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ABSTRACT An external stimulus, event, or environment that stresses an individual is called a stressor.
Many mental stress detection studies have been focused on the discrimination of the mental state with and
without the experimental stressor. However, the mental state in the absence of experimental stressors may
not represent accurately the nonstress (baseline) state because people inherently experience considerable
stress in their daily lives. Therefore, we assumed that stress detection could be improved more accurately
by considering the daily stress. In this study, functional near-infrared spectroscopy (fNIRS) was measured
in 41 healthy participants to quantify their prefrontal cortical oxygenation during performing a cognitive
task as an experimental stressor, considering individual daily stress level based on the self-report. We then
extracted six signal features, including the slope, mean, standard deviation, peak, skewness, and kurtosis
of the oxygenated hemoglobin concentration. Using various feature combinations and time windows,
we successfully managed to classify daily stress (high/low) and the mental state (task/rest) with support
vector machine classifiers. Specifically, individual daily stress level can be easily discriminated with signal
features from fNIRS. Moreover, mental state classification performance improved significantly when the
daily stress level was handled separately. The findings of this study show the feasibility of the fNIRS-based
daily stress classification and can be used in the future to design a robust mental stress management system
for the assessment of daily stress in individuals.

INDEX TERMS Daily stress, functional near-infrared spectroscopy, stroop word color task, mental stress
classification.

I. INTRODUCTION
Younger generations in their 20s are stressed every day owing
to various academic, employment and office syndrome prob-
lems they face [1], [2]. However, it is difficult for younger
generations to be aware of the severity of mental stress on
their health. Long-term exposure to stress can cause chronic
mental or physical disorders, such as depression, heart dis-
ease, obesity, and diabetes [3]–[5]. Therefore, it is very
important to evaluate stress at an early stage and enforce
stress management programs as stress can cause problems
even for healthy and younger people. Stress is a process
of changes in the body or mind to be alert and counteract
external or internal events, commonly referred to as stressors.
Therefore, it is possible to quantify it by measuring changes
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in perceptual, behavioral, and physiological responses caused
by stressors.

The most objective way is to measure specific hor-
mones, such as cortisol and alpha amylase that are released
in response to stress that are measurable in urine, blood,
and saliva [6]–[8]. Another noninvasive and easier way is
the monitoring of physiological responses, such as blood
pressure, skin conductivity, electrocardiogram (ECG), elec-
troencephalogram (EEG) [9], and others [10], [11]. Among
them, cortical physiological responses like EEG or functional
near-infrared spectroscopy (fNIRS) have become extensively
used in the estimation of stress with the development of wear-
able measurement systems [12], [13]. A fNIRS is an optical
imaging technique that uses near-infrared light to measure
oxygenated and deoxygenated hemoglobin concentration
changes in cortical brain. With recent advances in portable
and multichannel fNIRS hardware, fNIRS is considered to
be a cost-efficient and lightweight measurement system in
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comparison with other non-invasive brain imaging tech-
nique [14]. fNIRS-based brain–computer interface (BCI)
studies have shown promising results in cognitive task [15]
and depressive state classifications [16].

Most BCI classifications have utilized machine learn-
ing techniques, such as linear discriminant analysis
(LDA) [17]–[19], support vector machine (SVM) [20]–[22],
deep learning—such as convolutional neural networks
[23]—and long short-term memory [24] —and cascade
CNN-LSTM [25]. In recent fNIRS-based BCI studies, mental
state classification performance varied depending on the type
of mental task and classifier, but its accuracy was typically in
the 60 to 90% range. SVM was preferably chosen owing to
its reliable performance. For example, mental state classifi-
cations yielded outcomes equal to 70.64% [23], 84.44% [20],
83.56% [26], and 91% [21] . Cognitive tasks have been
frequently used to induce mental stress. Typical examples
include the mental arithmetic task [27], Trier Social Stress
Test [28], and Stroop Color Word Task (SCWT) [29], [30].
A SCWT is a reliable and valid task that causes mental stress,
so we used this task as an experimental stress factor.

In many previous studies, cognitive tasks were consid-
ered as experimental stress factors [13], [31]. Conversely,
in the resting state, an explicit task is not being performed
and the participants were asked not to move and to remain
relaxed to evaluate the condition that represented their stress-
free states. However, we questioned whether it was possible
to completely rule out the effects of daily stress. In some
previous studies, salivary samples were obtained to quan-
tify specific hormone levels as reference values to ensure
that experimental stressors can induce mental stress. In [32],
salivary cortisol levels were compared before, right after,
and 20 min after the cognitive tasks, while in [13] salivary
alpha amylases weremeasured through the baseline, task, and
recovery phases. In another previous study, participants were
required to follow awell-controlled psychophysiological pro-
tocol, such as an overnight stay at the research center, light
breakfast with no caffeinated beverages, and cognitive tasks
in the morning [33]. However, salivary cortisol samples can
vary depending on the environment and time in which saliva
is collected, and the measured value of cortisol is susceptible
to oral conditions or diet. [34], [35]. Moreover, even in the
well-controlled protocol, it is not evident that the resting state
can represent the stress-free condition. In other words, if the
resting state was affected by the individual’s daily stress,
it may have also adversely affected the performance of the
mental state classification. We anticipate that if we could
discriminate an individual’s daily stress, we could obtain
improved mental state classification performances.

Therefore, the specific goals of the present study are
• To discriminate self-reporting individual daily stress lev-
els that are not induced by any experimental stress factor

• To prove that it is effective to consider daily stress in the
mental state classification

• To investigate the features that mainly contributes in
each classification process

To achieve the first goal, we designed an experimental
paradigm to repeatedly report individual daily stress levels
for two weeks and recorded fNIRS at the high- and low-
stressful days selected in the 2nd week. In order to obtain
fNIRS data on the days with the high and low stress, the range
of each one’s responded stress indices during the 1st weekwas
first checked. After that, based on the individual stress range,
days with high- and low-stressful days were selected for
each individual in the 2nd week. Therefore, fNIRS data were
finally acquired for the selected two days, and a two-class
classification (high/low) was performed with a variety of
feature combinations and time windows. To achieve the sec-
ond goal, we compared mental state classification (task/rest)
performances with the use of models that considered daily
stress versus those that did not. By the last goal, the features
were identified that mainly contributed in each classification
scheme.

II. MATERIALS AND METHODS
A. PARTICIPANTS
The study was conducted with 41 healthy female uni-
versity students (mean (M) ± standard deviation (SD)
age 21.93 ± 1.69). Patients with a past history of heart
disease and neuropsychiatric disorders, those with cur-
rent medications, or pregnant or prospective women, were
excluded from this study. All experimental procedures
involving human subjects were approved by the institu-
tional review board at the Sookmyung Women’s University
(SMWU-1902-HR-148-01). The entire experiment proce-
dure was verbally introduced to the participants, and written
informed consent was obtained.

B. EXPERIMENTAL PROCEDURE
As shown in Fig. 1(a), daily stress was assessed with
online subjective questionnaires. Participants were asked to
respond to questionnaires that comprised 15 items based
on their moods and behaviors during the 24 h periods that
preceded the test, and repeat it everyday for two weeks.
The stress questionnaire was adapted to university stu-
dents regarding stress-relevant questionnaire items [36], [37].
Questionnaire items were selected and adapted from the
stress-response scale, stress-awareness scale, and included
university-student-related questions, such as for example,
relationships, academics, etc. Answers were based on a
5-point scale: very unlikely (4), somewhat unlikely (3),
neutral (2), somewhat likely (1), and very likely (0). The total
score from all 15 answers was determined as a stress index for
that day. Because reported stress indices varied from person to
person, we thought it was inappropriate to set a threshold and
apply it equally to everyone. Therefore, we identified the indi-
vidual criterion through the range of individual stress indices
from the 1st week’s responses. In the mornings of the days
during the 2nd week, according to the personal criteria of the
1st week, the high- or low-daily-stressful days were selected.
The approach used to determine high- and low-daily-stressful
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FIGURE 1. (a) Entire experiment procedure (b) Example stress indices used to explain how to select
daily stress (high/low) days (c) Task protocol. In the fNIRS record, three repetitions of a Stroop Color
Word Task (SCWT) with initial and intermediate rests are presented.

days with example indices is shown in Fig. 1(b). For example,
if 14 is the minimum and 26 is the maximum value among the
responded stress indices in the 1st week, we assume that this
person has a stress index close to 14 for low stress and 26 for
high stress. In the 2nd week, when the stress index of the self-
questionnaire on the day is 16 or 20, it will be skipped. If the
index is above 26 (for example, 28 in fig. 1(b)), this day is
selected as the day with high stress. Similarly, the day with
the index of 12 is selected as the day with low stress since it
is less than the minimum value. In other words, the individual
stress index of the 1st week is used as a standard, and the stress
index of the day of the 2nd week determines whether to select
a day with high or low stress. If any index in the 2nd week
did not meet the criterion for high and low stress, stress report
continued for fewmore days. If any individual’s stress indices
did not change significantly for two weeks, that participant
was dropped out. Once the day was selected as a high- or low-
daily-stress day, the experimenter asked the participant to
visit the laboratory to record fNIRS measurements in the
afternoon of that day. For consistency, the survey responses
were collected at the same time in the morning for two weeks.
Additionally, for the same reason, the fNIRS recording time
was always fixed in the afternoon.

When a subject visited the laboratory, the entire experi-
ment procedure, including the fNIRS recording, was verbally
introduced again. After the participant wore the fNIRS device
on the head, the cognitive task was performed. After the
initial rest period that spanned 30 s, the 30 s SCWT and the
30 s rest periods alternated and were repeated three times.
Therefore, the entire experiment lasted 210 s in Fig. 1(c).
SCWT was presented using E-Prime software (E-Prime 3.0,

Psychology Software Tools Inc., Sharpsburg, MD, USA).
Participants were required to press a keyboard (left or right)
to respond to each SCWT trial. To familiarize them with the
experiment and the task, all the recruited participants con-
ducted a practice experiment in the 1st week. Data recorded
in the practice experiment were not used for further analysis.
In summary, each participant participated in three fNIRS
recordings including the training recording, but only analyzed
two main recordings: one on a high daily stress day and the
other on a low daily stress day.

C. DATA RECORDING AND PREPROCESSING
Cortical hemodynamic variations in the prefrontal cortex
(PFC) region were recorded using a high-density NIRS
device (NIRSIT, OBELAB, Seoul, Korea). Fig. 2 shows the
setup of wearable fNIRS device and the sources and detector
array of the device. The sensor was composed of 24 dual-
wavelength laser diodes (780/850 nm) and 32 detectors sep-
arated by a 1.5 cm unit distance [38]. A 3 cm distance
separated the laser and detector pairs at 48 sensing areas.
Thus, we analyzed 48 channels. The optical signal variation
of each channel was sampled at 8.138 Hz, and the threshold
signal-to-noise ratio (SNR) was 30 dB. Detected light signals
in each wavelength were filtered by low-pass filtering dis-
crete cosine transform (DCT) 0.1 Hz and high-pass filtering
DCT 0.005 Hz to remove physiological and environmental
noise. And then, converted into hemodynamic parameters
(oxygenated hemoglobin concentration) using the differential
pathlength factor (DPF) method. The DPF values of 780nm
and 850nm are 5.075 and 4.64 in respectively [39], [40]. Rel-
ative hemodynamic changes in each channel during each trial
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FIGURE 2. Data acquisition configuration, (a) device setup, (b) optode placement, and (c) channel position.

of each task were extracted using the modified Beer–Lambert
law (MBLL) [41].

As shown in Fig. 2(b) and 2(c), 48 channels at a
source–detector distance of 3 cm from the predefined array
were acquired. This was adequate for an in-depth penetration
of 20 mm from the scalp to measure the microvasculature
of the cerebral cortex. The center of the lowermost probes
was aligned at the FPz of the international 10–20 EEG sys-
tem to remove positional uncertainty among subjects. After
the rejection of four channels with poor average SNRs, 44
channel values were used for our analysis.

D. FEATURE EXTRACTION AND CLASSIFICATION
For the classification, we extracted signal features from the
oxygenated hemoglobin (HbO2) concentration during the
task and rest state, respectively. Signal features of the rest
state were extracted from the responses recorded during the
initial rest, i.e., the first 30 s in Fig. 1(c). Therefore, the term
‘‘rest state’’ from now on indicates only the initial rest.
Conversely, signal features of the task state were extracted
from the average response of three tasks, also known as a
block-averaged response. Moreover, feature extraction was
performed for three different timeframes during a period
of 10 s. Because both the rest and task states were 30 s,
each state was divided into three windows, namely, window
1 (0–10 s), window 2 (10–20 s), and window 3 (20–30 s).
For the signal feature, signal slope (SS), signal mean (SM),
signal variance (SV), signal peak (SP), signal kurtosis (SK),
and signal skewness (SSK), were calculated using built-in
functions in R (R Software, version 3.6, R Foundation for
Statistical Computing, Vienna, Austria) such as the mean,
var, max, kurto and skew. The SS value was computed
based on the slope of the linear regression in the respective
time window. All feature values were scaled between 0 and
1 using min–max normalization to improve classification
performance (1).

ẑ =
z− zmin

zmax − zmin
(1)

FIGURE 3. The classification processes.

In the above equation, where z ∈ Rn, n is a number of
samples, ẑ indicated the re-scaled z with a range between
0 and 1, zmax is the largest value in z, and zmin is the smallest
value in z. In summary, six signal features (SS, SM, SV, SP,
SK, and SSK) were obtained in three timeframes (window
1 to 3) for each mental state (rest and task), and for each daily
stress level (high and low).

Using the extracted features, we first classified the daily
stress levels as high or low. The daily stress classification
performance was evaluated based on signal features from
each mental state. Second, we performed mental state clas-
sification that classified rest and task into two models. The
former combined the signal features of the two daily stress
levels (so doubled the number of samples), and the latter
processed them separately. The former handles the two daily
stress levels separately, and the latter combines the signal
features of the two. In the latter case, the model was divided
into a model that doubled the number of samples and a
model that matched the number of samples to the former. This
classification process can be summarized as a Fig. 3. A clas-
sification scheme was implemented using a support vector
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machine (SVM) and linear discriminant analysis (LDA) using
the Python Scikit-learn 0.23.1 library [23]. We tested every
possible combination of six features by selecting combina-
tions that included from one up to six features. The number
of selected features in feature combinations was denoted as
an m-feature-combination, whereby m indicates the number
of selected features. For example, if only one feature was
used as an input of the classifier, it becomes a one-feature-
combination, and a total of six combinations could exist
(SS, SM, SP, SSK, SK, and SV respectively). Additionally,
each feature value was obtained for all 44 channels. Thus,
the size of input matrix became an n-by-(m× 44), wherein n
indicates the number of samples (participant) and m indicates
the number of selected features in range of [1, 2, . . . , 6].
The total number of tested combinations was 63, reflecting
a sum of 6 for one-, 15 for two-, 20 for three-, 15 for four-, 6
for five-, and 1 for all six-feature-combination. Finally, these
feature combinations were obtained for three timeframes, and
were tested with a machine learning classifier with a 5 × 5
cross-validation. The k-fold cross-validation can be used both
when optimizing the hyperparameters of amodel on a dataset,
and when comparing and selecting models on a dataset. One
approach to run both procedures at the same time without
leading to a biased evaluation of the model performance
is to nest the hyperparameter optimization procedure under
the model selection procedure called nested cross-validation.
Therefore, in our study, we made 5 folds divided into train
set and test set in the outer loop of nested cross-validation.
For train set of each fold, a grid search using another 5-fold
cross-validation is performed to find the optimal parameters.
Then, the scores of the test set of the fold divided from the
outside are measured using the optimal parameter settings,
and averaged.

III. RESULTS
A. PERCEIVED DAILY STRESS LEVELS
We investigated whether there were statistically significant
differences between the selected two days reported as high
and low stress days. A paired-samples t-test showed a sig-
nificant difference between the high and low stress levels
(t(40) = 15.91, p < 0.001). As expected, the average of
reported stress level high stress day (M = 30.83, SD = 9.38)
was statistically significantly higher than that of the low stress
day (M = 18.52, SD = 9.26). The selected two days were
significant, although the reported daily stress levels widely
among individuals. Therefore, we confirmed that the selected
two days based on fNIRS recordings could represent high-
and low-daily-stressful days for tested individuals.

B. DAILY STRESS CLASSIFICATION
First, we performed daily stress classification using binary
stress labels based on individual perceived daily stress
indices. Classification accuracies were obtained by testing
every possible feature combination that was extracted from
three different time windows. We used SVM and LDA.

However, in almost all cases SVM outperformed LDA, so the
classification accuracies reported here were all obtained from
SVM.

Table 1 summarizes the classification performance
with standard deviation for one-feature and two-feature-
combinations in all three windows. The highest accuracy in
each column is shown in bold. In one-feature-combination,
SS, SM, and SP reported relatively higher accuracies in both
states and all three windows. In two-feature-combination,
feature combinations, including these three features (SS, SM
and SP), yielded relatively higher accuracies. In terms of
windows, window 2 and 3 outperformed window 1 for both
feature combinations. To enable the understanding of feature
characteristics for better classification, we counted the num-
ber of features that reported the accuracy above 80% in each
combination. Fig. 4 shows the histograms that indicate the
number of features with daily stress classification accuracies
of 80% or higher in all windows (1, 2, and 3) and in all states
(rest and task) in one-, two-, and three-feature-combination.
For an example of a one-feature-combination in window 2
and a task state, the daily stress classification accuracy above
80% was obtained with the use of four features (SS, SM,
SP and SSK) among the six used, as indicated in Table 1.
In another example of a two-feature combination in window 2
and the rest state, accuracies >80% were obtained with
15 feature pairs (with the exception of the pair (SV, SK))
among 16 possible pairs. Since window 2 and 3 are relatively
better than window 1, we focused on window 2 and 3 for the
further analysis.

Moreover, we identified the existence of a trend toward
a better performance in some specific features associated
with the one- and the two-feature-combination. In our
effort to identify the features with a classification accuracy
of 80% or higher in window 2 and 3, SS, SM, and SP features
appeared in both the rest and task states, and SSK only
appeared in the task state. To evaluate the statistical character-
istics of each feature, we tested each feature in high- and low-
daily stress level states with paired t-tests, while we ignored
the effects of the channels. In the rest state, the SM and
SP features for all windows showed statistically significant
differences according to the daily stress levels (at window 1,
SP: t(1803) = −3.978, p < 0.001, SM: t(1803) = −4.619,
p < 0.001, at window 2, SP: t(1803) = −6.853, p < 0.001,
SM: t(1803) = −6.318, p < 0.001, at window 3, SP:
t(1803) = −8.277, p < 0.001, SM: t(1803) = −7.367,
p < 0.001). Conversely, in the task state, SSK was found in
both windows 2 and 3 (t(1803) = 2.268, p < 0.05 at window
2, and t(1803) = 2.972, p < 0.01 at window 3).
In comparison with the daily stress classification perfor-

mance according to the mental state (rest and task), the aver-
aged classification accuracies were obtained as 85.5, 95.53,
98.25, 99.53, 99.83, and 100%, according to the number of
feature combinations in the rest state of window 2, while for
the task state of window 2 we obtained 82.67, 93.13, 97.25,
99, 99.67, and 100%. In both states, the average accuracy
improved by 100% as the number of features increased.
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TABLE 1. Daily stress classification (high vs. low) accuracy (%) for one- and two-feature-combination. Numbers in parentheses indicate standard
deviations

FIGURE 4. Number of features with daily stress classification accuracy of 80% or higher in all windows (1, 2, and 3)
and all states (rest and task) in single, two-, and three-feature-combination. The thick black horizontal line indicates
the total number of features that can be obtained from each combination.

However, the accuracy of the rest state was slightly higher
than that of the task state.

C. MENTAL STATE CASSIFICATION
Similar to the conventional fNIRS-based BCI approaches
in mental stress classificaion, we classified the mental state

between task and rest that we experimentally defined. There
were two different daily stress levels, so we used the follow-
ing four classification models to deal with daily stress level:
(1) Singlestress_levelmodel: classification onlywith samples

obtained from either daily stress level. Specifi-
cally, there were two models, namely, singlehigh and

VOLUME 8, 2020 201365



S. Park, S.-Y. Dong: Effects of Daily Stress in Mental State Classification

FIGURE 5. Number of features with mental state classification accuracy of 70% or higher in all windows with one- to
three-feature-combination. The horizontal black bold line indicates the total number of features that can be obtained
from each combination.

singlelow. The former was a classification with samples
obtained when the reported daily stress level was high,
and the latter was the classification with low-daily
stress level samples

(2) Combinedsample_size model: classification with samples
with the use of both daily stress levels indicates that
the ‘‘sample_size’’ is ‘‘all’’ (which is equal to twice
the value of the Singlestress_level model), while classifi-
cations with randomly selected samples with the same
length of the Singlestress_level model indicated that the
‘‘sample_size’’ was ‘‘half.’’

We counted the number of features that reported accura-
cies >70% in each model. As shown in Fig. 5, we could
see that the number of features that came out was more
in window 2 and 3 than in window 1. So we focused on
window 2 and 3 as in the daily stress classification.

Table 2 lists the overall mental state classification results
for one- and two-feature-combination in all three windows
and in all four models. In window 2, the averaged classifi-
cation accuracies were 84.83, 95.27, 98.30, 98.67, 99 and
99% as the number of features increased in the case of
Singlehigh, while the corresponding values were 81.67, 92.27,
96.75, 98.27, 99.67, and 100% in the cases of Singlelow. For
the case of the combined model, the averaged accuracies
were 79, 89.4, 90.7, 96.67, 97.67, and 98% in Combinedall,
while the corresponding values were 75.5, 88.2, 86.15, 97,
98.67 and 99% in the Combinedhalf. Comparison of themodel
types indicated that Singlestress_level model outperformed the
Combinedsample_size models. This indicated that considera-
tion of the daily stress levels helped improve the mental
state classification performance. Similar with the daily stress
classification, consideration of the number of features used
in the model indicated that the accuracy improved as the
number of features increased. For example, in the cases of
one-feature-combination, the lowest accuracies were in the

range between 50 to 60% for all models in window 2, whereas
the same values increased to a range of 98 to 100% in six-
feature-combination.

To observe the feature characteristics associated with
the performance improvement according to considerations
of the daily stress levels, we computed the differences of
Singlestress_level and Combinedsample_size models for each fea-
ture combination. We averaged two Singlestress_level models
and computed the differences between the averaged out-
come and each Combinedsample_size model. As a result of
sorting the feature combinations in the order of the great-
est difference, SSK values with the greatest differences
for all frames were included in the feature combinations.
Fig. 6 shows the average mental state classification accu-
racy in the case of the averaged Singlestress_level models
and the two Combinedsample_size models from one- to six-
feature-combination in window 3. Considering that the sam-
ple size of combinedall is doubled compared with that of
the Singlestress_level model, the difference in performance
can be observed to be remarkable. The difference is even
more pronounced when comparing the performance with
a Combinedsample_size model with the same sample size,
referred to as Combinedhalf. This difference in performance
tended to decrease as the number of features used in the
feature combination increased. These tendencies were the
same in window 2.

IV. DISCUSSION
During the last few decades, researchers have expressed
growing interests in measuringmental stress and its effects on
our physical health [42]–[44]. Because the stress concept has
been argued based on different theories regarding its nature,
development of universal measures ofmental stress have been
challenging [45]. One of the currently used global measures
of perceived stress is the perceived stress scale (PSS) that
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TABLE 2. Mental state classification (rest vs. task) accuracy (%) for one- and two-feature-combination. Numbers in parentheses indicate standard
deviations

measures the degree to which situations in an individual’s
life are appraised as stressful [46]. The items in PSS consist
of general questions aimed at exploring the extent to which
one perceives his or her life as unpredictable, uncontrollable,
and overloaded compared with his/her life status the previous
month. Therefore, the concept we defined in this study is not
suitable for daily stress because it can change considerably
on a daily basis, but not over a month period. Thus, we mod-
ified the questionnaires to evaluate daily stress levels for our
subject group, i.e., university students. While we assessed
their daily stress levels, we found that perceived daily stress
levels for individuals had surprisingly different distributions
shown in Fig. 7. In other words, it is not appropriate to define
one specific value to determine each response as high or low
for all subjects. Thus, the proposed method was employed

to define individual reference values. However, there are
obvious limitations in that outcomes relied solely on the stress
questionnaire. Even though we have verified that there were
statistically significant differences between high- and low-
daily-stress levels, the objectivity of daily stress levels can
be further enhanced by adding other measures, such as the
salivary cortisol hormone levels [7].

The effects of daily stress have not yet been investigated
extensively. Our previous study examined the effect of daily
stress on heart rate variability (HRV) and found significant
differences in values and trends for specific HRV parameters
during Stroop tasks between high- and low-daily-stressful
days [47]. Similar to these results, the new findings in this
study are that the daily stress levels also differ in pre-
frontal oxygenation measured by fNIRS, and that the fNIRS
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FIGURE 6. Average mental state classification accuracy for selected feature combinations in averaged Singlestress_level
models and the two Combinedsample_size models (window 3).

FIGURE 7. Distribution of stress indices. The high and low stress indices
of participants are depicted. The Y-axis indicates the normalized
frequencies from responses obtained from 41 subjects (showing the
highest and lowest responses). A density curve was added to the
histogram based on the probability density to make it easier to
understand the distribution. The vertical dashed lines represent the
means of the groups.

signal features can be used to classify daily stress levels
with stable performance. Therefore, daily stress levels can
affect physiological responses that can be evaluated by ECG
and fNIRS, even in the absence of experimental stressors.
Identifying differences in prefrontal oxygenation caused by
daily stress could lead to improved performance in men-
tal state classification. Mental state classification generally
aims to separate mental states between rest and task, and
is one of frequently attempted problems in brain–computer
interface research [21], [23], [27]. However, it may have a
negative impact on state classification performance if rest-
ing states can vary from person-to-person depending on the
daily stress levels of tested individuals. As hypothesized
earlier, the effect of daily stress was not negligible in men-
tal state classification. When n was the same, the averaged
performances of the Singlestress_level models (singlehigh and

singlelow) that considered daily stress, were much higher than
the Combinedsample_size model (combinedhalf), and yielded
a difference of at most 35% in the cases of three-feature
combination with SM, SV, and SSK at window 3.

Comparing the classification performance in terms of the
types of input features, we found that there were some spe-
cific features that had contributed significantly to the daily
stress and mental state classification performance. The char-
acteristics of these features were evaluated based on statistical
tests, and the SP and SM at rest and the task SSK yielded sta-
tistically significant differences according to the daily stress
levels. Especially, SP and SM features have been frequently
used in several BCI studies with a good performance [15],
[48], [49]. The signal feature that was included in the feature
combination that showed the greatest difference in mental
state classification performance was signal kurtosis, namely,
SSK. In other words, it can be said that the SSK feature was
most affected by daily stress in the mental state classification.
This is not a feature that was used frequently like SM or SP,
but considering that there were only a few studies on the
effects of daily stress, the remarkable aspect of this feature
is an important fact that was newly discovered in this study.
The SSK also exhibited statistically significant differences
according to daily stress, especially during the execution of
specific tasks. Therefore, given that it is a signal characteristic
that reflects the effects of daily stress, it can be observed
that it affects the mental state classification performance
considerably.

Finally, this study was conducted by 41 young healthy sub-
jects, but was limited to female university students. Because
if subjects’ occupation varied, their daily stress levels origi-
nated from different daily stressors. Accordingly, the levels of
daily stress levels can also vary [50]. Moreover, we controlled
the study’s outcomes by focusing on the study of females
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only. This is attributed to the findings of a prior report that
indicated that the stress response was significantly affected
by the subject’s gender [51]. We anticipate to extend our
study to male subjects to ascertain if the gender has effects
on daily stress on prefrontal oxygenation and on mental state
classification.

V. CONCLUSION
This study investigated the effects of daily stress with a
machine learning algorithm and a fNIRS passive brain–
computer interface. After we selected six feature values asso-
ciated with prefrontal cortical oxygenation for two different
levels of daily stress and two mental states, we found dif-
ferences according to daily stress levels and experimental
conditions based on classification. In daily stress classifi-
cation, it was shown that it was possible to classify daily
stress, not mental tasks, based on the high-classification
performance for various feature combinations and all the
frames. In mental state classification, we found that the
existing mental stress classification performance can vary
depending on the effects of daily stress by evaluating the
differences between the average of the single models and the
combinedmodel. In addition, the specific signal features such
as SM, SP, and SSK played an important role to reflect these
effects. In particular, the SSK was highly associated with
the influence of daily stress in mental state classifications.
The fNIRS signals investigated in this study were frequently
mentioned in the literature on mental stress and were found
to be experimentally significant. From these results, it was
concluded that an individual’s daily stress could influence
the fNIRS response, and that the mental state classification
outcomes could change according to this influence. Future
research investigating the influence of individual differences
on perceived stress in fNIRS will help elucidate individual
characteristics, and would thus allow studies on the cognitive
abilities of individuals to daily stress, and on personalized
fNIRS research.
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