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ABSTRACT This article addresses observation duplication and lack of whole picture problems for ensemble
learning with the attentionmodel integrated convolutional recurrent neural network (ACRNN) in imbalanced
speech emotion recognition. Firstly, we introduce Bagging with ACRNN and the observation duplication
problem. Then Redagging is devised and proved to address the observation duplication problem by gen-
erating bootstrap samples from permutations of observations. Moreover, Augagging is proposed to get
oversampling learner to participate in majority voting for addressing the lack of whole picture problem.
Finally, Extensive experiments on IEMOCAP and Emo-DB samples demonstrate the superiority of our
proposed methods (i.e., Redagging and Augagging).

INDEX TERMS Imbalance learning, ensemble learning, convolutional neural network, recurrent neural
network, speech emotion recognition.

I. INTRODUCTION
Emotion is important paralinguistic information in human
communication. Emotion directs non-linguistic social sig-
nals (such as body language and facial expression) to
express wants, needs and desires [1]. There are many appli-
cations of speech emotion recognition in different fields
such as healthcare [2], services [3], and telecommunica-
tion [4]. In the healthcare field, speech emotion recognition
can help clinicians assess patients’ psychological disorders
online. In the industry of customer call centers, speech emo-
tion recognition (SER) can be used to detect customers’
satisfaction. Speech emotion recognition can be also used to
route 911 emergency call services for high priority emergency
calls.

The associate editor coordinating the review of this manuscript and

approving it for publication was Shuping He .

In recent years, convolutional recurrent neural net-
work (CRNN) is widely used for SER [5]–[7]. At an early
stage, CRNN simply assumes that a sequence of frames share
the same emotion-relevant weight in an utterance. Later an
attention model integrated into convolutional recurrent neu-
ral network (ACRNN) employs an attention layer to score
weights of a sequence of frames [8], [9]. As a result, ACRNN
can focus on emotion-relevant parts and produce discrimina-
tive utterance-level representations for SER. However, stan-
dard deep learning algorithms based on CE loss [10] does
not consider the impact of uneven label distribution on the
training set. That is, the number of the training examples
labeled with an emotion is smaller than the number of exam-
ples labeledwith another emotion. The former label is called a
minority class and the latter one is a majority class. Although
standard deep learning algorithms obtains a model with a
minimum of train error, the resulting model is often biased
toward the majority class. Consequently, many examples of
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the minority class are misclassified and the overall accuracy
of SER is low.

Researchers have proposed methods or algorithms to
address the imbalance issue for standard machine learning
algorithms, and some of them are also valid for deep learning
algorithms [11], [12]. Among these solutions, Bagging [13]
is one of widely-used methods for its simplicity and effec-
tiveness. But when Bagging subsamples a training set with
replacement to construct bootstrap samples, some training
examples may appear more than once in a sample. As a
result, duplicate training examples in a bootstrap sample may
prevent a good generalization of the base learner. We call
the problem ‘‘observation duplication’’. Correspondingly,
this article devises a Random Evenly Distributed Aggrega-
tion (Redagging) method to address the observation dupli-
cation problem. Additionally, the Redagging base learners
trained on partial data may be prevented from seeing the
whole picture captured in the entire data. We call the prob-
lem ‘‘lack of whole picture’’. This article also proposes
an Oversampling-Undersampling aggregation (Augagging)
method to deal with the lack of whole picture problem.

The rest of the paper is organized as follows. In Section II,
we introduce related work. In Section III, we describe the
base classifier ACRNN and Bagging. In Section IV, we intro-
duce our Redagging and Augagging. In Section V, we show
our experimental results on an English database of emo-
tional speech IEMOCAP and a German database of emo-
tional speech Emo-DB. Finally, we conclude our study in
Section VI.

II. RELATED WORK
In this section, we introduce imbalance issue on deep learning
techniques and ensemble learning methods.

A. IMBALANCE ISSUE ON DEEP LEARNING TECHNIQUES
At an early stage, traditional machine learning methods
were used for speech emotion recognition. Specifically,
after speech signals are transformed into statistical fea-
tures, speech emotion recognition can be transformed into
multi-classification problems [1], [14]–[17]. Recently, with
the success in image recognition, CRNNs [5]–[7] have been
adopted for SER tasks. Generally, CRNN includes three main
parts. Firstly, convolutional layer transforms input features
into high-dimension feature representations. Then BiLSTM
layer generates a sequence of low-dimension feature repre-
sentations. Finally, full connected (FC) layer outputs a prob-
ability array.

In CRNN, BiLSTM layer assumes that each frame has
the same influence on the target emotion. However, some
scholars argued that the most influence often comes from
a few frames. Then some attention mechanisms are pub-
lished [8], [9]. An attention model integrated convolutional
recurrent neural network assigns each frame with a dif-
ferent weight. With the weights of a sequence of frames,
ACRNN can focus on emotion-relevant parts and produce
discriminative utterance-level representations for SER. Thus,

compared with CRNN, ACRNN can more precisely recog-
nize the target emotion. In 2018, Chen et al. [18] proposed
to feed Mel-spectrogram, Mel-spectrogram with deltas and
Mel-spectrogram with delta-deltas into an attention model
integrated CNN. In 2019, Latif et al. [19] devised parallel
convolution layers with multiple filter widths to achieve good
experimental results by directly capturing various contextual
information. In 2020, Kwon and Mustaqeem [20] proposed a
deep-step convolutional neural network (DSCNN) to improve
the accuracy of prediction by focusing on the salient and
descriptive features of speech signals.

However, those work does not consider imbalanced
speech emotion recognition. Classical deep learning algo-
rithms iteratively update weights of models to reduce CE
loss [10]. When the label distribution of a train data set is
uneven, the final model easily biases toward the majority
class [21], [22]. Hensman and Masko [11] empirically stud-
ied the impact of imbalanced data on CNN training. They
concluded that oversampling is a viable way to counter the
negative impact. Later, Buda et al. [12] systematically inves-
tigated the impact of class imbalance of CNNs in terms of
the classification accuracy. They stated that the effect of class
imbalance on classification performance is detrimental and
oversampling should be applied to eliminate the imbalance.
Zheng et al. [23] suggested generating local features, compre-
hensive information in local data, and global features from
speech signals, and then they used an ensemble to perform
speech emotion recognition. This article focuses on data-level
methods that address class imbalance by changing data dis-
tribution. Feature augmentation or algorithm enhancement is
beyond the scope of this article.

Ensemble learning methods are one of the most popular
methods of addressing class imbalance for its simplicity and
easy-migration. So far, there is no systematic research on
ensemble learning methods to address the class imbalance of
CNN. Actually, Ensemble learning is a good way to counter
the class imbalance of CNN for the independence of algo-
rithms or features. This article also proposes two ensemble
learning methods to improve the performance of CNN.

B. ENSEMBLE LEARNING METHODS
There are three popular classes of ensemble learning meth-
ods: Bagging [13], Boosting [24], and Stacking [25]. Bagging
repeatedly subsamples a training set with replacement to
construct bootstrap samples, on which a learning algorithm
trains a sequence of base learners. After obtaining the base
learners, Bagging combines them by majority voting and the
most-voted class is predicted. Boosting is in fact a family
of algorithms in that there are many variants. In Boost-
ing algorithms, each learner takes into account its previ-
ous learner’s success. After each training step, the weights
are redistributed. Misclassified data increases its weights
to emphasize the most difficult cases. In this way, subse-
quent learners will focus on them during their training. The
final learner is derived by weighted majority voting of the
base learners. Stacking first generates a number of first-level
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individual learners on a training set by employing differ-
ent learning algorithms. Those individual learners are then
combined by a second-level learner which is called as meta
learner. Eventually, the meta learner makes the prediction.

Boosting improves the generalization error by reducing
the training error. However, a neural network (i.e, ACRNN)
may be set up with thousands of parameters. A deep learning
based learner can be easily over-trained on the training set
and lose its generalization properties. For instance, when
we used ACRNN as the base learner, we often saw that
the training error of the based learner is near zero, but the
generation error is still high. Therefore, Boosting is difficult
to improve generalization by reducing the training error of
the deep learning based learner. Stacking needs to construct
base learners using different learning algorithms. However,
the algorithm selection in Stack is not a simple problem.
When inappropriate algorithms are selected to train stacking
learners, the performance may be not as good as we expect.
Hence, this article concentrates on the improvement of Bag-
ging for SER tasks.

Bagging builds heterogeneous base learners by random
drawing examples with replacement from a training set.
A learning algorithm can generate multiple base learners
in a parallel style. But the observation duplication problem
of the base learners may cause overfitting [26], [27]. Thus,
this article devises Redagging to prevent from observation
duplication in bootstrap samples and proves the superiority
of the proposedmethod. However, Bagging-based Redagging
utilizes undersampling of the source data set to produce the
multiple samples and hence, the learners on these multiple
samples may be prevented from seeing the ‘‘whole picture’’
captured by the entire data set. So this article also propose
Redagging-based Augagging to combine oversampling and
Redagging by majority voting for addressing the lack of
whole picture problem.

III. BAGGING WITH ACRNN
In this section, we introduce Bagging using ACRNN as the
base classifier and observation duplication problem. Firstly,
we briefly overview the construction of the network input.
Then we describe the architecture of ACRNN. After that,
we introduce Bagging using ACRNN as the base classifier.
Finally, we analyze the observation duplication problem in
Bagging with ACRNN.

A. NETWORK INPUT
To train a model on audio data, we extracted spectral features
from the speech signal and then converted them into array.
At first, let us define a few notations or functions as follows.
T : number of classes,
S: time (frame) length,
F : number of Mel-filter bank,
φ(m, i): inserts a new axis into m at position i,
[v1, v2, . . . , vc]i: join a sequence of arrays {v1, v2, . . . , vc}

along an axis at position i,
qi: the Mel filterbank energies through a Mel filterbank i.

Then, the log-Mel filterbank energies (log-Mels) mi,
the delta features, and the delta-deltas features are produced
according to (1), (2), (3).

mi = log(qi) (1)

where qi is the Mel filterbank energy through the ith Mel
filterbank.

mi′ =

∑N
n=1 n(mi+n − mi−n)

2
∑N

n=1 n
2

(2)

where n is an incremental number and N is the number of the
preceding (or following) frames that are calculated.

mi′′ =

∑N
n=1 n(mi+n

′
− mi−n′)

2
∑N

n=1 n
2

(3)

With mi, mi′, and mi′′, x ∈ RS×F×3 is produced according
to (4). Then x is used as the input of the aftermentioned
ACRNN.

x = [ϕ(mi, 3), ϕ(mi′, 3), ϕ(mi′′, 3)]3 (4)

B. ACRNN
In the paper, ensembles use an attention model integrated
convolutional recurrent neural network (ACRNN) as the base
classifier. The architecture of ACRNN is shown in Fig. 1.
Firstly, three ConvPool layers transform input feature x
into 3-D high-level representations. Secondly, the first
full-connected (FC) layer transforms the 3-D representations
into 2-D space. Thirdly, BiLSTM layer obtains a sequence of
high-level representations hs = (

−→
hs ,
←−
hs ). Fourthly, the sec-

ond FC layer calculates weight ratio of each frame αs accord-
ing to (5). Fifthly, Fun layer performs the weighted sum
of the high level features to get utterance-level features g
according to (6). Sixthly, the third and fourth FC layer reduce
the number of dimensions. Finally, Softmax layer outputs the
probability of T class labels p = (p0, p1, . . . , pT−1) where
pt represents the probability of emotion et . In convention,
the position of the maximal element of p is obtained as the
label of x. Note that the three ConvPool layers, the first FC
layer, and the third FC layer are all followed by a BatchNorm
layer [28] and a LeakyLeRU [29] activation layer. Since the
BatchNormalization layer and the LeakyLeRU layer do not
change the dimension, they are combined into the preceding
layer to save space.

αs =
exp(W · hs)∑S
s=1 exp(W · hs)

(5)

whereW represents network layer parameters.

g =
∑S

s=1
αshs (6)

However, some researchers [11], [12] have found that
imbalanced training data potentially have a negative impact
on classification performance of CNN. In the following,
we introduce Bagging to address the class imbalance by
making data distribution even on bootstrap samples.
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FIGURE 1. An ACRNN with a specific configuration used in our experiments.

C. BAGGING WITH ACRNN
Let X and Y denote the instance space and the set of class
labels, respectively, assuming Y = {0, 1, . . . ,T − 1}. Giving
A training setD = {(x1, y1), (x2, y2), . . . , (xm, ym)},D can be
divided intoD∗ = {D0,D1, . . . ,DT−1}, where yi = t if (xi, yi)
∈Dt . For convenience, suppose |D0

| ≤ |D1
| ≤ · · · ≤ |DT−1|.

|Dt | is the number of elements in Dt .
At the k-th round, Bagging subsamples each subsetDt with

replacement to generate T subsamples. Then T subsamples
are united to construct the k-th bootstrap sample Dk . Next,
ACRNN classifier L is trained on the bootstrap sample Dk
to obtain the base learner hk . After the base learners are all
ready, the most-voted emotion y is obtained from the outputs
of the base learners. The pseudo-code of Bagging is shown in
Alg. 1.

D. OBSERVATION DUPLICATION IN BAGGING WITH
ACRNN
In Alg. 1, for any t ∈ Y , we have set a constraint |Dtk | = |D

0
|.

Thus, class labels are evenly distributed in Dk . According
to Theorem 1, if |Dt | ≈ |D0

|, then the probability that an
example appears more than once is approximately 0.264.
Theorem 1: At the k-th round, d elements are drawn from

Dt to construct Dtk . For any x ∈ X , if d → +∞, |Dtk | ≈
d , then the probability that draws x at least two times is
approximately 0.264 (1 - 2

e )
Proof of Theorem 1: Let us define some notations as fol-

low.
dt : Dtk ,
A: an event that draws x at least two times,
A0: an event that draws x 0 times,
A1: an event that draws x 1 times.
Then the probability that A occurs, P(A), can be obtained

by

P(A) = 1− P(A0)− P(A1)

Alg. 1 Bagging
Input: Division of training set D∗;
Number of labels T ;
ACRNN classifier L;
Number of learning rounds K .
for k = 1 to K do

for t = 0 to T − 1 do
Dtk← observations of drawn fromDt with replace-

ment
end for
Dk ← D0

k ∪ D
1
k ∪ · · · ∪ D

T−1
k

hk ← L(Dk )
end for
H (x)← argmax((h1(x)+ h2(x)+ · · · + hK (x))/K ) F

argmax((p0, p1,. . . , pT−1)) returns the position t of the
maximal element pt

Output: hypothesis H

Since

P(A0) = (1−
1
dt
)d ,

P(A1) = d
1
dt
(1−

1
dt
)d−1

=
d

dt − 1
(1−

1
dt
)d

Hence,

P(A) = 1− (1−
1
dt
)d −

d
dt − 1

(1−
1
dt
)d

Thus, if d →+∞, |Dtk | ≈ d , we have

P(A) ≈ 1−
1
e
−

1
e

= 1−
2
e
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FIGURE 2. The flowchart of Redagging.

Hence, the observation duplication problem occurs on
bootstrap samples with a certain probability. Overfitting may
happen owing to excessive duplicate examples in a bootstrap
sample. In SectionV (Experiments), experimental results will
prove the impact of observation duplication. Additionally,
heterogeneity is also critical. The homogeneous base learner
cannot yield a good ensemble either. In the following section,
our two methods take both the observation duplication and
heterogeneity problems into consideration.

IV. OUR METHODS
Firstly, Redagging is devised and proved to deal with the
observation duplication problem based on Bagging. Based on
Redagging, Augagging is proposed to combine oversampling
and Redagging by majority voting to deal with the lack of
whole picture problem.

A. REDAGGING
Our method Redagging includes three main steps. Firstly,
Redagging randomly generates a number of different per-
mutations of Dt (Dt,1,Dt,2, . . . ,Dt,It ) by the Mason rota-
tion algorithm [30] and unions them to get Dt∗ according
to (7), (8). Then it distributesDt∗ to K bootstrap samples
D1,D2, . . . ,DK in order, where Dk is defined in (9). Finally,
using ACRNN as the base classifier, Redagging trains on
bootstrap sample Dk to yield the base learner hk and com-
bines an ensemble H according to (10). Because Redagging
randomly generates permutations and then divides the het-
erogeneous permutations into bootstrap samples, it addresses
both the heterogeneity and observation duplication problems.
The data flow is shown in Fig. 2. Again, K is the number
of bootstrap samples and |DT−1| represents the number of
examples of the majority class.

It =
⌈
K |D0

|

|Dt |

⌉
(7)

Dt∗ = Dt,1 ∪ Dt,2∪, . . . ,∪Dt,It (8)

Dk = D0
k ∪ D

1
k∪, . . . ,∪D

T−1
k (9)

where Dtk represents the subset of examples labelled with t at
the kth round.

R(x) = argmax((r1(x)+ r2(x)+ · · · + rK (x))) (10)

Theorem 2: For any t ∈ Y , Redagging distributes Dt∗ to
K bootstrap samples in order. If |Dt |%|D0

| = 0, for any
x ∈ Dtk , the number of occurrences of x in Dtk is 1. %
returns the remainder left over when one operand is divided
by a second operand.
Proof of Theorem 2: Let 3 = |Dt |

|D0|
. Given Dt , we have

permutations

Dt,1 = Dt1 ∪ D
t
2∪, . . . ,∪D

t
3

Dt,2 = Dt3+1 ∪ D
t
3+2∪, . . . ,∪D

t
23

. . .

Dt,It = Dt(It−1)3+1 ∪ D
t
(It−1)3+2∪, . . . ,∪D

t
It3

If |Dt |%|D0
| = 0 is satisfied, for ∀k ∈ {1, 2, . . . ,K }, ∃! i ∈

{1, 2, . . . , It },Dtk ⊆ Dt,i. Since Dt,i is a permutation of Dt ,
for any x in Dtk , x appears only once in Dtk .
Actually, observation duplication only occurs in a small

fraction of bootstrap samples even if |Dt |%|D0
| = 0 is

not satisfied. Compared with Bagging, Redagging constructs
bootstrap samples with less observation duplications. Addi-
tionally, various random seeds introduce the heterogeneity
of the bootstrap samples. Thus, Redagging base learners
are heterogeneous and address overfitting for observation
duplication. Moreover, we will make further analysis of the
performance impact of observation duplication in Section V
(Experiments).
Another straightforward method to address observation

duplication is Sampling Without Replacement (SWOR),
which samples without replacement on the level of the indi-
vidual bootstrap samples. But SWOR changes the probability
distribution. The probability that each example appears in
K samples is not the same. As a result, some examples
may never appear if K is small. Considering the computa-
tion cost and model complexity, a high K is not practical
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FIGURE 3. The flowchart of Augagging.

in many real-world applications. In contrast, Redagging not
only reduce the probability of observation duplication but
also maintains the same probability of observations. There-
fore, Redagging is superior to SWOR by design.

Redagging addresses the observation duplication problem,
whereas the Redagging base learners lack of the whole pic-
ture captured by the entire data. In the following, Augagging
is proposed to address the observation duplication and lack
of whole picture problems by combining oversampling and
Redagging by majority voting.

B. AUGAGGING
From resampling perspective, a bootstrap sample is generated
using an undersampled scheme. Thus, the knowledge of a
Redagging base learner may be incomplete. Instead, over-
sampling (OS) trains a learner on the oversampled data and
acquires the complete knowledge of the source train set. Thus,
the combination of Redagging and Oversampling can yield a
stronger learner than Redagging ensemble if the OS learner
does not introduce overfitting. Augagging just employs the
combination of Redagging and Oversampling to address the
lack of whole picture problem in Redagging. The data flow
of Augagging is shown in Fig. 3.

Different from Redagging, Augagging constructs an extra
OS learner ro learnt from the oversampled training set Do
according to (12). Then r1, r2, . . . , rK , and ro together con-
struct the undersampling-oversampling ensemble R∗ accord-
ing to (11). If the OS classifier O based on (12) performs
better than the Redagging ensemble R on the validation set V
in term of unweighted average recall (UAR), R∗ participates
in majority voting; otherwise R does.

R∗(x) = argmax((r1(x)+r2(x)+. . .+ rK (x)+ ro(x))) (11)

O(x) = argmax((ro(x))) (12)

The Redagging base learners are trained on heterogeneous
samples, whereas the OS learner can see the ‘‘whole picture’’

of the original data. When oversampling does not cause over-
fitting, Augagging combines both the Redagging base learn-
ers and OS learner by majority voting. Hence, theoretically
Augagging is superior to Redagging.

V. EXPERIMENTS
In this section, we conduct speaker-independent experi-
ments to investigate the performance of comparable meth-
ods on both the Interactive Emotional Dyadic Motion
Capture database (IEMOCAP) [31] and the Berlin Emotional
Database Emo-DB [32].
The experiments run on a H3C G4900 server. The server is

configuredwith a TeslaV100 independent 32GGPUgraphics
card, and installed Python 3.7.0, CUDA 10.01 acceleration
platform and cuDNN 7.4.2.24 deep learning acceleration
platform.
The log-Mels are extracted by the Python speech features

toolkit [33] with the window size of 25 ms, a 10 ms shift,
and N set to 2. The training log-Mels, validation log-Mels
and test log-Mels are all normalized by the global mean and
the standard deviation of the training set. The NumPy [34]
array is used to store features and perform matrix operations.
Each layer of ACRNN is implemented by Keras [35]. The
parameter of the model is optimized by cross entropy objec-
tive function [10] with a mini-batch of 150 examples, using
the Adam optimizer [36]. The initial learning rate is set to
10−3.
On the IEMOCAP and Emo-DB databases, ACRNN is

the benchmark method. Oversampling randomly clones the
examples of the minority class until class distribution is even.
Bagging, SWOR, Redagging and Augagging use ACRNN as
the base classifier. With different parameter initializations,
we can obtain a wide range of results. Thus, we repeat each
evaluation for 10 timeswith different random seeds and report
the average to get more reliable results.
Since IEMOCAP and Emo-DB both contain 10 speak-

ers, we employ a 10-fold cross-validation technique in our
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FIGURE 4. UARs and UAFs of Bagging-Redagging aggregation using
ACRNN as the base classifier with various SRRs.

evaluations. Specifically, for each evaluation, 8 speakers are
selected as the training data and one speaker is select as the
validation data, while the remaining one speaker is used as
the test data. That is, we have 10 samples in all for each
database.

We save the optimal model which achieves the highest
UAR. But when evaluating imbalance learning methods,
(unweighted average F1-score) UAF is more comprehen-
sive and objective in that F1-score is a weighted average
of recall and precision. Thus, we measure the performance
of imbalance learning methods in terms of both UAR and
UAF.

A. PERFORMANCE IMPACT OF OBSERVATION
DUPLICATION
To measure observation duplication, we define Samples
Repetitive Rate (SRR) as defined in (13).

SRR =
1
K

K∑
k=1

∑
(xi,yi)∈Dk ,g((xi,yi),Dk )>1

g((xi, yi),Dk )

|Dk |
(13)

where g(a,Dk ) is the number of occurrences of a in Dk .
The right term of (13) represents the degree of observation

duplication of bootstrap samples. A higher SRR means more
observation duplications in samples. Then using ACRNN as
the base classifier, we conduct experiments on an Emo-DB
data set to measure the impact of observation duplication.

To produce various SRRs on the data set, we choose some
classes to apply Redagging and the rest classes to apply
Bagging to construct different training data. That is, we first
choose all five classes of emotions to apply Redagging and
obtain the lowest SRR (SRR = 0.12). And then, we choose
the first four classes to apply Redagging and the last one to
apply Bagging and obtain the second lowest SRR (SRR =
0.19). We repeat the Bagging-Redagging aggregation three
more times. Finally, we choose all the five classes to apply
Bagging and obtained the highest SRR (SRR = 0.49). Our
experimental results under the four different SRRs are shown
in Fig. 4.

From Fig. 4, we can see that when SRR = 0.12,
we obtained the highest UAR (0.75) andUAF (0.78).With the
increment of the SRR value, the accuracy of speech emotion

TABLE 1. Sample distribution of the ten IEMOCAP samples.

TABLE 2. Average UARs and UAFs of imbalance learning methods using
ACRNN as the base classifier on the ten IEMOCAP samples.

recognition in terms of UAR and UAF decreases consistently.
When SRR = 0.49, we obtained the lowest UAR and UAF.
This indicates that Redagging can perform better than Bag-
ging by reducing observation duplications. In the following
subsections, we compare Redagging and Augagging with
other imbalance learning methods.

B. EXPERIMENTS ON THE DATABASE IEMOCAP
IEMOCAP consists of five sessions, each session being com-
pleted by a pair of speakers (female and male) in recitation
lines and improvisation scenarios. The average sample length
is 4.5 seconds and the sampling rate is 16 kHz. We con-
duct experiments on four emotion samples: happy, angry,
sad, and neutral. Each task employs 10-fold cross-validation
technology. That is, we have 10 samples in all. The sample
distribution of the ten samples are described in Table 1, where
H = happy, A = angry, S = sad, N = neutral.
We conduct experiments on the ten IEMOCAP samples.

K = 5 when Bagging, Redagging, or Augagging is evaluated.
Then the ACRNN models of the benchmark method, Over-
sampling (OS), Bagging base learners, Sampling without
replacement (SWOR) base learners, Redagging base learners,
and Augagging base learners are all trained in 10 epochs. The
experimental results are shown in Table 2. When ACRNN
is used as the base classifier, Augagging achieves the high-
est average UAR (0.65), followed by Redagging (0.64) and
SWOR (0.62). The average UARs of Oversampling (0.61)
and Bagging (0.61) are both higher than the base method
(0.60). In terms of UAF, Augagging (0.59) is the best, Redag-
ging (0.58) and SWOR (0.56) are the second best, followed
by Bagging (0.55). Oversampling (0.53) even performsworse
than the benchmark method (0.54).
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FIGURE 5. The average ranks of the five imbalance learning methods
using ACRNN as the base classifier on the ten IEMOCAP samples (the
lower, the better).

FIGURE 6. SRR results of Bagging and Redagging on the ten IEMOCAP
samples.

Additionally, we rank these imbalance learning methods
on each sample. The average rank of each method is shown
in Fig. 5. From Fig. 5, we can see that Augagging maintains
the leading position (the lower, the better) in terms of UAR
and UAF. Redagging is the runner-up. SWOR comes higher
than ACRNN in terms of UAF but degenerate ACRNN in
terms of UAR. The average ranks of Oversampling and Bag-
ging even falls behind the average rank of the benchmark
method in terms of UAF. On the whole, Fig. 5 indicates that
on the ten EMOCAP samples, Augagging and Redagging
can improves performance of ACRNN, but Oversampling,
Bagging and SWOR can’t.

Furthermore, we conduct a comparison analysis on the ten
IEMOCAP samples in terms of SRR and UAR. The SRR
results and UAR results are shown in Fig. 6 and Fig 7,
respectively. In Fig. 6, the average SRR of Redagging is about
0.05 while that of the SRRs of Bagging reaches 0.44 on aver-
age. This indicates that Bagging introduces more observation
duplications than Redagging. Moreover, as shown in Fig. 7,
Redagging achieves higher UAR than Bagging on 9 out
of 10 samples. That indicates that Redagging performs better
than Bagging with high probability. Moreover, Augagging
outperforms not only Bagging on 9 out of 10 samples but
also Redagging on 5 samples (I1, I3, I5, I8, I10). Augagging
constructs an ensemble combining both the Redagging base
learners and the OS learner. The experimental results on

FIGURE 7. A comparison of Bagging, Redagging, and Augagging using
ACRNN as the base classifier on the 10 IEMOCAP samples, in terms of
UAR.

TABLE 3. Sample distribution of the ten Emo-DB samples.

the ten IEMOCAP samples demonstrate the superiority of
Augagging.

C. EXPERIMENTS ON THE DATABASE EMO-DB
Emo-DB consists of 535 sentences from 10 professional
actors, covering 7 emotions (neutral, fear, joy, anger, sadness,
disgust and boredom). Specifically, the Emo-DB data set has
five classes of emotions (containing 101 angry utterances,
66 bored utterances, 53 joyful utterances, 46 sad utterances,
and 58 neutral utterances). The original audio is sampled at
44.1 kHz and later downsampled to 16 kHz. The number of
anxious examples and the number of disgusting examples
are no more than two on some validation sets so that the
experiments results fluctuate on the validation set. Thus,
we only conduct experiments on five emotions (anger, bore-
dom, joy, sadness and neutral). Each task employs the 10-fold
cross-validation technology. The sample distribution of the
10 samples are described in Table 3, where A = anger,
B = boredom, H = joy, S = sadness, and N = neutral.
We conduct experiments on the ten Emo-DB samples.

K = 4 when Bagging, Redagging, or Augagging is evaluated.
Then the ACRNN models of the benchmark method, Over-
sampling (OS), Bagging base learners, Redagging base learn-
ers, and Augagging base learners are all trained in 10 epochs.
When ACRNN is used as the base classifier, the experimental
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TABLE 4. Average UARs and UAFs of imbalance learning methods using
ACRNN as the base classifier on the ten Emo-DB samples.

FIGURE 8. The average ranks of the six imbalance learning methods
using ACRNN as the base classifier on the ten Emo-DB samples (the
lower, the better).

results are shown in Table 4. From Table 4, in terms of
UAR, Augagging achieves the average highest UAR (0.71),
followed by Redagging (0.69). The average UARs of SWOR,
Bagging and Oversampling are the same (0.68), which are
higher than that of the base method (0.66). In terms of UAF,
Augagging (0.66) is the best, followed by Redagging (0.65),
followed by Bagging (0.64), followed by SWOR (0.63).
Oversampling (0.62) performs better than the base method
(0.61).

Additionally, we rank these imbalance learning methods
on each sample. The average rank of each method is shown
in Fig. 8. Fig. 8 shows the average rank of Augagging is the
best (the lower, the better) in terms of both UAR and UAF.
Redagging ranks the second. SWOR ranks above Bagging in
terms of UAR but does behind Bagging in terms of UAF.
The average ranks of Bagging and OS (oversampling) are
better than the rank of the base method. On the whole, Fig. 8
indicates that on the ten Emo-DB samples, these five imbal-
ance learning methods all improves performance of ACRNN,
whereas Augagging and Redagging perform the best.

Furthermore, we conduct a comparison analysis of Bag-
ging, Redagging, and Augagging on the ten Emo-DB samples
in terms of SRR and UAR. The SRR results and UAR results
are shown in Fig. 9 and Fig 10, respectively. In Fig. 9,
the mean of the SRRs of Redagging is 0.14 while that of the
SRRs of Bagging reaches 0.52. This indicates that Bagging
introduces much more observation duplications than Redag-
ging in bootstrap samples. Moreover, as shown in Fig. 10,
Redagging achieves higher average UARs than Bagging on
8 out of 10 samples. Augagging outperforms not only Bag-
ging on 9 out of 10 samples but also Redagging on 4 samples
(I3, I4, I6, I10), These two figures indicate that when using
ACRNN as the base classifier, Redagging and Augagging

FIGURE 9. SRR results of Bagging and Redagging on the ten Emo-DB
samples.

FIGURE 10. A comparison of Bagging, Redagging, and Augagging using
ACRNN as the base classifier on the 10 Emo-DB samples, in terms of UAR.

perform better thanBagging by reducing observation duplica-
tions of bootstrap samples. Moreover, Augagging combines
the Redagging base learners and the OS learner by majority
voting. The experimental results on the ten Emo-DB samples
demonstrate the superiority of Augagging.

VI. CONCLUSION
This article studied the observation duplication and the lack of
whole picture problems for ensemble learning with ACRNN
in imbalanced speech emotion recognition. Redagging is
proposed and proved to address the observation duplication
problem in bootstrap samples by generating bootstrap sam-
ples from permutations of observations. Furthermore, the pro-
posed Augagging deals with the lack of whole picture prob-
lem by making the OS learner participate in majority voting.
Finally, extensive experiments on IEMOCAP and Emo-DB
are given to demonstrate the superiority of the proposed
methods. For the future research, our work can be extended
to positive Markovian jumping neural networks [37], [38].
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