable. Next, the APK file
is unpacked using Jadx. Then, a search is conducted for
the predefined pattern in the extracted java file. Patterns are
defined as regular expressions, and the matching patterns are
expressed in JSON format and stored in MongoDB. Flow
analysis analyzes the Dex binary file at the opcode level and
provides a flow graph of the code running in APK. It can show
the caller-callee relationship, and display information about
class and method values. The dynamic analysis shows the
results of the APK uploaded at runtime using A-Pot. To auto-
mate dynamic analysis, Monkey is used to generate input
to interact with the installed APK, and user interface (UI)
Automation is a way to efficiently provide a selection for
automated analysis through GUI analysis results. In addition,
in the case of manual input, A-Pot is implemented such that
it can be used when the user directly inputs the input value
and checks it step by step. This process is performed by the
user. In the case of Java file hooking, we utilize the technique
of installing and hooking Xposed in an unrooted state. The
values needed for commencing dynamic analysis are required
for the IP of the android container: the dynamic analysis
alarm time setting, the APK file path, the package name
obtained from the static analysis, and the MainActivity value.
After that, the APK Engine concludes the analysis process
by storing the analyzed data in the Report Database. Finally,
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TABLE 5. Google play store app operation rate.

the screenshot captures the screen in the middle of dynamic
analysis to show if the actual operation was successful. In the
case of malicious APKs such as Ransomware, even after the
screen is locked, screenshots can be distinguished even if they
do not perform very well.

V. PERFORMANCES
In this section, we examine the possibility of analyzing intel-
ligent malware and commercial apps containing evasion tech-
nology using A-Pot.We have tested the performance of A-Pot
using 100 intelligent malware. These malware were collected
after investigating all the ructions ofmore than 5,000malware
and selected intelligent ones that uses evasion technologies.
Our study shows that less than 2% of malware use the intelli-
gent evasion technologies. We categorized the 100 malware
according to their evasion schemes as in Table 3 and tested
whether those malware can be analyzed in 3 different envi-
ronment such as rooted phone, emulator(NOX), and A-Pot.
Table 3 shows our experimental results that A-Pot outper-
formed the other two. 93% of malware were analyzed in
A-Pot in comparison to 53% in rooted phone, and 50% in
emulator. Table 4 shows commercial apps with analysis eva-
sion technology. Various security functions such as are found
on banking apps, vaccine apps, and game apps are applied,
and various analysis evasion techniques are applied to prevent
analysis by hackers. In an intelligent commercial app, 98% of
apps ran when A-Pot was used. In the case of banking apps,
there was an application that required fingerprint recognition;
however, it was difficult to respond to because the fingerprint
sensor was not applied to A-Pot.

To get the statistics of normal apps running in different
environments, we crawled 1136 app samples randomly from
Google Play Store and tested whether they are running nor-
mally. Table 5 shows that A-Pot performs like real-phone
compared to the others.

Table 6 analyzed the analysis rate of 5000 malicious apps
received from the malicious code analysis company in order
to judge the operation rate of the application through the
malicious code data sample including the intelligentmalware.
Of the 5000 apps, 4868 functioned normally, and the remain-
ing 132 apps did not work, and could not be analyzed. The
reasons for the failure varied; however, only 23 apps were
not analyzed because of the version problem; the remain-
ing 109 apps were unusable apps that could not be installed
on a real phone. There were various reasons why some apps
could not be installed. The first is that some applications
cannot be installed due to invalid APK. The second is that
it might not be possible to install is the nonexistence of the
certificate and signing key of the app does not exist. The third
reason is that the AndroidManifest.xml file format is incor-

TABLE 6. Malware data sample operation rate.

rect due to a manifest error. The fourth, if custom permissions
overlap, installation is impossible. Fifth, some apps cannot be
installed due to a version problem or validation failure during
DEX optimization because of a DEX OPT error. Sixth, some
apps cannot be installed because the APK is unparsable; thus,
it cannot be parsed during app installation. Finally, there are
various cases such as the crash of an app when executing
activity and service, and the absence of the command and
control (C&C server). Consequently, 99.5% of the analyzed
apps can be operated, and the majority of the malware operate
normally in A-Pot.

To respond to malicious behavior using dynamic loading,
a characteristic of malware in recent years, it is determined
whether dynamic loading is used or not, as shown in Table 7.
Dynamic loading refers to the technique of loading another
APK file or Sub-DEX file during the execution of the app,
or to the performance of malicious behavior in the NDK area
by loading SO file during the execution of the app. Indeed,
various malware perform malicious actions through NDK
calls, and ARM-based hardware is an essential element for
analyzing them. It has been confirmed that normal analysis
can be performed, even when dynamic loading is performed
in the A-Pot environment. When there is no invocation by a
specific trigger among the dynamically loaded unused apps,
it is determined whether dynamic loading-related API is used
through the static analysis, and the exact result is verified.
In addition, packer and obfuscator was applied to some of
the 5,000 apps to confirm the result of the dynamic analy-
sis, even though static analysis was not performed properly.
Because A-Pot specializes in dynamic analysis, it can obtain
results for all apps with obfuscation and packing. Of the 5000
apps, packer and obfuscator were applied to 229 apps. The
categories and detailed analysis results are shown in the table
below.

VI. LIMITATIONS
Although A-Pot, our proposed platform, is effective, in the-
ory, there are some limitations that an attacker can exploit.

1) The first is the logic bomb. As with previous stud-
ies, A-Pot also has no countermeasures against logic
bombs. For dynamic analysis, even using manual input
for about 5 minutes, it is difficult to determine whether
the proper logic bomb worked. Google use Play Protect
to counter these logic bombs. However, A-Pot uses
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TABLE 7. Rate of apps using dynamic loading.

TABLE 8. APK with Packer and obfuscator.

a separate analyzer, crowdsourcing cannot be used;
therefore, it is difficult to circumvent the logic bomb.

2) Second, we did not reviewmalware detection rates. The
purpose of this paper is to study the dynamic analysis
rate of malware. Therefore, the aspect of android mal-
ware detection rate was not mentioned separately.

In existing research on advanced malware, the evasion tech-
nique uses emulator environment detection, root detection,
debugger detection, and so on. We also needed to respond
to android container environment detection. We conducted
android container environment detection through vulnerabil-
ity analysis on A-Pot. As a result, it detected various android
container environments. Therefore, currently we have mod-
ified the android container configuration part. If an attacker
wants to detect the android container environment, it gives
the same results as a real phone. Therefore, it is possible to
respond to the environmental analysis that has been indicated
to be the most significant limitation of the existing research
limitation of the existing research.

VII. CONCLUSION
In this paper, we introduce the A-Pot system that is built
to deal with intelligent Android malware. The A-Pot sys-
tem uses Android container technology. In addition, vari-
ous sensor modules and mini base stations were used to
improve the performance of the dynamic analysis. Through
this, we overcome the difficulties of intelligent malware anal-
ysis. In the past, many studies have provided only the analysis
performance results of the malware that can be analyzed.
In other words, the results were studied except for intelligent
malware, which is difficult to analyze dynamically. However,
we were able to get more than 97% of the malicious apps
to run include intelligent malware. In existing research, the
malicious code analysis rate of Android may be high, but

the malicious code analysis rate cannot be accurately deter-
mined because it only judges malicious code which does
not work. However, we were able to get more than 97%
of malicious apps to run. In addition, while running many
apps, we confirmed that the analysis time was faster than
that of the existing system. Existing methods of analysis
using real phones include the process of connecting and
analyzing the ADB to the rooted device. In addition, it takes
30 minutes to reconfigure the system after analysis. A-Pot,
however, initialized and reconfigured the system in approxi-
mately 90 seconds. In addition, A-Pot solves the problem of
analysis conducted by operating in the emulator. However,
due to the Intel x86-based CPU environment, rather than
the general Android CPU environment, NDK analysis is not
possible, and the operation rate is very low. However, A-Pot
was able to analyze the NDK region, which increased the
performance of the analysis. Through this, various analysis
results can be provided. However, in our study, it is difficult
to determine whether malicious behavior is performed after
a specific action such as a logic bomb. To overcome this
problem, we plan to conduct a study on the solution to the
logic bomb.
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