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ABSTRACT In this paper, we propose deep learning assisted detection for index modulation millimeter
wave (mmWave) systems, where we train a neural network (NN) to jointly detect the transmitted data and
index information without relying on explicit channel state information (CSI). As a design example, we first
employ multi-set space-time shift keying (MS-STSK) combined with beamforming for transmission over
the mmWave channel, where the information is conveyed implicitly using the index of the antennas, the
dispersion matrix and the M-ary constellation. Then, we analyze our design when MS-STSK transmission is
considered in conjunction with beam indexmodulation (BIM), where the information is also conveyed by the
beam index in addition to the MS-STSK information. In contrast to the MS-STSK’s conventional maximum
likelihood (ML) detector, our learning-assisted detection dispenses with the channel estimation stage.
We demonstrate by simulations that the learning assisted detection outperforms the ML-aided detection in
the face of channel impairments with low complexity. Furthermore, we show by simulations that ML-aided
detection produces an error floor, when the MS-STSK transmission is coupled with BIM, when realistic
channel estimation errors are considered. Additionally, we present qualitative discussions on the receiver
complexity in terms of its search space as well as the number of computations required.

INDEX TERMS Index modulation, millimeter wave, MIMO, beamforming, machine learning, detection.

NOMENCLATURE
AA Antenna Array
AC Antenna Combination
AF Activating Function
ANN Artificial Neural Network
AoA Angle-of-Arrival
AoD Angle-of-Departure
BER Bit Error Rate
BF Beamforming
BIM Beam Index Modulation
BLAST Bell-Labs Layered Space-Time
BS Base Station
CSI Channel State Information
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DCMC Discrete-input Continuous-output Memoryless
Channel

DM Dispersion Matrix
DNN Deep Neural Network
FDD Frequency Division Duplex
IM Index Modulation
LSSTC Layered Steered Space-Time Coding
HBF HBF
MF Multi-Functional
MIMO Multiple-Input Multiple-Output
MMSE Minimum Mean Squared Error
mmWave Millimeter Wave
MS Multi-Set
NN Neural Network
OSTBC Orthogonal Space-Time Block Coding
QAM Quadrature Amplitude Modulation
RF Radio Frequency
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SM Spatial Modulation
STSK Space-Time Shift Keying
SNR Signal-to-Noise Ratio
SVD Singular Value Decomposition
TPC Transmit Precoder
ULA Uniform Linear Array
V-BLAST Vertical-Bell Laboratories Layered

Space-Time

I. INTRODUCTION
The challenge of providing massive connectivity to mobile
users motivated wireless communication researchers to
migrate from sub-6 GHz to the frequencies spanning
between 30 GHz and 300 GHz, which is referred to as the
millimeter wave (mmWave) band [1], [2]. Owing to the large
available bandwidth, mmWave frequencies have the potential
of accommodating a large number of users while simultane-
ously providing high data rates for each. However, harness-
ing mmWave frequencies faces several technical challenges,
since they suffer from high propagation losses compared to
that of the sub-6 GHz spectrum. To mitigate the substantial
losses due to atmospheric absorption, rain-induced fading
and foliage, beamforming-aided directional transmission is
envisaged [3], [4] by relying on large antenna arrays (AA)
to derive beamforming gains that can compensate for the
loss [1].

Furthermore, the employment of spatial-multiplexing
based multiple-input multiple-output (MIMO) transmission
has been proved beneficial for the enhancement of the data
rates. In the literature, there is a vast body of MIMO-aided
transmission schemes, but Bell-Labs’ Layered Space-Time
(BLAST) [5] stands as the seminal technique of achieving
high multiplexing gains. By contrast, when aiming for diver-
sity gains, the family of diversity-oriented schemes exempli-
fied by space time block coding (STBC) [7] and orthogo-
nal space-time block coding (OSTBC) [6] may be invoked.
A further extension of space diversity design for multiple
access is known as space time spreading [20], [21]. Later,
a new MIMO scheme has been born by the amalgamation of
diversity-, multiplexing- and beamforming-oriented arrange-
ments, which is referred to as a multi-functional MIMO
(MF MIMO) design [11]. In this design, both diversity and
multiplexing as well as beamforming gains can be obtained
for enhancing the capacity. Explicitly, theMFMIMO concept
relies on the amalgamation of two or more MIMO schemes.
For example, Satyanarayana et al. [4] designed a MF MIMO
that plays a dual role by providing both diversity and beam-
forming (BF) gains. Another example is the layered steered
space-time coding (LSSTC) of [10], where both diversity
and multiplexing gains as well as the beamforming gains
are achieved by the amalgamation of V-BLAST, STBC and
BF. Amongst other MF MIMO techniques, space-time shift
keying (STSK) [12], [15] is popular as a benefit of striking
a design trade-off between the attainable multiplexing and
diversity gains. The STSKdesign is conceived as an extension

to the concept of spatial modulation (SM) [9], [22], where a
single antenna is activated at any time. To elaborate a little
further, in the STSK design, a single dispersion matrix (DM)
[8] is activated from a set of DMs at any symbol instant.
In other words, information is conveyed implicitly by the
index of the DM in addition to the complex-valued signal
drawn from an M-ary constellation. As an extension of the
STSK concept, a multi-set (MS) STSK scheme was proposed
in [16], which is formed by combining the concepts of the
STSK and SM. This design is capable of increasing the data
rate, since the information is carried by both the classicM-ary
alphabet and by the DM index as well as by the antenna
index combination. In mmWave communications, where the
channel supports a few clusters of rays, the data rate of the
MS-STSK design can be further enhanced by coupling it with
the concept of beam index modulation (BIM) [17]. In the
BIM aided transmission, information is implicitly conveyed
by the index of the beams in addition to the classic M-ary
constellation.

However, a growing concern in the index modulation
transmission schemes, such as the MS-STSK is the search
complexity imposed on the receiver [16]. Furthermore, like
any communication system,MS-STSK also required accurate
channel state information (CSI) at the receiver for achiev-
ing a low bit error ratio (BER) [23]. In frequency division
duplex (FDD) systems CSI estimations relies on pilots, which
reduces the effective data rate in addition to imposing extra
complexity for channel estimation.

To circumvent this problem, a machine learning based
detection approach may be employed, where symbol detec-
tion is carried out without explicit CSI knowledge. This phi-
losophy makes the design more spectrally efficient.

There is a vast body of literature on utilizing machine
learning aided physical-layer communications [24]–[26].
Samuel et al. [27] conceived a deep neural network (DNN)
assisted architecture for data detection, while Aoudia and
Hoydis [28] demonstrated the feasibility of deep learning
for end-to-end communications. By contrast, He et al. [18]
employed deep learning for MIMO detection in a model-
based scenario. Additionally, Xia et al. [19] designed a DNN-
assisted MIMO detector operating in the presence of corre-
lated interference, while Xiang et al. [29] employs DNN for
joint channel estimation and data detection of SM. In the con-
text of channel coding, Huang et al. et al. [30] employed rein-
forcement learning for the construction of polar codes, while
Kurka and Gündüz et al. [31] demonstrated the power of
deep learning in improving the performance of joint source-
channel coding. Furthermore, the so-called autoencoder-
aided model was proposed by Van Luong et al. [32] for
non-coherent index modulation (IM) detection. Table 1 con-
trasts the novelty of our design to the family of state-of-the-
art MIMO transceiver designs. Against this backdrop, our
contributions are as follows.

1) We propose deep learning assisted detection for
index modulation based mmWave MIMO systems.
More specifically, by employing multi-layer NNs, the
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FIGURE 1. Timeline of spatial-multiplexing based multiple-input multiple-output (MIMO) systems.

detection of MS-STSK is performed without relying
on the explicit knowledge of the CSI at the receiver.
We also extend our design to a transmission scheme,
where MS-STSK is intrinsically amalgamated with
BIM, but requires limited CSI knowledge for detection.
This philosophy makes our design spectrally efficient,
since it eliminates the need for pilot-assisted channel
estimation.

2) We demonstrate by simulations that our proposed
design detects the MS-STSK information with reliabil-
ity, despite circumventing CSI estimation.

3) We show by simulations that our design outper-
forms the ML-aided detector in the face of unavoid-
able channel impairments introduced during the
CSI estimation. Furthermore, we demonstrate that
the net Discrete-input Continuous-output Memory-
less Channel (DCMC) capacity of the ML-aided

detector is lower than that of our proposed learning-
assisted detection dispensing with any pilot over-
head. More explicitly, this is because the DCMC
capacity is significantly affected by the pilot over-
head required by the classic ML-aided detection,
since it requires accurate CSI in every frame of the
transmission.

4) To improve the fidelity of our learning-assisted detec-
tion, we propose recalibration of the NN weights after
a certain number of frames, which is contingent on
the Doppler frequency. The recalibration of the NN
weights is carried out using a modest amount of side-
information or training information, which is known
at both the transmitter and receiver. We show that
the overhead needed for this training is negligible
compared to the pilot overhead required for channel
estimation.
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TABLE 1. Summary of our design contrasting with state-of-the-art, where
3and the blank correspond to with and without contributions,
respectively.

5) We show by simulations that our proposed design out-
performs ML-aided detection in the face of channel
estimation errors whose variance is as low as 0.15.

6) We then extend our design to link-adaptation, where the
transmitter can be adapted between the beamforming-
aided MS-STSK and MS-STSK intrinsically amalga-
mated with BIM. The rationale of this design is to
increase the data rate at a given target BER.

7) A qualitative complexity discussion is presented both
for learning-assisted detection and forML-aided detec-
tion in terms of the search space volume as well as the
number of computations.

The rest of the paper is organized as follows. In Section II,
we detail the system models of MS-STSK amalgamated with
beamforming and MS-STSK with BIM in mmWave com-
munication, while in Section III we present our proposed
learning-assisted detector design. Section IV presents the
complexity of the design in terms of the computations as well
as the search space, while Section V and Section VI discuss
our results and conclusions, respectively.
Notations: We use upper case boldface, A, for matri-

ces and lower case boldface, a, for vectors. We use
(.)T , (.)H , ‖.‖F, Tr(.) E(.) for the transpose, Hermitian
transpose, Frobenius norm, trace and expectation operator,
respectively. We adopt A(m, n) to denote the mth row and nth

column of the A, IN is the identity matrix of size N × N ,
and A � 0 indicate that A is a positive definite matrix.
Finally, we use CN , U , and i.i.d. to represent complex-valued
normal distribution, uniform distribution, and independent
and identical distribution, respectively.

II. SYSTEM MODEL
Let us consider the system model shown in Fig. 2, where
the transmitter is equipped with Nt antenna arrays (AA)1 of
K antenna elements (AE) each. In Fig. 2, the transmitter
employs an MS-STSK scheme, where the information is
conveyed by both the STSK symbols and antenna combina-
tion (AC) information. In our system model of Fig. 2, the
MS-STSK scheme relies on usingM AAs (RF chains), where
the AC selection is performed by selecting M AA out of Nt
AA. More explicitly, the MS-STSK codeword is comprised
of two parts, where the first part conveys log2(McMQ) bits,

1The transmitter is equipped with a beamforming antenna array to derive
for compensating the propagation loss at mmWave frequencies.

FIGURE 2. Block diagram of the MS-STSK transmitter having Nt AAs with
K AEs in each AA. In our design, the inputs bit-sequence is mapped to
one of MQ dispersion matrices, one of class Mc -QAM symbols and also to
M consecutive AA out of Nt AAs.

with Mc being the constellation size and MQ is the number
of dispersion matrices [8]. The remaining log2(Nt/M ) bits
are mapped to a specific AC in the antenna selection unit of
Fig. 2. It is important to emphasize that during the MS-STSK
transmission onlyM AA are activated at any symbol interval,
while the other antennas remain silent2

The output of a typical STSK encoder is given by

X = Aqxl, (1)

where xl is the M-QAM/PSK symbol, and Aq is the qth

dispersion matrix of size M × T from the set A =

{A1, . . . ,Aq, . . . ,AMQ}, where ‖Aq‖
2
= T . The physical

significance of the matrix Aq is that it disperses the symbol
xl over M AA during T time slots. For example, for a 4-bit-
sequence ‘0110’, where the first two bits, ‘10’, are mapped
to one of the classic 4-QAM symbols, while the remaining
two bits, ‘01’, are mapped to one of the four dispersion
matrices from the set A having the cardinality of 4, i.e. A =
{A1,A2,A3,A4}. It is also possible that the first three bits are
mapped to 8-QAM while the last bit is used for the selection
of one of two dispersion matrices, depending on the specific
design requirements.

Having expounded on the MS-STSK design, in the next
subsections, we focus our attention on the system model of
the MS-STSK design combined with beamforming followed
by the description of amalgamating MS-STSK with the BIM
concept.

A. MS-STSK COMBINED WITH BEAMFORMING
It is important to emphasize that (1) represents the STSK
symbol associated with a specific combination of active AA.
However, since the transmitter is equipped with Nt AA, the
total number of ACs (Nc) for the STSK symbol transmission
is

Nc = 2k , k =
⌊
log2 Nt/M

⌋
. (2)

2The rationale of having K AE is to provide beamforming gain for
compensating the propagation loss, while the time and spatial diversity is
obtained by M AAs (RF chains) and dispersion matrices
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The Nc value is rounded down using the floor function to
allow only an integer number of bits. Note that the number of
ACs (Nc) is calculated by combining the set ofM consecutive
antennas together.

During transmission, anMS-STSK symbol is formedwhen
an STSK symbol is fed to the ST mapper of Fig. 2, where
a specific AC is selected depending upon the input bit-
sequence. In other words, a part of the input bit-sequence
determines the specific AC to be selected for transmission.
To expound a little further, let us again consider the bit-
sequence where two additional bits are appended to the left
of the aforementioned bits, i.e., ‘110110’. In this scenario,
the bits ‘11’ convey the index of one of four ACs.3 Thus,
in this design we have a total of log2(NcMcMQ) bits/channel
use (bpcu), where the additional log2(Nc) bits pass the infor-
mation of the AC. Therefore, an MS-STSK symbol formed at
the output of the ST mapper of Fig. 3 from the cth AC can be
expressed as [15]

X̃ = Ãq,csl, (3)

where Ãq,c is the MS-STSK dispersion matrix whose entries
are constituted by the selected AC dispersion matrix and it is
given by

Ãq,c = [0 . . .Aq . . . 0]T , (4)

where q denotes the index of the dispersion matrix, while c
denotes the antenna combination. Then the MS-STSK sym-
bol is steered in the desired direction for transmission over
the mmWave channel using the RF analog BF matrix FRF to
the desired user, as shown in Fig. 3(a), where the block-based
received signal Y of size Nr × T after RF analog combining
usingWRF matrix is given by4

Y =WRFHFRFX̃+ V, (5)

where V is the Gaussian noise having the distribution of
CN (0, σ 2), while FRF is expressed as

FRF = [O . . .FRFq . . .O] ∈ CKNt×Nt , (6)

FRFq = diag(F1
RFF

2
RF . . .F

M
RF), (7)

where FiRF is the BF vector of the ith AA of size K × 1.
Similarly, WRF is the analog RF combining matrix of size
M × Nr . Furthermore, H represents the statistical mmWave
channel model expressed as

H = [H1H2 . . .HNt ], (8)

whereHi is a statistical channel matrix of size Nr ×K , which
is expressed as

Hi =

√
NrNt
NcNray

Nc∑
nc=1

Nray∑
nray=1

α
nray
nc ar (φ

nray
nc )aTt (φ

nray
nc ). (9)

3In this setting, the total number of AC assumed is 4.
4Note that Y is a matrix, where each column represent the received signal

vector at time t . Therefore, for a time interval T , the received signal Y will
be of size Nr × T .

The variables Nc,Nray in (9) are the number of clusters and
number of rays, respectively, while α obeys the distribution
ofNC(0, 1), and ai as well as ar represent the array response
vectors at the ith AA of the transmitter and the array at the
receiver, respectively, expressed as follows:

ar (φr ) = [1 ej
2π
λ
d cos(φr ) . . . ej

2π
λ
(Nr−1)d cos(φr )]T , (10)

at (φt ) = [1 ej
2π
λ
d cos(φt ) . . . ej

2π
λ
(K−1)d cos(φt )]T . (11)

Note that our system model of (5) corresponds to Fig. 3(a),
where the MS-STSK symbol is transmitted over the channel
matrixH to its intended receiver with the aid of beamforming,
where all the beams (one or many) supported by the channel
are utilized.

Additionally, by letting WRFHFRF = Heff and invoking
the vectorial stacking operation, Eq. (5) becomes equivalent
to an SM system, which is detailed in [15]. In other words,
Eq. (5) can be re-written in the vector form of [15], [16]:

y = H̃XIcKq,l + Ṽ, (12)

where the vectorized constituent matrices are expressed as

y = vec(Y) ∈ CNrT×1, (13)

H̃ = I⊗Heff ∈ CNrT×NtT , (14)

Ṽ = vec(V) ∈ CNrT×1, (15)

X = [vec(Ã1,1) . . . vec(Ãq,c) . . . vec(Ãq,Nc )] (16)

∈ CKNtT×NcMQ ,

K = [0 . . . 0︸ ︷︷ ︸
q−1

sl 0 . . . 0︸ ︷︷ ︸
MQ−q

]T . (17)

At the receiver, the vectorized received signal y is used
during the detection process. Conventionally, the detection of
the MS-STSK symbol, where the estimates q̂, l̂, ĉ of (5) are
obtained, is carried out by employing ML detection relying
on the CSI estimated at the receiver and it is expressed as

< q̂, l̂, ĉ >= argmin
q,l,c
‖y− H̃XIcKq,l‖

2. (18)

Additionally, theDCMCcapacity of theMS-STSK scheme
is given by [33]

CMS-STSK
DCMC = log2(NcMcMQ)−

1
(NcMcMQ)

(19)

×

∑
q,l,c

E
[
log2

∑
q′,l′,c′

exp(ψMS-STSK)

∣∣∣∣K],
(20)

where

ψMS-STSK = −

∥∥∥HX
(
Ic′Kq,l − Ic′Kq′,l′

)
+ Ṽ

∥∥∥2 − ‖Ṽ‖2
σ 2 .

(21)

By taking into account the pilot overhead fp, which is the ratio
of the number of pilots to the number of data symbols, the
effective DCMC capacity becomes:

CMS-STSK
eDCMC = (1− fp)CMS-STSK

DCMC .
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FIGURE 3. MS-STSK symbol transmission - (a) when the channel supports only one beam (b) amalgamated with beam index when
the channel supports a plurality of beams.

We note that the index modulation, such as spatial modula-
tion and MS-STSK, suffer from a potentially higher perfor-
mance loss than the classic MIMO configurations, because,
the CSI accuracy affects the antenna and beam indices of
our system, both of which form an integral part of the total
information symbol stream. Hence, index modulation sys-
tems are more susceptible to CSI impairments. In order to
overcome this difficulty, typically a higher pilot overhead
is imposed with the objective of obtaining a more accurate
CSI. Furthermore, the channel estimation error variance using
LMMSE, which is typically employed in practice, is given
by [34]

σ 2
=

1
1+ τpρt

, (22)

where ρt is the pilot transmission power and τp = τ−τd is the
pilot symbols’ transmission time duration, while τ is the total
transmission time and τd is the data duration. Equation (23)
can also be equivalently written in terms of pilot ratio fp5 and
total number of symbols η as

σ 2
=

1
1+ ηfpρt

. (23)

B. MS-STSK AMALGAMATED WITH BIM
In contrast to Fig. 3(a), Fig. 3(b) shows theMS-STSK symbol
coupled with the beam index before the final transmission.

5The typical values of fp for normalized Doppler of 0.001 are 0.03 and
0.05 [35], [36].
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FIGURE 4. Illustration of beam index modulation coupled with MS-STSK.

In this model of Fig. 3(b) information is also conveyed by the
index of the beam in addition to the information conveyed
by MS-STSK symbol. More explicitly, when the channel
of (8) supports a plurality of beams, say Nb beams, instead
of transmitting in all beams at once, the transmitter selects
a specific beam for transmission depending upon the input
bit-sequence. Thus, this design is capable of achieving an
additional bit rate of log2(Nb) bits per channel use than that
of its counterpart dispensing with BIM.

To elaborate a little further, let us consider the ‘toy’ exam-
ple shown in Fig. 4, where the channel seen from each AA
supports a total of 4 beams for transmission. In order to
increase the spectral efficiency, the BIM is invoked by relying
on the index of the beam used for transmission. In other
words, MS-STSK transmission can be carried out by one of
the four beams from eachAAby allowing additional bits to be
conveyed by the index of the beam. Naturally, this philosophy
only can be exploitedwhen there aremore than one beams.6 If
there is only a single beam, then MS-STSK will be combined
with conventional beamforming. As an example, in Fig. 4,
beam 2 is selected for MS-STSK transmission according to
the bit sequence ‘01’ representing the beam index, while
beam 3 is selected from the other AA for the bits ‘11’. Thus,
the total number of bits per channel use when BIM is coupled
with the MS-STSK example discussed in Section II-A is 10,
i.e., ‘1101︸︷︷︸

BI

110110︸ ︷︷ ︸
MS−STSK

.’

Now let us again consider Fig. 3(b), where the channel seen
from each AA at the transmitter supports Nb beams and only
one of theNb beams is selected for transmission depending on

6At this stage the question arises — how do we best configure our
NtK -element antenna for a specific diversity-, spatial multiplexing- and
beamforming order? Naturally, this depends on the particular application in
mind, as well as on its specifications. In the example of Fig. 4, we opted
for invoking BIM for implicitly conveying two extra bits instead of the
classic space-division multiple access principle, because BF relies on λ/2-
spaced elements; but such a tight element-spacing would result in a modest
STSK multiplexing gains, because the adjacent AEs receive correlated sig-
nals, which are hard to separate at the receiver. In a nutshell, the specific
assignment of AEs to the baseband signal processing functions has to be
carefully considered.

the bit-sequence. Thus there are Nb possible combinations of
beamforming for MS-STSK symbol transmission conveying
a total of log2(NbNcMcMQ) information bits in contrast to the
log2(NcMcMQ) bits of the MS-STSK scheme of [15], trans-
mission dispensing with the beam index mode. The block-
based received signal YBI of this scenario can be expressed
as

YBI =Wn
RFH

n
BIF

n
RFX̃+ N, (24)

where Hn
BI is the statistical channel model of (8) in the nth

beam, while the sizes of the matrices Hn
BI,W

n
RF,F

n
RF and X̃

are still the same, as described in Sec. II-A. We observe that
the only difference between (5) and (24) lies in the manner of
exploiting the beams.

Similar to (13), Eq. (24) can be vectorized for the nth beam.
At the receiver, the vectorized received signal yBI is used
during the detection process. In this setting, the detection of
the estimates q̂.l̂, ĉ, n̂ of (5) is obtained by employing ML
detection on the CSI of the nth beam at the receiver and it is
expressed as

< q̂, l̂, ĉ, n̂ >= arg min
q,l,c,n

‖yBI −Hn
BIXIKq,l‖

2
; (25)

It is important to emphasize that both (18) and (25) are
heavily reliant on the availability of accurate CSI for the
successful detection of the symbols, thereby imposing both
the usual pilot overhead required for channel estimation
and an additional channel estimation complexity. Further-
more, we will show in the subsequent section that, both (18)
and (25) produce an error floor when the CSI estimation error
variance is set to 0.15.

Additionally, theDCMCcapacity of theMS-STSK scheme
combined with BIM is expressed as

CMS-STSK-BIM
DCMC

= log2(NbNcMcMQ)−
1

(NbNcMcMQ)

×

∑
n,q,l,c

E
[
log2

∑
n′,q′,l′,c′

exp(ψMS-STSK-BIM)

∣∣∣∣K] ,
(26)
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FIGURE 5. Model of a typical DNN architecture.

where we have:

ψMS-STSK-BIM (27)

= −

∥∥∥HnXIcKq,l −Hn′XIc′Kq′,l′ + Ṽ
∥∥∥2 − ‖Ṽ‖2

σ 2 . (28)

By taking into account the pilot percentage fp the effective
DCMC capacity becomes:

CMS-STSK-BIM
eDCMC = (1− fp)CMS-STSK-BIM

DCMC .

In the next section, we propose a design, where we employ
deep detection relying on a neural network while dispensing
with the requirement of having CSI knowledge at the receiver.
The advantage of our design is that it avoids the reliance on
CSI and consequently circumventing the pilot overhead and
complexity of channel estimation. This philosophymakes our
design spectral-efficient.

III. PROPOSED LEARNING ASSISTED DETECTOR DESIGN
In this section we commence our discussion by presenting
some preliminaries on deep learning, in order for the paper to
be self-contained. Then we expound on the proposed design,
where we invoke deep learning philosophy for the data detec-
tion.

A. DEEP LEARNING PRELIMINARIES
Artificial Neural Networks (ANN) rely on a computational
model inspired by the structural and functional aspects of
biological neural networks [37]. As a benefit of their ability to
learn and generalize, they have become one of the most pop-
ular machine learning techniques. They mimic the functions
of the human brain in terms of organizing neurons to evaluate
certain operations. The model of a typical neural network is
shown in Fig. 5. A neural network as that of Fig. 5 consists
of multiple layers, where the first and the last layers are the
input and the output layers, while the layers between them
are referred to as hidden layers. Note that a neural network
having more than a single hidden layer is referred to as a
deep neural network [38], which belongs to the family of deep

learning techniques. To elaborate a little further, the input
vector xi is fed to the input layer, which is connected to the
left-most hidden layer of Fig. 5. The output from each neuron
of the hidden layer is governed by a so-called activation
function f (.). The activating function represents the rate of
change neuron’s potential from its resting state before it is
stimulated. Typically, the activating function is a function of
a weight vector and a bias. In our example of Fig. 5, the
first column of the weight matrix W1 and the first element
of the bias vector b1 belong to the first neuron of the first
hidden layer. Similarly, the outputs from the other neurons are
calculated and fed to the next layer whose outputs are again
governed by the activating function of that layer. Finally, the
predicted response of the neural network is obtained from
the output layer. It is instructive to note that the only math-
ematical condition on the choice of the activating function is
differentiability [37], [38]. Some commonly used activating
functions include a simple threshold function, ReLu function,
piecewise-linear function, and sigmoid function.

Having discussed the structure of a typical neural network,
we now focus our attention on the employment of an ANN.
The employment of an ANN comprises two stages: the train-
ing phase and testing phase. In the training phase, the known
input and output samples are used for computing the weight
matrices and bias vectors. In other words, the weights and
biases are specifically designed for minimizing the error
between the known output and the predicted output. Then
in the testing phase, the pre-designed weights and biases are
applied to the new input data, outside the training set for
predicting the output.

In the next subsection, we rely on this philosophy, where
the detection is carried out relying on the weights trained
during the training phase.

B. LEARNING ASSISTED DETECTION
Let us now focus our attention on the learning-assisted detec-
tion for our system model. As discussed in the previous
section, we first aim for designing the training weights and
biases for our neural network. In our design, the number
of hidden layers is set to 2, while the number of neurons
is adjusted in such a way that it faithfully reproduces the
output during the training stage. In our MS-STSK symbol
transmission of Eq. (5), the vectorized matrix y serves as the
input to the neural network; while the detected dispersion
matrix index, the antenna index and the complex-valued clas-
sic symbol drawn from the M-QAM constellation constitute
the output vector, as shown in Fig. 6(a). Similarly, when the
MS-STSK encoder is amalgamated with a beam-index, as in
Eq. (24), the vectorized matrix yBI serves as the input of
the ANN. In this scenario, we have an additional element,
at the output of the ANN which is the beam index,as shown
in Fig. 6(b).

Having defined the input and the output vectors of the neu-
ral network, training of the network is carried out using a set
of known input and output samples. We note that before the
training process, the weight matrices and the biases vectors
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of all layers are set to random values from the distribution
N (0, 1) [39]. Furthermore, in our design, a member of the
hyperbolic tangent function is used as the activating function
as a benefit of its smoothness and asymptotic properties,
which is given as [37]

f (x, a, v) =
2

1+ e−2a(x−v)
− 1, (29)

where f (x, a, v) is mapping on x, a is the slope parameter, and
v affects the function position.

The activating function of (29) is applied at every neuron of
the network whose output is fed as the input to the next layer
of neurons. In other words, the activating function of (29)
maps its input vector xi of the ith training sample using the
weight matrix W and bias vector b of that layer. Then this
mapping serves as the input vector to its succeeding layer and
so forth. After the final mapping, which is at the output layer,
the error between the known output and the predicted output
is computed. The error is formulated for each layer as a loss
function given by [40]

L =
1
S

S∑
i=1

∥∥ŷi − yi
∥∥+ ρ1‖W1‖

2
2 + ρ2‖W2‖

2
2 + ρ3‖W3‖

2
2,

(30)

where S is the cardinality of the training set, ŷi and yi are
the predicted and the known output vector of the ith training
sample, respectively, while ρ1, ρ2, ρ3 are the regularization
factors used for avoiding over-fitting [40].

Then, the weight matrices and bias vectors are designed for
minimizing the loss function of (30). Note that the solution
obtained is not guaranteed to have global optimum solution.
This is typically carried out using the technique of back-
propagation. In back-propagation, the gradient of (30) is
evaluated with respect to the weight matrices W1,W2,W3
and bias vectors b1,b2,b3. A more detailed explanation of
back-propagation is presented by Chauvin et al. [41].

Note that in our design we assumed that the chan-
nel evolves in time according to Jakes’ model, where the
channel’s correlation coefficient in time is defined by the
zero-order Bessel-function of the first kind as [42]

ζ = J◦(2π fdτ ), (31)

where fd is the maximum Doppler frequency and τ is the
sample time. Therefore, the number of neurons and the time
required for designing the weights and biases during the train-
ing phase depend on the Doppler spread7 fdτ . Furthermore,
the Doppler spread also plays a key role in deciding how
often the training of the weights and biases is required for
estimating the indices with a high integrity.

After designing the neural network parameters, the testing
phase ensues, where the vector y(or yBI) from the receive AA
is fed to the input of the neural network. Here the weights
and biases computed during the training phase are applied to

7At high Doppler spread, more number of neurons may be required for
training.

FIGURE 6. ANN assisted detection at the receiver. Since this design is
capable of estimating the output while dispensing with the CSI, the pilot
overhead is markedly reduced.

the input vector for estimating the indices at the output of the
network.
Remark 2: The input of the neural network takes only real

values; therefore, we have split the received vector y into real
part R(y) and imaginary part I(y) before feeding it to the
neural network.

C. TRANSCEIVER ADAPTATION
Having discussed the learning assisted detection for the
MS-STSK mmWave systems, we now extend our design
to link-adaptation, where the transmitter adapts between
beamforming-aided MS-STSK and MS-STSK intrinsically
amalgamated with BIM. The rationale of this design is to
increase the data rate at a given target BER. As a design
example, we consider the target BER of 10−3. Then it can be
seen in Fig. 8(a) that at the SNR of -10 dB, the beamforming
aided MS-STSK design switches to MS-STSK combined
with BIM for increasing the data rate while still maintain-
ing the target BER. Fig. 8(b) shows the rate achieved by
the adaptive design. More explicitly, it can be seen that the
adaptive design supports higher rate transmission than that of
the beamforming aided MS-STSK while also satisfying the
target BER of 10−3. It is instructive to note that theMS-STSK
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FIGURE 7. ANN assisted detection at the receiver. Since this design is capable of estimating the output while dispensing with the CSI, the
pilot overhead is markedly reduced.

with BIM provides higher rate than that of the adaptive design
for SNRs < −7.5 dB, but it fails to satisfy our target BER
criterion.

IV. RECEIVER COMPLEXITY
In this section, we focus our attention on the receiver design
of the proposed model. Fig. 7 illustrates the block diagram
of a typical receiver employing ML detection as well as
the learning-assisted detection. To expound further, Fig. 7(a)
shows the schematic of ML detection. In this design, the
receiver first combines the signal in the RF stage and then
performs down-conversion for further digital processing in
the baseband. Given the necessity of having the CSI, channel
estimation is carried out with the aid of pilots prior to the
detection. The ML detection is invoked for estimating the
MS-STSK symbol after the CSI estimate is obtained.

By contrast, Fig. 7(b) shows the receiver design relying
on a neural network, where the training weights are designed
offline. It can be seen in Fig. 7(b) that, in contrast to Fig. 7(a),
this design dispenses with the channel estimation stage.

More explicitly, the signal received after down-conversion
is fed to an ANN, where the NN parameters learned during
the training phase are applied for estimating the MS-STSK
indices.

Having briefly discussed the receiver structure of both
designs, let us now focus our attention on the complexity
quantified in terms of search space volume and the number
of computations. Let us consider again theMS-STSK symbol
of (5) as a ‘toy’ example, where there are MQ dispersion
matrices, Mc complex-valued symbols and Nc ACs. In this
scenario, the ML detection of (18) has to estimate both the
index of the dispersion matrix and of the M-QAM symbol,
as well as of the AC. Thus, the run-time complexity relying
on ML detection would be on the order ofO(McMQNc). Fur-
thermore, the ML detection requires CSI knowledge which
relies on pilots and imposes additional complexity during
the channel estimation stage of Fig. 7 (a), while also signifi-
cantly reducing the data rate because of the pilot overhead. In
contrast to the ML detection, our learning assisted detection
improves the data rate by eliminating the pilot overhead.
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FIGURE 8. The transmitter adapts between beamforming-aided MS-STSK and MS-STSK combined with BIM modes of transmission (a)
BER of the adaptive design (b) Rate of the adaptive design.

In other words, once trained the neural network dispenses
with the CSI. This philosophy makes our design spectral-
efficient. Furthermore, the pre-determined parameters of the
network learned during the training process allows us to
estimate the indices of (5) with a high integrity as we will
show later in Section V.
On the other hand, the complexity of the proposed design

depends on the number of neurons in each hidden layer.
More explicitly, the complexity of a typical NN is jointly
determined by the forward propagation, and backward prop-
agation. To elaborate a little further, let us assume that there
are n neurons in a hidden layer. Let us also assume that the
input and output vectors are of sizes ni and no, respectively.
We know that for each layer’s activating function of (29)
is computed using the network parameters of the respective
layer. In other words, the pre-determined weight matrix and
bias vector values are substituted in the activating function
of (29) relying on the input vector ni for computing the
intermediate output no, which serves as the input of the next
layer. In (29), x is the input, a is the weight and v is the
bias. Contrasting it to the ML receiver’s search complexity
by considering each search operation as a node of Fig. 6, the
complexity of the proposed design would be on the order of
O(ninh1nh2no).

8 It is important to emphasize that in contrast
to the ML of Fig. 7(a), this design does not require additional
computations for channel estimation and also avoids the pilot
overhead.

Let us now delve into the complexity in terms of the
number of complexmultiplications for both designs. The total
number of complex multiplications required byML detection
for the transmission parameters of (5) isO(NtNrNcMQT 2)+
O(NcM3

Q), while it is O(NbNtNrNcMQT 2) + O(NbNcM3
Q)

for (24). By contrast, for the NN associated with the afore-

8Note that this is only to check how it compares to theML detection, albeit
there is no search complexity associated with the NN aided detection.

TABLE 2. Computational complexity in terms of the number of
complex-valued multiplications.

TABLE 3. Simulation parameters.

mentioned parameters, the number of multiplications is
O(ninh1 )+O(nh1nh2 )+O(nh2no).

Table 2 illustrates the number of complex multiplications
required for (18) with the simulation parameters listed in
Table 3.

V. SIMULATIONS
In this section we present our simulations characterizing the
performance of the proposed design and of the ML detection.
More particularly, we performedMonte Carlo simulations for
comparing the performance of the learning-assisted detection
and of theML-aided detection. Our simulation parameters are
listed in Table 3. Furthermore, in our simulations, we have
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FIGURE 9. Probability distribution of the antenna index estimated at the output of the NN for (a) SNR 0 dB (b) SNR 5 dB (c) SNR 15 dB.

configured the NN to have 2 hidden layers with 30 neurons
each, where we trained the NN using 1000 samples and the
classic stochastic gradient descent technique having a step
size of 0.005 for 92 epochs.

Fig. 9 shows the probability density function (PDF) of the
antenna index estimate generated from the output of the NN
for the system model of Fig. 3(a). The plots shown in Fig. 9
are generated during the testing phase of the NN for SNRs of
0, 5 and 15 dB. To obtain this plot, we have set the number
of hidden layers to 2, where the NN underwent training
using 2000 samples. Additionally, we note that the input
vector of the NN of Fig. 6 takes only real values as discussed
in Section III, hence the received vector y is split into its real
and imaginary parts. In this setting, we empirically observed

that the NN makes an accurate inference between the output
and the input vectors, when the number of neurons is set
to 12 and 13 in hidden layers 1 and 2, respectively for both
the real and imaginary parts of the network.

In this setting, Fig. 9(a) shows the PDF of the antenna
index output from the NN for an SNR of 0 dB. Ideally,
the estimate of the output representing the antenna index is
expected to be either ‘0’ or ‘1’, but it can be seen from the
figure that the output of the NN is not exactly binary but
a set of continuous values spanning from -0.4 to 1.5. More
explicitly, for the bit ‘0’ the output ranges from -0.4-to-0.5;
while for the bit ‘1’, the output of the NN is a real value
between 0.3-to-1.6. It is observed empirically that the output
for the bit ‘0’ follows a near-Gaussian distribution with a
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FIGURE 10. BER of the proposed design for different number of frames
as channel evolves in time according to Jakes’ correlation coefficient (31).
The simulation parameters are listed in Table 3.

FIGURE 11. Pilots transmission for the proposed learning-assisted design
and conventional design. In ML-aided detection, pilots P are transmitted
in every frame which significantly affects the spectral-efficiency, while
training data Td is requested by the user only after Nf frames which is
contingent on the Doppler spread. Note that the channel is not
time-invariant over Nf frames. The channel is different for every frame
according to the Doppler frequency. However, for NN assisted designs,
the same training weights can be employed for the duration of Nf frames
for successful symbol detection — thanks to the DNN.

mean of 0 and variance of 0.15. Similar trends are valid for
the bit ‘1’. However, as the SNR increases from 0-to-5-to-15,
as shown in Figures 9(b) and 9(c), it may be observed that
the variances of the distributions reduce gradually. In other
words, the range of values seen for an SNR of 0 dB becomes
narrower as the SNR increases, which results in a confident
estimate of the antenna index. To understand the behavior of
the NN in terms of index estimation, we have analyzed the
output of the antenna index, as an example. The PDFs for the
other indices can also be readily obtained.

Fig. 10 analyzes the BER of the proposed design for dif-
ferent number of frames as channel evolves in time according
to Jakes’ correlation coefficient of (31). It is evident from
Fig. 10 that as the number of frames increases from 10 to 100,
the BER of the proposed design degrades. This phenomenon
is observed because the training weights designed during
the first few frames become outdated after a certain num-
ber of frames; hence retraining the NN parameters becomes
necessary. We note that as expected, the number of frames

FIGURE 12. BER of the MS-STSK transmission. In this design the NN
estimates indices of antenna, dispersion matrix and the symbol. The
simulation parameters are listed in Table 3.

transmitted before the NN weights become outdated directly
depends on the Doppler spread. For example, in Fig. 10,
the number of frames transmitted before the BER starts to
degrade for the normalized Doppler spread of 0.0005 is
higher than for 0.001. Therefore, in this scenario, the receiver
requests the BS to transmit pilots to recalibrate its weights
depending on the BER observed. Fig. 11 shows the schematic
of the pilot transmission for both the learning-assisted design
andML detection. It is important to emphasize that the pilots
are transmitted for every single frame in the case ofML detec-
tion. By contrast, our learning-assisted detection requires the
training data for recalibrating the NNweights only after every
Nf frames, as shown in Fig. 11, while performing detection
without explicit CSI in the rest of the frames. This can also be
interpreted as online learning. More explicitly, using the loss
function of (30), the weights may be computed. Note that at
the commencement of the process, random weights are used.
By contrast, during retraining, initial weights are set to the
previously trained weights. In this way, the NN adjusts its
weights. The length of the known sequence depends on the
Doppler frequency — and it is determined empirically. It is
of salient importance to note that the amount of training data
required for recalibration decreases with the reduction of the
Doppler spread. The overhead involved in retraining the NN
network of our design is proportional to Np/

[
Nf (Nd + Np)

]
,

where Nf is the number of frames, Nd is the number of
data streams, and Np is the number of pilots; while the pilot
overhead involved in the channel estimation for ML detection
is NpNf /

[
Nf (Nd + Np)

]
.

Fig. 12 shows the BER of both the learning-assisted detec-
tion and of the ML-aided detection with perfect CSI, as well
as of the ML detection with imperfect CSI for the MS-STSK
transmission dispensing with the BIM. Since no BF index
is considered, it can be assumed that the channel supports
only a single beam, or all potential beams are utilized for
the transmission. It can be seen in Fig. 12 that for the afore-
mentioned NN parameters, there is around 6 dB gap at the
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FIGURE 13. Discrete-input Continuous-output Memoryless Channel
capacity of the learning-assisted detection and of the ML-aided detection
with different pilot overheads for channel estimation when MS-STSK
transmission with beamforming is considered. The simulation parameters
are listed in Table 3.

BER of 10−3 between the learning-assisted detection and
the ML-aided detection relying on perfect CSI. Although the
ML-aided detection relying on perfect CSI outperforms the
learning-assisted detection by 6 dB SNR gain, this is achieved
under the idealized simplifying assumption of having perfect
CSI. On the other hand, for the CSI estimate having an error
variance of 0.16, which is obtained by substituting fp = 0.05
in (23), the SNR gap reduces to around 3 dB. Furthermore, the
ML-aided detection produces an error floor9 for the CSI error
variance of 0.25, when fp = 0.03. By contrast, the learning-
assisted detection remains capable of accurately estimating
the indices of the MS-STSK transmission regardless of the
nature of the CSI, while also circumventing pilot-assisted
channel estimation all together.10

While Fig. 12 shows an SNR gap between the proposed
scheme and ML detection, it is also pertinent to study
the effective throughput of both designs for the sake of
fairness, since the SNR gain observed for ML detection
in Fig. 12 is critically contingent on the CSI estimation
accuracy, which increases proportionally to the pilot den-
sity. However, increasing the pilot density would reduce the
effective throughput of the design. Therefore, Fig. 13 char-
acterizes the Discrete-input Continuous-output Memoryless
Channel (DCMC) capacity of the learning-assisted detection
and of the ML detection for different pilot overheads. It can
be seen in the figure that the capacity of the design is strictly
governed by the pilot overhead. More explicitly, for the

9Note that we have used LMMSE for channel estimation, since it is
employed LTE. It is instructive to note that employing other sophisticated
channel estimation techniques may also increase the complexity of the
design, which defeats the purpose of our work.

10We emphasize here that the performance of DNN method cannot be
better than the conventional ML method. It is also instructive to note that
the loss function computed for designing the DNN weights is itself deduced
from the ML method. The purpose of using DNN method is to reduce the
detection complexity. Note that the DNN method can beat only in the face
of channel impairments.

FIGURE 14. BER of the MS-STSK transmission amalgamated with the BIM.
The simulation parameters are listed in Table 3.

simulation parameters summarized in Table 3, the capacity
of the ML detection for 3% pilot-overhead is limited to a
maximum value of 4.85 [bpcu], while it is 4.75 [bpcu] for
5% pilot overhead. Furthermore, when the pilot overhead is
increased to 10%, the DCMC capacity of the ML detection
is reduced to a maximum value of 4.5 [bpcu]. By contrast,
the DCMC capacity of the learning-assisted detection reaches
the maximum value of 4.99 [bpcu], which is close to the
DCMC capacity of 5 [bpcu], since the overhead involved in
recalibrating the weights is marginally lower11 Additionally,
we note that there is a SNR gain of 0.5 dB and 1 dB for our
learning-assisted detection over the ML-detection with 5%
overhead when aiming for achieving a rate of 3 [bpcu] and 4
[bpcu], respectively. This gain is around 1 dB and 3 dB for the
learning-assisted detection over the ML-detection with 10%
overhead at the rate of 3 [bpcu] and 4 [bpcu], respectively.

Fig. 14 shows the BER of both the learning-assisted detec-
tion and of the ML-aided detection with perfect CSI as well
as of the ML-aided detection with imperfect CSI for MS-
STSK transmission in conjunction with BIM. In this setting,
we assumed that the channel supports two beams for eachAA
of Fig. 3(b). In other words, in Fig. 3(b) there is an extra index
to be estimated, which is the beam index. In this scenario,
it is empirically observed during the training phase that the
number of neurons has to be set to 30 for both the real and
imaginary constituents of the NN. It can be seen from Fig. 14
that adding an additional index for estimation increased the
SNR gap between the learning-assisted detection and the
ML detection using perfect CSI to 8 dB. Again, the superior
performance of the ML detection is because of the unrealistic

11 For example, for 200 training samples, we can transmit 100 frames,
where each frame has 100 symbols. In other words, we do have to retrain the
neural network depending on how rapidly the propagation environment is
fluctuating, but again, our method reduces the overall overhead. Boldly and
explicitly, the main philosophy of our design is to reduce both the overhead
and detection complexity. However, we note that the number of training
symbols required for retraining for the transmission of say N frames, remains
lower, since we only update the weights based on our already designed
weights.
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FIGURE 15. Discrete-input Continuous-output Memoryless Channel
capacity of the learning-assisted detection and of the ML-aided detection
with different pilot overheads for channel estimation when MS-STSK
transmission with BIM is considered. The simulation parameters are
listed in Table 3.

assumption of having perfect CSI. However, when a CSI esti-
mate associated with the error variance of 0.15 is introduced,
the ML-aided detection starts to produce an error floor from
around−10 dB, while the BER remains flat for the CSI error
variance of 0.25. On the other hand, despite the absence of
CSI, the learning-assisted detection estimates both the MS-
STSK indices and the beam index with high integrity.

Fig. 15 characterizes the DCMC capacity of the proposed
design and of the ML design when MS-STSK transmission is
amalgamated with the BIM. In this simulation, it is assumed
that the channel supports two beams and BIM is employed for
exploiting these two beams, where only one beam is activated
depending on the input bit-sequence. It is evident from the
figure that the DCMC capacity of theML detection is inferior
to that of the learning-assisted detection. This is because of
the overhead imposed by the pilots used for channel estima-
tion to aid theML detection process. This becomes especially
pronounced, when the pilot overhead is set to 10% as seen in
the figure, where the DCMC capacity is less than 5.5 [bpcu],
while that of learning-aided detection is 6 [bpcu]. In other
words, the necessity of having pilots for estimating the CSI
partly consumes the physical resources, thereby reducing the
effective capacity of the system. However, this behavior is
avoided by the learning-assisted system, since it achieves
accurate symbol detection at a retraining overhead as low as
0.002%. Furthermore, we observe an SNR gain of 3 dB at the
rate of 5 [bpcu] for our learning-assisted detection over the
ML detection at 10% overhead, while it is around 2 dB at the
rate of 4 [bpcu].

VI. CONCLUSION
In this paper, we proposed deep learning assisted detec-
tion for index modulation aided mmWave systems, where
we trained a NN for estimating the symbol indices without
relying on explicit CSI knowledge. As a design example,

we first employed MS-STSK and then we analyzed our
design when MS-STSK transmission is considered in con-
junction with BIM. In contrast to the MS-STSK’s conven-
tional ML-detector, our learning-assisted detection dispenses
with the channel estimation stage, which makes it more
spectral-efficient than ML detection. We demonstrated by
simulations that the learning-assisted detection outperforms
ML detection in the face of realistic channel impairments.
Furthermore, we show by simulations that ML detection
produces an error floor, when the MS-STSK transmission is
coupled with BIM. Additionally, we presented qualitative
discussion on the receiver complexity in terms of both its
search space as well as the number of computations required.
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