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ABSTRACT The utilization of a repetitive controller to cancel periodic disturbance or noise in mechanical
systems has become increasingly important for industrial applications. In this study, a repetitive control
process was developed using a data classification method, with a fuzzy regression approach and basis
function, to reduce tracking errors in feedback controllers. First, a system model using the basis function is
illustrated to compute the matched basis functions and their associated coefficients. A real case example of
improving the focus of an electron beam subjected to periodic fluctuations has been described for verification
and error analysis. Next, model algorithms containing pure and fuzzy regression are introduced into a
repetitive feedback control system to reduce tracking errors caused by a periodic disturbance. System output
data are categorized using fuzzy inference rules as similar data forming a single group are typically more
reliable than the entire output data. The fuzzy theorem approach adopts a Gaussian membership function for
system output variables owing to uncertainties that arise from modeling errors, environmental noise, etc. It is
determined that the repetitive control process based on data classification with a fuzzy regression approach is
more effective than using a pure regression approach. Increasing the number of data classifications initially
improves accuracy; however, this decreases when the number of data classifications continues to increase.
The optimal root-mean-square output tracking error convergence value was determined as 10~140% when the
system output data was classified into four categories, demonstrating the satisfactory reduction of a periodic
disturbance. Similar results were obtained using the pure regression algorithm, where the lowest averaged
verification error was 2.71% for the linear basis function model, with data classified into four categories,
and this corresponded to an average prediction error of 3.86%.

INDEX TERMS Data classification, disturbance cancellation, fuzzy regression, repetitive control.

I. INTRODUCTION

A control scheme comprises two control methods: a linear
feedback mechanism and a feedforward learning strategy.
Control systems are generally based on the principle of feed-
back, wherein the signal to be controlled is compared against
the required reference signal, and the difference is used to
compute the corrective control measures [1]. A feedback con-
trol system often results in errors due to the effect of repeated
perturbations, leading researchers to attempt to suppress the
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imbalanced signal or vibration. During each iteration, linear
feedback provides system stability while maintaining its state
error within a uniform range. Optimal solutions to such prob-
lems generally entail repetitive and learning control.
Accordingly, reference [2] proposed an optimal control
system with velocity-acceleration feedback in which numer-
ical simulations revealed that the proposed control scheme
was almost as effective as an optimal control system with
state feedback. Expectedly, a feedback-based method, that
is, repetitive control, was designed to track periodic refer-
ence trajectories or eliminate periodic interference [3]. Refer-
ence [4] proposed a combined control strategy that integrated
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offline iterative learning control and improved internal model
control to enhance the waveform replication performance
of an electro-hydraulic shaker. However, their control strat-
egy posed challenges in real-time implementations, including
limited sampling time to evaluate candidate solutions. There-
fore, reference [5] presented a real-time implementation of
the iterative process for a direct particle swarm controller.
Reference [6] proposed a co-design algorithm to obtain the
control gain and event trigger parameters.

Repetitive control has proven to be an effective method in
eliminating the effects of periodic disturbances on a control
system [7]. For example, reference [7] proposed a novel
second-order repetitive control that achieved second-order
behavior but used data from only one period in the past.
In addition, a repetitive control approach was considered for
an inverter operation owing to its better controllability and
accuracy under periodic disturbance conditions [8]. Refer-
ence [9] proposed a fast repetitive control (FRC) scheme with
harmonic correction loops for a three-phase three-wire shunt
active power filter applied in a weak power grid, introducing
a cumulative error cancellation loop into the FRC to improve
the harmonic detection accuracy when the grid frequency
drifted. Reference [10] proposed a fractional-order repetitive
controller to reject periodic disturbances acting on a time-
invariant-linear-stable-, possibly non-minimum phase-plant
while discussing the conditions of the system’s absolute
stability in the presence of saturation nonlinearities. Refer-
ence [11] addressed a master-slave synchronization control
problem for current-fed DC and permanent magnet syn-
chronous motors, with entirely uncertain parameters, and
proposed an innovative disturbance cancellation technique,
proving that an output-feedback-adaptive-nonlinear control
scheme generalizes the classical internal-model-based input
law. Reference [12] proposed that typical repetitive control
methods initially address all frequencies of a given period,
while the matched basis function repetitive control individ-
ually addresses each frequency, finding error components at
these frequencies using only frequency response knowledge
at the addressed frequencies. Reference [13] summarized
developments in linear repetitive control, which represented
an effective overall design approach, allowing the user to opti-
mize performance; this involved the design of a compensator,
zero-phase low-pass filter, and interpolator.

The fuzzy set theory proposed by [14] has been widely
used in management, decision-making, control, evaluation,
and academic research. The focus of fuzzy modeling for con-
trol involves selecting an appropriate model structure, obtain-
ing the dynamic fuzzy model (that is, fuzzy recognition)
from the process measurement, and designing a nonlinear
controller based on the fuzzy model [15]. To demonstrate
the varied applications of fuzzy theory, reference [16] used
a fuzzy input estimation method for active vibration control
in beam-rotating machinery systems. Reference [17] pro-
posed an innovative fuzzy regression method to assess the
potential vulnerability of bridges subjected to earthquakes.
Reference [18] applied fuzzy controller design to a wind

202068

turbine for load reduction. Reference [19] proposed a fuzzy
logic control scheme that used a magnetorheological damper
to withstand near-earthquake ground motion to decrease con-
struction vibration and optimize the membership function and
fuzzy rules of the fuzzy controller through genetic algorithms.
Reference [20] developed a temperature control system using
fuzzy logic and ensured the required output response via
a feedback controller. Reference [21] applied an actively
tuned mass damper to control the seismic response of an
11-story building, in which a fuzzy logic controller was used
to deal with uncertainty and nonlinearity, and particle swarm
optimization was applied to the structure to optimize the
fuzzy logic controller’s parameters. Reference [22] applied
a fuzzy logic technique for optimizing general control struc-
tures as well as secondary voltage and frequency controllers
that exhibited high performance and ideal response under
different load changes. Reference [23] proposed the use of
proportional-integral-type sliding mode manifolds to miti-
gate the effects of static tracking errors. To suppress the
inherent chatter, a fuzzy logic system was used to estimate
the uncertain dynamics due to its universal approximation
ability; the coordinated control target of the robot attitude and
uncertainty suppression were simultaneously achieved.

Stability analysis and system design have also been the
most important issues concerning fuzzy control of structures
and systems. A fuzzy control scheme has been successfully
applied to the control design of structures and systems.
Reference [24] developed a fuzzy method, based on the
linear matrix inequality (LMI), which modeled and controlled
the vibration of geometrically nonlinear flexible plates; the
fuzzy dynamic output feedback control law used a parallel-
distributed compensation technology to design a model in
which stability analysis and interference filtering problems
were studied using the LMI method. In addition, as data
categorization intrinsically leads to improved reliability, ref-
erence [25] proposed a questionnaire classification method
based on factor analysis to improve the assessment’s reliabil-
ity of the working conditions, without affecting the integrity
of the questionnaires for construction companies in both
Taiwan and China. Reference [26] established a Taiwan-based
road construction bidding price prediction model that illus-
trated a data classification system using fuzzy set theory to
ensure accurate predictions.

Based on the aforementioned arguments and the previous
work by [27], [28] on disturbance rejection, as well as to high-
light the importance of each design framework based on the
problem statement and why the proposed method is necessary
to be designed for this particular system, this study devel-
oped a repetitive control process using a fuzzy regression
approach, with basis function feedback to decrease tracking
errors or disturbances. First, a system model using the basis
function was used to compute the matched basis functions
and their associated coefficients. For verification and error
analyses, a case example for improving the electron beam
focus was used. Second, model algorithms containing pure
and fuzzy regression were compared by introducing them into
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a repetitive feedback control system to reduce tracking errors
caused by a periodic disturbance. Third, the repetitive control
mechanism via data classification with a fuzzy regression
approach proved to be more effective than that with the pure
regression approach. The conclusions drawn indicated that
an increase in the data classification number improved the
accuracy; however, the accuracy decreased when the data
classification number continued to increase. Similar results
were obtained using the pure regression algorithm, where
the lowest averaged verification error was 2.71% for the
linear basis function model, with data classified into four
categories, and this corresponded to an average prediction
error of 3.86%.

Il. SYSTEM MODEL WITH A LINEAR REPETITIVE
CONTROL PROCESS
The linear basis functions are described in general, as follows:

yX, W) = Zﬁ;l W (X) = WTH(X), (1)

where #;(X) denotes the basis functions. Typically,
#o(X) = 1 and thus, wg denotes bias.

Repetitive control laws are represented by the
following [27], [28]:
y=Tya=T,8 (Leta =18), 2)
a@) =al—D+yiily(—1 =Ty — Da@ — D],
3)
B =BG—1D+T (8 —a®), “

here, Eq. (2) represents the steady-state response, where
u = T,B, T, denotes the selected discrete-time basis func-
tion, T, denotes the corresponding output basis function,
column matrices o and 8 correspond to the coefficients of
the output and input basis functions, respectively, and I is
the identity matrix. Equation (3) represents the estimate of
o (i) at each time-step, where y; is not a data function but
can be determined a priori and Ty(i) is determined from 7.
Equation (4) represents a linear repetitive control law for real-
time implementation, where I corresponds to a square matrix
of learning gains, and §* denotes the required trajectory in
terms of components of the output basis functions.

The repetitive control laws are demonstrated using a real
case example, wherein the focus of an electron beam sub-
jected to periodic fluctuations is improved [28] via the fol-
lowing transfer function:

B 8.8w°

T (s + 8.8)(s2 + 2(0.5)ws + w?)
in which @ = 37 rad/s and the sampling rate is 64 Hz.
The desired trajectory is zero, with a periodic disturbance,
constituting a disturbance cancellation problem. Converting

the transfer function to state-space form yields the controller
canonical form, as follows:

x (i+ 1) = Agx (i) + Bqu(i), (6)
y(@) = Cex (i + 1) + Deuci). N

T (s)

&)
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so as to obtain the parameters Ay, By, C. and D, for the
transfer function [28]. The operational flow chart for the
system model with linear repetitive control laws is shown
in Fig. 1, where Equation (7) is obtained from Equation (6)
in an orderly fashion.

Ill. MODEL ALGORITHMS

A. PURE REGRESSION

For linear regression algorithms, [29] proposed a model
specification in which the dependent variable y; is a linear
combination of parameters. In regression modeling, with i
data points, there exists an independent variable 7 (7) and the
corresponding parameters a and b;, expressed as follows:

yi=a+biTy (1)+baTy Q) +b3Ty (3)+. . .+b;Ty (i) +si.
)

Hence, using Eq. (8), a pure regression algorithm was intro-
duced into a repetitive feedback control system to reduce
tracking errors, as shown in Fig. 1.

B. FUZZY REGRESSION
Owing to uncertainties that arise from modeling errors, envi-
ronmental noise, and other measurement errors, the other
model algorithm introduced the fuzzy theorem into the
regression algorithm. The fuzzy concept is used to measure
the magnitudes of phenomena [30], while fuzzy clustering
is used to arrange similar data points into the same clus-
ter [31]. In the study, both phenomena were grouped and
classified such that different and discrete counting units were
defined. It was feasible to assign all observations to mutually
exclusive categories and, hence, they could be appropriately
quantified. Fuzzy reasoning is a computation process that
uses fuzzy logic methods to obtain new fuzzy propositions
as conclusions under the condition of given fuzzy proposi-
tions [32]. Fuzzy reasoning can be divided into fuzzification,
fuzzy logic reasoning, and defuzzification. Fuzzy variables
form the bases for constructing fuzzy systems that utilize the
complexity weights of used cases to analyze problems.

Conversely, fuzzy set theory permits gradual assessment
of the membership of elements in a set; this is described
with the aid of a membership function valued in the real unit
interval [0, 1] [33]. Fuzzy membership functions primarily
use triangular, trapezoidal, Gaussian, and generalized Bell
membership functions, as shown in Fig. 2. The data used in
this study is approximately distributed and thus a Gaussian
membership function (Fig. 2 (c)) is used to represent the
degree of ambiguity for the input and output variables. The
mathematical description form of the Gaussian membership
function is expressed as follows:

(Ty()—c)?

Wy =e o ©)

where ¢ denotes the center position of the Gaussian
membership function, o denotes the width of the Gaussian
membership function, and 7), (i) denotes the input signal in
the equation. This study utilized the center-of-gravity method
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Regression

yi =a+b;T,(1) + byT,(2) + b3T,,(3) + -+ b;T, (i) + ¢

Controller conditions of u, x, y

Matched basis functions T, T,

Set repetition number and disturbance frequency

a@=a(l=D+y1 [y( -1 =T, (-~ Dali-1)]

BW) =Bl —-1)+TI(6" —a@®)

u(@) = T,(HB®)

i-»i+1

x(i +1) = Agx(i) + Bau(i)

Repeat Control Analysis

y(i) = C.x(i + 1) + D,u(i)

FIGURE 1. Pure regression operational flow chart for the system model with linear repetitive control laws, which resembles
input-output block diagram of the feedback closed loop control system with the proposed technique.

w O n 0
D D
E 1
C0.8 Q0.8
i=y a
§0.6 %‘0.6
204 504
£02 2
3 £0.2
= 0 )

0 20 40 60 80 100 = o

0 20 40 60 80 100

(a) Triangular membership (b) Trapezoidal membership

function function

w O o 0

D )

T Tl

St ™

Q0.8 Co0.8

(=3 =

20.6 206

z =

204 204

E02 §02

=0 E00 20 40 60 80 100

0 20 40 60 80 100
(c) Gaussian membership  (d) Generalized Bell membership

function function

Source: MATLAB Users’ Guide (2014)
FIGURE 2. Fuzzy logic membership functions.

to solve fuzzification and compute the enclosed area of the
width of the membership function and its membership func-
tion as a clear value to the center of the fuzzy numbers. The
formula for system output variables, youput(7) is expressed as
follows

ny(i) Ty (@) - (Ty (i)) dTy

: (10)
fry(i) M (Ty (’)) dTy

Youtput @0 =
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This study utilized MATLAB to create the classification
model with fuzzy theory. First, it was feasible to define
the parameters of the Gaussian membership function using
the fuzzy membership functions of the input value. Sec-
ond, the Mamdani fuzzy inference rules and defuzzification
(center-of-gravity method) were applied to obtain classified
assessed values. It was then possible to include the regres-
sion algorithm using Eqgs. (9) and (10). In linear regression,
the model specified that the dependent variable, y;, was a
linear combination of the parameters. To model i data points,
an independent variable output and parameters a and b; are
expressed in Eq. (11) as follows:

Yi = a+ biyoutput (1) + b2youtput (2) + b3Youtput (3)
+ ... +biy0utput @) +e. (1)

Hence, using Eq. (11), the fuzzy regression algorithm
was introduced into the repetitive control system, as shown
in Fig. 3.

The developed fuzzy regression models with different clas-
sifications and the parameters corresponding to A4, By, C,
and D, were computed and listed in Table 1.

IV. COMPARISON OF DISTURBANCE CANCELLATION

A. REDUCED PERIODIC ERRORS USING A REPETITIVE
CONTROL LAW WITH FUZZY REGRESSION

If an interference frequency exists, it is assumed to be a 2-Hz
sine wave with an amplitude of 45 units. The input basis
functions are sine and cosine waves at 2 Hz; hence, the output
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yi=a+ blyoutput(l) + bzyoutput(z) + b3Youtput(3) +o biyoutput(i) +&

Fuzzy

|

Controller conditions of u, x, y

Matched basis functions T, T,

Set repetition number

and disturbance frequency

i-i+1

Repeat Control Analysis

!
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!
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!
x(i +1) = Agx(i) + Bau(i)
!

y(i) = C.x(i + 1) + D u(i)

FIGURE 3. Fuzzy regression operational flow chart for the system model with linear repetitive control laws, which resembles
input-output block diagram of the feedback closed loop control system with the proposed technique.

TABLE 1. Parameters corresponding to Ay, By, Cc, and D¢ in Fig. 3 using
a fuzzy regression approach with data youtput (7) classified into seven
different categories

Model parameter A, B, C. D.
No classification  0.63 23.41 0.82 2296
Two categories 0.63 3338 0.81 24.61
Three categories  0.60 79.16 0.80 32.96
Four categories  0.61 13.48 0.79 52.96
Five categories  0.60 93.24  0.81 42.68
Six categories 0.62 4329 082 6295
Seven categories  0.62  47.12  0.82 45.24

basis functions are related to the steady-state response. The
learning gain, I, is 0.01 times the identity matrix, and the
initial § and B are zero.
For performance analysis, it is suggested to highlight by
showing the changes for any variation / combination / con-
figuration of controller and disturbances parameters. Dis-
turbance cancellation uses the fuzzy regression approach to
present and describe the filtering results listed below, where
repetition of the time-stepped data with classification in the
repetitive control process obtains tracking errors with their
convergence values, as follows:
1. No classification: The results are shown in Fig. 4.
Repeated 56 times, and a convergence value
of 1071333,

2. Two categories: The results are shown in Fig. 5.
Repeated 55 times, and a convergence value
of 10—13.69-
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Learning Gain 1: 0.01
T T T

1o T T T T

—— Regression
— Fuzzy + Regression

RMS Tracking Error
-

1U Il Il 1 Il 1 I Il I I
0 30 60 a0 120 180 180 210 240 270 300

Repetition Number

FIGURE 4. RMS tracking error: When the fuzzy regression method is used,
only 2-Hz basis functions are used for repetitive feedback control, and a
sinusoidal interference occurs at 2 Hz (data without classification).

3. Three categories: Repeated 93 times, and a conver-
gence value of 1071390,

4. Four categories: The results are shown in Fig. 6.
Repeated 74 times, and a convergence value
of 1071409,

5. Five categories: Repeated 75 times, and a convergence
value of 1071397,

6. Six categories: The results are shown in Fig. 7.
Repeated 65 times, and a convergence value
of 1071374,
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Learning Gain 1: 0.01
10 T T T T T T T T
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— Fuzzy + Regression

RMS Tracking Error
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] 30 60 a0 120 150 180 210 240 270 300
Repetition Number

FIGURE 5. RMS tracking error: When the fuzzy regression method is used,
only 2-Hz basis functions are used for repetitive feedback control, and a
sinusoidal interference occurs at 2 Hz (data with two categories).
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FIGURE 6. RMS tracking error: When the fuzzy regression method is used,
only 2-Hz basis functions are used for repetitive feedback control, and a
sinusoidal interference occurs at 2 Hz (data with 4 categories).

7. Seven categories: Repeated 67 times and a convergence
value of 1071371,

Fig. 8 shows the results for every variety of data classifica-
tion used in this study. It is observed that data classified into
four categories shows the most effective convergence value,
although the number of repetitions significantly exceeds that
of the others. In comparison with the reference [28], the con-
troller performance of this approach has more tracking error
reduction and shorter transient response. However, the devel-
oped controller in this study has longer computational time
used for dividing data for real time applications. Fig. 9 shows
the transient response of the output. The response curve (data
with 4 categories) is stably converged [28].

B. COMPARISON OF VERIFICATION AND PREDICTION
ERRORS

Next, verification and prediction errors for the linear control
models were compared to compute the average effects of data
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FIGURE 7. RMS tracking error: When the fuzzy regression method is used,
only 2-Hz basis functions are used for repetitive feedback control, and a
sinusoidal interference occurs at 2 Hz (data with 6 categories).
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T
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A3EL

RMS Tracking Error

Classification Category

FIGURE 8. RMS tracking error: When the fuzzy regression method is used,
only 2-Hz basis functions are used for repetitive feedback control, and a
sinusoidal interference occurs at 2 Hz (comparison of results with data
classified into various categories).

classification on the system output error and to further predict
the average performance of the controlled system [26]. A total
of 287 data points were counted. The first 200 data points
were used as training data to create the verification model,
with classifications ranging from one to seven categories,
while the remaining 87 data points were used as the predic-
tion data to construct the prediction model. For each classi-
fied system, multiple regression analyses were conducted to
obtain related models with average errors.

Tables 2 and 3 illustrate the comparison results and demon-
strate the verification and prediction error for linear models
with up to seven different data categories. The optimal result
was verified with data that were divided into four categories,
with an average error of 2.71% and a corresponding predic-
tion error of 3.86%. The prediction error obtained the lowest
average value of 3.43% when the data was classified into two
categories. When the data were divided into seven categories,
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TABLE 2. Comparison of verification errors for linear models with data classified into seven different categories.

Category type 1 2 3 4 5 6 7 Average error
No classification  4.13% 4.13%
Two categories  3.63%  4.06% 3.85%
Three categories  3.24% 3.37% 2.39% 3.00%
Four categories ~ 2.91% 3.08% 2.51% 2.33% 2.71%
Five categories ~ 3.08% 2.81% 2.77% 2.71% 2.64% 2.80%

Six categories 3.06% 2.88% 2.79% 237% 2.89% 291% 2.82%
Seven categories  3.19% 2.90% 2.86% 2.55% 3.04% 4.01% Fail

TABLE 3. Comparison of prediction errors for linear models with data classified into seven different categories.

Category type 1 2 3 4 5 6 7 Average error
No classification ~ 4.09% 4.09%
Two categories  3.32%  3.54% 3.43%
Three categories  2.93% 3.77% 3.84% 3.51%
Four categories  3.08% 3.63% 3.72% 5.01% 3.86%
Five categories ~ 3.18%  3.11% 3.12% 3.51% 9.83% 4.55%

Six categories 3.13%  3.19% 3.63% 3.45% 4.07% 12.47% 4.99%
Seven categories  3.31% 4.03% 3.37% 321% 3.79%  4.35%  Fail

Frequency: Hz

Time: second

FIGURE 9. The response curve (data with 4 categories).

insufficient data led to failure as illustrated in Table 2 and
Table 3; hence, it was found not to be suitable for data
analysis. This applies to the data divided into more than seven
categories.

V. CONCLUSION

In this study, two repetitive control mechanisms were pro-
posed to eliminate the effects of repeated disturbances
in the feedback control system and the tracking errors
in the feedback controller executing periodic commands.
Examples have shown that the proposed method effectively
eliminated periodic interference, especially for improving an
electron beam focus. The proposed fuzzy regression approach
was based on data preprocessing using fuzzy inference rules.
The fuzzy theorem approach adopts a Gaussian membership
function for system output variables owing to uncertainties
that arise from modeling errors, environmental noise, etc.
It is determined that the repetitive control process based on
data classification with a fuzzy regression approach is more
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effective than using a pure regression approach. Although
the convergence rate was slightly reduced, the accuracy
improved. The errors obtained from models constructed with
both classified and unclassified data indicated that the data
classification system successfully reduced tracking errors.
More data classification led to better accuracy, but accuracy
decreased when the number of classifications continued to
increase. When the data reached a steady-state response or
convergence, an optimal convergence value tracking error
of 1071409 was obtained, with the data classified into four
categories. In comparison with the reference [28], the con-
troller performance of this approach has more tracking error
reduction and shorter transient response. Among the verifi-
cation models, the lowest error was observed for the linear
model constructed with data classified into four categories.
The average verification error was 2.71%. Among the pre-
diction models, the lowest error was observed for the linear
model constructed with data classified into two categories.
The average prediction error was 3.43%. Hence, this study
provides useful suggestions for future research, with appro-
priate verification and prediction models using a fuzzy linear
series function that can be replaced by a nonlinear power
series function. Special thanks are due to Dr. P. F. Shen,
Dr. C.-W. Huang and Dr. H.-P. Wen for running related
simulations.
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