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ABSTRACT The high time required for the deployment of cloud resources in Network Function Virtualiza-
tion network architectures has led to the proposal and investigation of algorithms for predicting traffic or the
necessary processing and memory resources. However, it is well known that whatever approach is taken,
a prediction error is inevitable. Two types of prediction errors can occur that have a different impact on the
increase in network operational costs. In case the predicted values are higher than the real ones, the resource
allocation algorithms will allocate more resources than necessary with the consequent introduction of an
over-provisioning cost. Conversely, when the predicted values are lower than the real values, the allocation
of fewer resources will lead to a degradation of QoS and the introduction of an under-provisioning cost.When
over-provisioning and under-provisioning costs are different, most of the prediction algorithms proposed in
the literature are not adequate because they are based on minimizing the mean square error or symmetric cost
functions. For this reason we propose and investigate a forecasting methodology in which it is introduced
an asymmetric cost function capable of weighing the costs of over-provisioning and under-provisioning
differently. We have applied the proposed forecasting methodology for resource allocation in a Network
Function Virtualization architectures where the Network Function Virtualization Infrastructure Point-of-
Presences are interconnected by an elastic optical network.We have verified a cost savings of 40% compared
to solutions that provide a minimization of the mean square error.

INDEX TERMS Network function virtualization, computing resources, bandwidth resources, elastic optical
networks.

I. INTRODUCTION
The Network Function Virtualization (NFV) [1]–[3] was
introduced a few years ago to reduce the software mainte-
nance and updating costs of traditional middleboxes. It is
based on the execution of Virtual Machines (VM) in data-
centers called Network Function Virtual Infrastructure-Point
of Presence (NFVI-PoP). The VMs execute software imple-
menting network functions. The network service is composed
by a set of network functions referred to as Service Func-
tion Chain (SFC). The NFV paradigm has the advantage
of allowing a dynamic and flexible allocation of resources
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(processing, memory and disk resources) necessary to sup-
port a service function. The resource allocation problems
have been largely investigated [4]–[11] as well as the inter-
connection problem of the NFVI-PoPs with optical net-
works [12]–[17] when the support of high bit rate SFCs
is needed. While NFV allows for a cloud resource flexible
reconfiguration [18], Elastic Optical Network (EON) allows
for a flexible bandwidth resource reconfiguration thanks to
the allocation of consecutive frequency slots of 6.25 GHz or
12.5 GHz [19]–[21].

Two approaches are possible for the reconfiguration of
resources:

• reactive approach: the reconfiguration is activated as
soon as traffic change is detected [22]–[27]; the
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technique is ineffective due to the high time needed to
reconfigure cloud resources which can take tens of min-
utes and cause Quality of Service (QoS) degradation;

• proactive approach: the reconfiguration is triggered
in advance based on a traffic or necessary resources
prediction [28].

Among the reactive approaches, Ghaznavi et al. [29] pro-
pose consolidation algorithms based on horizontal scaling
techniques in which the processing capacity is varied by
increasing/decreasing the Virtual Network Function Instance
(VNFI) without changing the processing capacity allocated
to each VNFIs. An over-sized static resource allocation to
the VNFIs may avoid reconfigurations but with this over-
allocation the financial benefits would occur only in low
cloud resource cost scenario when the objective of the net-
work provider is only to avoid reconfiguration in order not to
pay QoS degradation penalty to users.

To avoid complex NFV state management issue, solutions
based on vertical scaling techniques [30] in which the VNFIs
are dimensioned to achieve the processing capacity required
by the traffic, have been also investigated; when the traf-
fic increases/decreases, rather than adding/removing VNFIs,
their processing capacity is increased/decreased.

The dynamic allocation of resources to the VNFI leads
to high reconfiguration times if the operation is not per-
formed in advance. For this reason most recent research on
the reconfiguration of NFV network architectures follows
the proactive approach and are based on the application of
Artificial Intelligence (AI) techniques [28].

Unfortunately, prediction techniques are not able to predict
exactly the traffic or the necessary bandwidth and cloud
resources because there is always an innovative component
that cannot be predicted. When prediction errors occur, there
is an increase in operational cost, which can be of two types:
• Over-Provisioning (OP) cost: it is the cost of additional
bandwidth and cloud resources that the network operator
needs to use when the prediction algorithm produces
traffic or needed resources overestimates;

• Under-Provisioning (UP) cost: it is the cost of com-
pensation to the user that the network operator has to
pay for the QoS degradation that occurs when the pre-
diction algorithm produces traffic or needed resources
underestimates.

The costs mentioned above may have a different impact on
the operational cost and that depends on the service type to be
supported. The reconfiguration techniques based on predic-
tion and proposed in literature fail tominimize the operational
cost because they are mainly based on the minimization of a
symmetric error function (i.e. Mean Squared Error (MSE),
Mean Absolute Error (MAE),. . . ) and therefore they are not
able to weigh differently the UP and OP costs.

The main contribution of this work is to propose a predic-
tion technique which, aware of the fact that traffic cannot be
accurately predicted, tries to overestimate or underestimate
traffic in relation to the values of OP andUP costs. This objec-
tive is achieved by minimizing an asymmetric cost function

characterized by a parameter that takes into account the OP
and UP costs.

The proposed methodology can be applied for any pre-
diction technique, both traditional and those based on the
application of AI. In this article we illustrate the proposed
methodology for the following two prediction techniques:
the first one based on Seasonal Autoregressive Integrated
Moving Average (SARIMA) traditional models; the second
one based on the application of Long Short Term Memory
(LSTM) neural networks.

To our best knowledge, only Bega [31]–[33] proposes
a solution for Mobile Network Resource Orchestration in
which the different values of the OP and UP costs are taken
into account. Deep Cognitive framework is proposed for the
resource allocation to slicing in a 5Gmobile environment. It is
based on a deep learning technique in which the cost func-
tion attributes a rising cost as the amount of over-allocated
resources increases and a constant penalty, that is independent
of the lost traffic amount, when a QoS degradation occurs.

In this article we also propose a solution in which OP and
UP costs are considered and our work differs from [31]–[33]
in the following points:
• our solution is proposed for a NFV network scenario
where the data center and network model is well detailed
and articulated and the application ismainly based on the
NFV implementation of middleboxes;

• the proposed procedures are based on SARIMA and
LSTM prediction techniques that are different from
those proposed in [31] where convolutional neural net-
works are considered;

• the function costs are characterized by parameters that
can be set for a cost penalty not necessarily constant but
related to the amount of traffic lost during the under-
provisioning periods.

The paper is organized as follows. The related work is men-
tioned in Section II. We describe the problem statement in
Section III. The SARIMA traffic forecasting technique based
on asymmetric cost function is illustrated in Section IV. The
asymmetric LSTM traffic forecasting technique is described
in Section V. The numerical results, reported in Section VI,
show the effectiveness of the proposed technique with respect
to MSE-based traditional forecasting techniques in an NFV
network environment. Appendix A describes an extension of
the European Telecommunications Standards Institute (ETSI)
NFV architecture for the support of the proposed predic-
tion and reconfiguration algorithms. Appendix B reports the
evaluation of a parameter of the SARIMA-based forecasting
technique with asymmetric cost function.

II. RELATED WORK AND RESEARCH MOTIVATION
Reactive resource reconfiguration [12]–[14], [26] approaches
in NFV networks have shown all their limits in terms of QoS
degradation due to the high time needed to change the allo-
cated cloud resources (increase/decrease of cores allocated,
instantiation/removing of VNFIs,. . . ) [28]. For this reason
recently the focus has been on a proactive approach where
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cloud resources can be reconfigured in advance thanks to a
traffic [34] or allocated resource prediction [28]. A traffic
prediction-based approach is proposed in [34], [35] in the
case of NFV networks in which the NFVI-PoP are inter-
connected by an EON [34], [35]; the SFC traffic parameters
are predicted in [36], [37] by applying a LSTM recurrent
network.

Tang et al. [38] proposes a traffic prediction method for
scaling resources in NFV environments based on traffic mod-
eling with an Autoregressive Moving Average (ARMA); the
predicted traffic values are obtained by minimizing MSE.

Among the solutions based on the prediction of the
resources to be allocated, Farahnakian et al. [39] proposes
regressive algorithms for estimating memory and processing
consumption in cloud datacenters; the proposed solutions are
based on Linear Regression [40] and K-Nearest Neighbor
Regression (K-NNR) [41] methods that notoriously deter-
mine the prediction byminimizing symmetric error functions.
A VNF migration algorithm is proposed and investigated
in [42]; it is based on a deep belief network framework to
predict the future resource requirements; the authors show
how the proposed solution can obtain better estimates of
CPU resources than a solution based on Back Propagation
Neural Network [43] in terms of MSE. Some solutions [28],
[44]–[46] have been proposed on the prediction of host load in
cloud infrastructures; these solutions are based on time series
forecasting with LSTM recurring neural networks; however,
all are based on minimizing MSE.

Other approaches have been proposed that are based on
machine learning classification procedures; for example in
Rahman’s work [47] the classification problem is to choose
the best VNFI resource scaling actions to minimize opera-
tional cost and QoS degradation.

All the above mentioned solutions have the ambition to
predict exactly the traffic or resources to be allocated. For this
reason are based on the minimization of symmetric cost func-
tions such as MSE. Unfortunately, there are random compo-
nents that are not predictable and that leads to an unavoidable
prediction error. Such a mistake leads to higher operational
costs. For example, if the predicted traffic is higher than the
real traffic, the resources will be over-sized and this will
lead to an OP cost; in the opposite case less resources will
be allocated and this will lead to a QoS degradation and
to an UP cost characterized by the compensation due to
the user.

Our research objective is to propose and evaluate a
prediction-based allocation technique in which both UP and
OP costs are takes into account.

A preliminary result on the advantages of the proposed
SARIMA prediction technique is illustrated in [48]. The fol-
lowing contributions are added in this manuscript:
• an extensive description of the SARIMA prediction
model with asymmetric loss function is reported;

• an innovative prediction algorithm based on an LSTM
recurrent neural network with asymmetric cusp loss
function is added;

• extensive numerical results are reported in which the
operational costs of an NFV network with resource allo-
cation based on SARIMA and LSTM are evaluated.

• an extension of ETSI NFV architecture with proposed
traffic prediction and resource allocation modules is
reported and described in Appendix A.

III. PROBLEM STATEMENT
The objective of the paper is to propose and evaluate a
solution for the cloud and bandwidth resource allocation
in NFV environments in which the traffic offered is not a-
priory known but it is predicted according to a prediction
technique aiming at minimizing the total operational cost.
Two cost components are considered for a predicted SFC traf-
fic: i) Cloud Resource Allocation Cost; ii) QoS Degradation
Cost occurring when the traffic is incorrectly predicted, less
resources are allocated and the network operator must pay a
compensation cost to the user due to lost traffic.

We report the reference scenario in Fig. 1.a where four
NFVI-PoPs interconnected by an EON are represented in a
given traffic scenario. Five VNFIs are instantiated: NFVI-
PoP #1 hosts VNFI #1 and VNFI #2, NFVI-PoP #2 hosts
VNFI #3 and VNFI #4 and NFVI-PoP #3 hosts VNFI #5.
Processing resources, represented by black rectangles, are
allocated to the VNFIs. Three optical paths are also set up
to interconnect the tuples VNFI #1 and VNFI #5, VNFI #2
and VNFI #3, VNFI #4 and VNFI #5. The interconnection is
realized by allocating Frequency Slots (FS) whose number is
depending on: i) the bandwidth to be allocated between the
VNFIs; ii) the optical path length that determines the best
modulation system according to the optical signal quality to
be guaranteed [12].

In a dynamic traffic scenario, the cloud and bandwidth
resources have to be re-allocated according to the current traf-
fic conditions. The following operations can be performed:
i) horizontal [1] or vertical scaling [26] of the cloud resources
allocated to the VNFIs; ii) migrations of VNFIs towards
a different NFVI-PoP [18]; iii) reconfigurations of optical
paths by changing the routing and increasing/decreasing the
number of allocated FSs [12]. We report an example of
reconfiguration in Fig. 1.b in the case of a traffic increase
between the VNFIs #1 and #5. For handling this increase the
cloud resources allocated to the two VNFIs are increased by
applying a vertical scaling technique that lead to increase their
processing capacity of an amount represented with a grey
rectangle in Fig. 1.b. Furthermore the optical path bandwidth
is increased by allocating other two FSs in the network links
on which the optical path is set up and represented with dotted
blue lines in Fig. 1.b.
Reactive reconfiguration approaches are not suited in NFV

environments especially due to the high time needed to recon-
figure the cloud resources [34]. For this reason traffic pre-
diction is needed to allocate in advance the cloud resources.
Unfortunately the traffic cannot be predicted exactly and the
prediction error may lead to resource over/under provisioning
with a consequently increase in operational network cost.
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FIGURE 1. Cloud and bandwidth resource allocation in an NFV environment with four NFVI-PoPs (a); resource reconfiguration when a traffic increase
between the VNFI #1 and VNFI #5 (b); resources over provisioning when a traffic prediction error is made (c); resources under provisioning when a
traffic prediction error is made (d).

Over provisioning occurs when the predicted traffic is
higher than the real one; in this case more cloud and band-
width resources than needed are allocated; an example of
over provisioning is illustrated in Fig. 1.c where the addi-
tional cloud and bandwidth resources are reported with violet
rectangles; obviously the allocation of unnecessary resources
leads to a cost increase.

Under provisioning occurs when the predicted traffic is
lower than the real one; in this case less resources than needed
are allocated as illustrated in Fig. 1.d where the lack of
needed resource is represented with crossed rectangles; the
under provisioning leads to QoS degradation due to the traffic
amount which will inevitably be lost because of the lack of
resources; that will determine a cost increase for the network
operator due to the compensation cost to be paid to the user
for the lost traffic.

From the shown example, we can observe that because
the errors in predicting traffic are inevitable, the impact on
cost increase is not only dependent on the absolute value
of the error but positive and negative errors can differently

impact on the cost increase depending on the values of the
resource allocation and QoS degradation costs. In particular
if the resource allocation costs are higher than the QoS degra-
dation ones, the errors made by the algorithm should lead to
predict lower traffic values than the real ones; conversely the
algorithm should behave in the opposite way when the QoS
degradation costs are higher than the resource allocation ones.

The prediction algorithms are based on the minimization
of an error function referred to as loss function. Most of the
solutions proposed in literature are based on symmetric loss
functions (i.e. MSE, MAE) that are not able to optimize the
total cost as previously explained. For this reason we propose
solutions with asymmetric loss function and characterized by
parameters whose setting depends on the resource allocation
and QoS degradation costs. The setting of the parameters is
based on the observation of past traffic values and allows for
a total cost minimization.

Next we illustrate the cloud infrastructure, network and
traffic models in Subsection III-A. The prediction framework
is described in Subsection III-B.
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A. CLOUD INFRASTRUCTURE, NETWORK AND
TRAFFIC MODELS
We represent with the graph Ḡ = (V̄ , L̄) the NFVI-PoPs
interconnected by the EON, where the set L̄ denotes the
optical links and the set V̄ denotes the union of three sets: i)
V̄NP containing the NFVI-PoPs; ii) V̄A containing the access
nodes in which the traffic is originated/terminated; iii) V̄S
containing the optical switches.

The NFVI-PoPs are equipped with cloud resources charac-
terized by processing cores. We denote with Nv̄ the number
of cores assigned to the NFVI-PoP v̄ ∈ V̄NP.

VNFIs, supported by VMs, are activated to support the
execution of Service Functions (SFs) as Firewall (FW),
Load Balancer (LB), Network Address Translation (NAT),. . .
We assume vertical processing resource scaling where the
processing cores assigned to the VNFIs can be changed over
time according to the VNFI current load. In particular if F
SFs are supported then F VNFI types can be instantiated. For
the i-th (i = 1, . . . ,F) type VNFI we denote with:

• Cpr,max
i (Gbps) (i = 1, . . . ,F): the maximum process-

ing capacity that can be assigned to i-th type VNFI;
• nci (i = 1, . . . ,F): number of cores assigned to i-th
type VNFI when the maximum processing capacity is
provided;

• Cpr
i,k =

k
nci
Cpr,max
i (Gbps) (i = 1, . . . ,F , k = 1, . . . , nci ):

the processing capacity assigned to i-th type VNFI when
k cores are assigned to i-th type VNFI.

We also denote with ccorev̄ the core cost expressed in ($/h) and
characterizing the cost of renting one processing core for one
hour in the NFVI-PoP v̄ ∈ V̄NP.We also introduce the average
core cost ccoreav expressed by:

ccoreav =
1

|V̄NP|

∑
v̄∈V̄NP

ccorev̄ (1)

The traffic demand is characterized by the SFCs whose
bandwidth is variable over time. N SFCs are generated; the
i-th SFC (i = 1, . . . ,N ) is characterized by Ri SFs and we
introduce the binary variable si(j, p) (i = 1, . . . ,N ; j =
1, . . . ,Ri; p = 1, . . . ,F) assuming the value 1 if the j-th SF
executed is of p-th type.

We characterize the SFCs with the average bandwidth
offered in Time Intervals (TI) of duration Ts. In particular we
denote with bj(i) the offered average bandwidth of the i-th
SFC (i = 1, . . . ,N ) in the j-th (j = 1, 2, · · · ) TI.
The cloud resource allocation cost for the i − th SFC is

denoted with CRA,i; it is expressed in ($/Gb) and it character-
izes the average cost for the cloud resource allocation needed
to the SFC bandwidth of one Gb. This cost can be easily
expressed as:

CRA,i =
Ri∑
j=1

F∑
p=1

ccoreav

ncp
Cpr,max
p

si(j, p) ∀i ∈ [1..N ] (2)

Expression (2) can be justified as follows:

• the i-th SFC allocation cost CRA,i is given by the sum of
the allocation costs of each of the Ri SFs composing the
SFC;

• the support of one Gb of traffic for p-th type SF requires
the allocation of

ncp
Cpr,maxp

cores each of which has an
average cost of ccoreav ;

• the cost evaluated in each term of expression (2) has to
be included if the j-th SF of the i-th SFC is of p-th type
that is if si(j, p) equals 1.

Finally we denote the QoS degradation cost with CQoS ; it is
expressed in ($/Gb) and characterizes the cost to be paid by
the network operator when resources are not allocated for a
SFC bandwidth of one Gb.

To limit their number, the VNFIs are shared among the
SFCs. The VNFIs are instantiated and connected with optical
paths. The SFCs are routed through the VNFIs so as to
execute the SFs of each SFC. The VNFIs and their intercon-
nection can be represented by the graphG = (V ,L) where the
set of nodes V characterizes the VNFIs and the set L contains
elements representing the logical links interconnecting the
VNFIs.

B. CLOUD AND BANDWIDTH PROVISIONING
FRAMEWORK WITH TRAFFIC PREDICTION
A resource allocation algorithm has the objective to deter-
mine an embedding 0(Ḡ,G) of the VNFI graph G =

(V ,L) into the physical graph Ḡ = (V̄ , L̄) by determining:
i) in which NFVI-PoP any VNFI is executed; ii) the cloud
(processing) resources to be assigned to the VNFIs; iii) in
which optical path any logical link has to be routed; iv) the
number of FSs to be allocated on the chosen optical path.
When traffic variations over time occur, cloud and bandwidth
reconfigurations are needed to reduce the costs. Some recon-
figuration techniques have been proposed. For instance the
solution proposed in [12] leverages the following techniques:
i) migration of VNFIs towards lowest cost NFVI-PoPs;
ii) vertical cloud resource scaling by increasing/decreasing
the number of cores allocated to the VNFIs. To apply the
techniques, embedding changes of the VNFI graph G =
(V ,L) into the physical graph Ḡ = (V̄ , L̄) are needed and
depending on the the processing capacities f (j)v (j = 1, 2, · · · )
requested by the nodes v ∈ V and the requested bandwidth
f (j)e (j = 1, 2, · · · ) by the links e ∈ L of the VNFI graph
in the j-th TI (j = 1, 2, · · · ). The processing capacities
and the link bandwidths are depending on the offered SFC
bandwidths and for this reason they are not a-priori known.
We propose and investigate a reconfiguration solution based
on the prediction of the offered SFC bandwidths. Because it
is not possible to determine the traffic exactly, we propose
a solution that underestimates or overestimates the traffic
according to the values of the resource allocation and QoS
degradation costs.

The main steps performed by the framework for the
cloud and bandwidth resource provisioning are illustrated in
Algorithm 1. The inputs are: the physical graph Ḡ = (V̄ , L̄),
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Algorithm 1 Cloud and Bandwidth Resource Provision
Framework With Traffic Prediction
1: Input:

Cloud Infrastructure and Network Graph Ḡ = (V̄ , L̄)
SFC bandwidths: bj(i) (i = 1, . . . ,N , j = 0, . . . , n)
VNFI graph: G = (V ,L)
/*Multi-step ahead SFC bandwidth Prediction*/

2: Predict the SFC bandwidths b̂n+j(i) (i = 1, . . . ,N , j =
1, . . . , h) with asymmetric loss function
/*Cloud and Bandwidth Resource Reconfiguration*/

3: Evaluate the estimated bandwidths f̂ (n+j)e and the esti-
mated processing capacities f̂ (n+j)v of the links e ∈ L and
nodes v ∈ V of the VNFI graph in the TIs n+1, . . . , n+h

4: Reconfigure the bandwidth and the cloud resources by
applying the NORR/ONRCA algorithms [12] and eval-
uating the embeddings 0n+j(Ḡ,G) (j = 1, . . . , h) in the
ITs n+ 1, . . . , n+ h

5: Output: 0n+j(Ḡ,G) (j = 1, . . . , h)

the SFC bandwidths bj(i) (i = 1, . . . ,N , j = 0, . . . , n)
known up to TI n and the VNFI graph G = (V ,L). Next a
multi-step ahead prediction of the SFC offered is performed
in step 2 by predicting the next h SFC bandwidth values
b̂n+j(i) (i = 1, . . . ,N , j = 1, . . . , h). That allows for
the evaluation in step 3 of an estimate of the link band-
widths f̂e

(n+j) and the nodes processing capacities f̂ (n+j)v of
the VNFI graph in the TIs n + 1, . . . , n + h. The knowl-
edge of these estimated values and the application of cloud
and bandwidth resource reconfiguration algorithms allow in
step 4 for the determination of h new embeddings 0n+j(Ḡ,G)
(j = 1, . . . , h) to be applied in the TIs n + 1, . . . , n +
h. We apply the reconfiguration algorithms proposed
in [12] referred to as NFV/Optical Resource Reconfigura-
tion (NORR) and Optical Network Reconfiguration Costs
Aware (ONRCA). Finally the framework returns the evalu-
ated embeddings 0n+j(Ḡ,G) (j = 1, . . . , h).

IV. SFC BANDWIDTH FORECASTING BASED ON SARIMA
AND ASYMMETRIC LINEX COST FUNCTION
To simplify the notations, next we drop the i parameter
characterizing the offered SFCs; we will explain the traffic
forecasting procedures for a generic SFC.

We propose an SFC bandwidth forecasting procedure
based on: i) characterizing the SFC bandwidth values {bj j =
1, . . . , n} as a time series; ii) modeling the time series with
a SARIMA process; iii) forecasting the observed bandwidth
values b̂n+j at time n + j (j = 1, . . . , h) of a SARIMA
in the case in which an asymmetric cost function of the
error bn+j − b̂n+j (j = 1, . . . , h) is minimized. The main
steps of the proposed methodology are illustrated in Fig. 2
and explained in the next Subsections IV-A-IV-D. The fol-
lowing steps are performed: i) in the first step, illustrated
in Subsection IV-A, trend and seasonality, due to the traffic

FIGURE 2. Main Steps of the SFC Bandwidth Forecasting Procedure.

cycle-stationarity, are removed from the times series and a
stationary time series is achieved; ii) in the second step,
illustrated in Subsection IV-B, the stationary time series is
modeled as anAutoregressiveMovingAverage (ARMA) pro-
cess by estimating the ARMAmodel parameters with a max-
imum likelihood procedure; iii) in the third step, illustrated
in Subsection IV-C, the time series forecasting is performed
byminimizing the conditioned expectation of the asymmetric
cost function of the forecasting error; iv) in the four step,
illustrated in Subsection IV-D, the trend and seasonality are
recovered.

Finally we illustrate in Subsection IV-E how to set the
parameter of the asymmetric cost function so as to achieve
bandwidth forecast values allowing for the minimization of
the cloud resource allocation and QoS costs.

A. TREND AND SEASONALITY ELIMINATION PROCEDURE
The traffic is non-stationary [26] and has trend and seasonal-
ity components. For instance it is well known that the traffic
has a daily seasonality component. The trend and seasonality
components can be eliminated by differentiating the time
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series {bj j = 1, . . . , n}. To perform this differentiation we
introduce the operator Bk that delays k times the values of the
time series, that is Bkbj = bj−k . The differentiated time series
{dj j = 1, . . . , n} can be expressed as follows [49]:

dj = (1− B)d (1− Bs)Dbj j = 1, . . . , n (3)

where s is the seasonal parameter that may be chosen equal to
24 if a typical daily traffic profile is considered, d and D are
the number of times in which the time series {bj j = 1, . . . , n}
is differentiated to eliminate the trend and the seasonality
respectively. If the parameters s, d and D are appropriately
chosen, the time series {dj j = 1, . . . , n} can be made
stationary [49].

B. PROCEDURE OF ARMA PARAMETERS
IDENTIFICATION AND ESTIMATION
The second step of the proposed methodology consists in
modeling the stationary time series {dj j = 1, . . . , n} with an
Autoregressive Moving Average (ARMA) process {Dj j =
1, . . . , }, that is expressed by the following expression [49]:

ϕ(B)π (Bs)Dj = µ+ ω(B)ϑ(Bs)Wj Wj ∼ WN (0, δ2) (4)

wherein:
• ϕ(B) = 1 − ϕ1z − · · · − ϕpzp and ω(B) = 1 − ω1z −
· · · − ωqzq are the autoregressive and moving average
components respectively allowing for the characteriza-
tion of correlation between the values of the time series
belonging to different seasons;

• π (B) = 1 − π1z − · · · − πPzP and ϑ(B) = 1 − ϑ1z −
· · · − ϑQzQ are the autoregressive and moving average
components respectively allowing for the characteriza-
tion of correlation between the values of the time series
belonging to a same season;

• µ is a parameter linked to the average value of the time
series and it equals zero in the case of zero average time
series;

• {Wj j = 1, . . . , } is a white noise with zero average and
standard deviation δ.

The identification of the ARMAmodel involves the choice of
the following parameters:
• pmax ,Pmax , qmax ,Qmax : they are the maximum values of
the parameters p,P, q,Q and are determined from the
observation of the autocorrelation function (ACF) and
partial autocorrelation function (PACF) of the original
time series {dj j = 1, . . . , n} [49];

• popt , Popt , qopt , Qopt , µopt , δopt , (ϕ
opt
j j = 1, . . . , popt ),

(ωoptj j = 1, . . . ,Popt ), (πoptj j = 1, . . . , qopt ),
(ϑoptj j = 1, . . . ,Qopt ): they are the final values of the
ARMA model and are determined by applying Max-
imum Likelihood (ML) procedures for (p,P, q,Q) ∈
[1..pmax , 1..Pmax , 1..qmax , 1..Qmax] and by choosing the
orders that minimize the Alaike Information Criterion
(AICC) statistic [49].

In the application of the ML procedure the values {dj j =
1, . . . , n} of the original time series are used; at the end we

also check that the residuals, given by the difference between
the original and ARMA values, are uncorrelated [49].

C. PROCEDURE OF TIME SERIES FORECASTING
All of the prediction-based resource allocation algorithms
in NFV environments aims at exactly forecasting either the
traffic [34] or the resources [28] to be allocated. They are
based on the minimization of the conditioned expectation of
a symmetric cost function of the forecast error dn+j − d̂n+j
(j = 1, 2, . . . , h). The classical case is theminimization of the
conditioned expectation of MSE, that is En[(Dn+j − d̂n+j)2]
where the symbol En[∗] is the expectation conditioned to the
knowledge of the values {dj j = 1, . . . , n}.
The choice of symmetric cost functions leads to equally

weight positive and negative errors. Conversely being aware
that an exact traffic prediction is not possible, our objective
is to make mistakes where it is more convenient according
to the cloud resource allocation the QoS degradation costs.
For this reason we consider asymmetric cost functions and
because of its simplicity we choose the LINEX function [50].
That leads to the minimization of the conditioned expecta-
tion En[L(Dn+j − d̂n+j)2] where the LINEX function L(x) is
defined as follows:

L(x) = expax −ax − 1 (5)

In particular notice that: i) for a > 0 (a < 0) the error
dn+j − d̂n+j (j = 1, . . . , h) has higher cost when it is positive
(negative); ii) for |a| increasing the difference in cost of
positive and negative errors grows.

It is possible to prove [50] that the LINEX optimal predic-
tor ĝn+j (j = 1, . . . , h) has the following expression:

ĝn+j = d̂n+j +
a
2
σ 2
n+j|n j = 1, . . . , h (6)

wherein d̂n+j (j = 1, . . . , h) is the MSE optimal predictor
and σ 2

n+j|n (j = 1, . . . , h) is the conditioned error variance
En[(Dn+j − d̂n+j)2] whose the iterative evaluation is reported
in Appendix B.

From Figure 2 we can notice how the the forecasting
values ĝn+j (j = 1, . . . , h) in the asymmetric cost function
case are achieved by evaluating the forecasting values d̂n+j
(j = 1, . . . , h) that minimizes the conditioned expectation of
MSE and then by applying the expression (6).

D. TREND AND SEASONALITY RECOVERY PROCEDURE
The final step of the proposed methodology consists in recov-
ering the trend and the seasonality to the predicted time
series d̂n+j (j = 1, . . . , h). From the initial transformation of
expression (3), we can obtain the following expression [49]:

bn+j = dn+j +
d+sD∑
i=1

βibi j = 1, . . . , h (7)

where the coefficients βi (i = 1, . . . , d + sD) are the
coefficients of the polynomial (1 − B)d (1 − Bs)D [49].
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From eq. (7) we can write the following expression of the
predicted values b̂n+j (j = 1, . . . , h):

b̂n+j = ĝn+j +
d+sD∑
i=1

βib̂n+j−i j = 1, . . . , h (8)

The values b̂n+j (j = 1, . . . , h) can be recursively evaluated
from expression (8) with j = 1, 2, . . . , h and by taking
into account that b̂n+j−i = bn+j−i for (i = j, j + 1, . . . ,
d + Ds).

E. SETTING OF THE LINEX COST FUNCTION PARAMETER
We need to set the parameter a of the LINEX function. The
value of the parameter determines the shape of the asymmet-
ric cost function and has to be chosen so as to optimize the
sum of the cloud resource allocation and the QoS degradation
costs. To evaluate the optimal value aopt , instead of using
all of the time series {bj j = 1, . . . , n} to identify ARMA
process, we split the time series in two sets: the first one is
used to estimate the ARMA parameters and the second one is
used to evaluate the parameter aopt . The pseudo-code of the
procedure for the setting of the parameter a is illustrated in
Algorithm 2. We assume to choose the parameter aopt in the
interval [amin, amax]. The procedure chooses (line 2) the index
1 < p < n so that the time series {bj j = 1, . . . , p} is used
for the ARMA parameters estimation (line 3), while the time
series {bj j = p+ 1, . . . , n} is used to evaluate the parameter
value aopt (line 4). Next for each value of a, the sum C(a)
of the cloud resource allocation and QoS degradation costs
(lines 5-10) is evaluated. Finally the value aopt minimizing
C(a) and the optimum cost Copt are determined and returned
as output (line 13).

V. ASYMMETRIC LOSS FUNCTION-BASED LSTM
PREDICTION ALGORITHM
The L unfolded stages version of the LSTM prediction algo-
rithm is illustrated in Fig. 3.a and consists of the following
two layers:
• the LSTM prediction layer: it performs the time series
prediction by providing the storage of the internal
states; we consider the case of a single layer composed
by L LSTM Cell Blocks (LCB) referred to as LCBj
(j = n− L + 1, . . . , n);

• the feed forward network layer: it evaluates from the
output of the last LSTM layer the h steps ahead predicted
bandwidth values b̂n+j (j = 1, . . . , h) stored in the
vector b̂n,h.

The SFC bandwidth predictions are performed by the LSTM
layer which has as inputs the SFC bandwidth values bj (j =
n − L + 1, . . . , n). The output vector hn is processed by a
feed forward neural network which provides to evaluating the
vector b̂n,h of predicted SFC bandwidth values.

In the LSTM layer the state variable sj (j = n − L +
1, . . . , n) is also updated. In the LSTM Cell Block LCBj,
shown in Fig. 3.b, the state variable sj in the j-th TI depends
on the following variables: i) the SFC bandwidth value bj;

Algorithm 2 Procedure for the Setting of the Parameter a of
the LINEX Function
1: Input:

Input: amin, amax , {bj j = 1, . . . , n}
/*Splitting of the set {bj j = 1, . . . , n}*/

2: Choose the index p so that the time series {bj j =
1, . . . , p} is used for ARMAmodel identification and the
time series {bj j = p + 1, . . . , n} is used to evaluate the
optimal value aopt of the LINEX function
/*ARMA model Identification*/

3: Identify the ARMA model parameters by using the time
series {bj j = 1, . . . , p}
/*Time Series Forecasting*/

4: Evaluate the predicted values b̂j (j = p+ 1, . . . , n)
/*Evaluation of the parameter value aopt*/

5: Initialize aopt = ∞, Copt = ∞
6: for a ∈ [amin..amax] do
7: Evaluate C(a) =

∑n
j=p+1(I (bj − b̂j)CQoS + I (b̂j −

bj)CRA)
/*I (x) is the indicator function that is I (x) = 1 for
x > 0 and I (x) = 0 for x < 0*/

8: if C(a) < Copt then
9: aopt = a

10: Copt = C(a)
11: end if
12: end for
13: Output: aopt , Copt

ii) the output hj−1 in the (j − 1)-th TI; iii) the state variable
sj−1 in the (j− 1)-st TI.

The LSTM innovative idea is to introduce the forget and
input gates that decide which components of the state vector
has to be deleted (forget gate) and preserved (input gate).
This operation is learned through the training of the weight
matrices Wfh, Wfx , Wgh, Wgx and biasing vectors df , dg. The
output gate is also introduced in LSTM neural networks.
It is characterized by the matrices Woh and Wox , the bias-
ing vector do and controls what information encoded in the
state variable is sent to the output hj of the LSTM Cell
Block LCBj.

If Wih, Wix and di denote the weight matrices and biasing
vector for the input, we can write the following expressions
for the evaluation of the state variable sj and the output hj of
the LSTM Cell Block LCBj:

sj = sj−1 × σ (Wfhhj−1 +Wfxbj + df )

+ σ (Wihbj +Wixbj + di)× ϕ(Wghhj−1
+Wgxbj + dg) (9)

hj = ϕ(sj)× σ (Wohhj−1 +Woxbj + do) (10)

where σ (∗) represents the sigmoid activation function, while
ϕ(∗) represents the tanh activation function.
All of the LSTM-based traffic prediction algorithms pro-

posed in literature, [28] are based on the minimization of a
symmetric cost function of the errors en+j = bn+j − b̂n+j
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FIGURE 3. LSTM Prediction Framework (a). LSTM Cell Block LCBj (b).

FIGURE 4. Definition of the Asymmetric Loss Function.

(j = 1, . . . , h). We consider asymmetric cost functions and
because of its simplicity we choose a cusp linear loss function
as represented in Fig. 4 where the slopes are dependent on
the resources allocation cost CRA and QoS degradation cost
CQoS both defined in ($/Gb). As reported in Fig. 4 the training
process minimizes the Asymmetric Mean Absolute Error
AMAEn,h expressed by:

AMAEn,h =
1
h

h∑
j=1

(CRAI (b̂n+j − bn+j)

+CQoS I (bn+j − b̂n+j)) (11)

where I (x) is the indicator function that is I (x) = 1 for x > 0
and I (x) = 0 for x < 0.

VI. NUMERICAL RESULTS
We will evaluate the effectiveness of the asymmetric cost
function-based SARIMA and LSTM forecasting model in
predicting the requested SFC bandwidth when both the cloud
resource allocation and QoS degradation costs are consid-
ered. The SARIMA and LSTM forecasting technique will be
applied in a real scenario to evaluate the operation cost of an
NFV network and compare it to the case in which an MSE
traditional forecasting technique is applied.

We describe the simulation environment in
Subsection VI-A. The application of the asymmetric cost
function-based SARIMA forecasting technique to real traffic
data is illustrated in Subsection VI-B. Finally we will show in
Subsection VI-C the effectiveness of the proposed SARIMA
and LSTM forecasting solutions when it is applied to allocate
the resources in an NFV network whose NFVI-PoPs are
interconnected by an EON.

A. SIMULATION ENVIRONMENT
The numerical results will be provided for the values of the
simulation parameters reported in Table 1. SFCs composed
by the sequence of the followings four SFs are considered:
Firewall (FW), Intrusion Detection System (IDS), Network
Address Translator (NAT) and Proxy.

The effectiveness of the proposed prediction techniques
are evaluated for the ABILENE network shown in Fig. 5
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TABLE 1. Input parameters.

FIGURE 5. ABILENE Network Topology. The distances are expressed in km.

composed by 12 optical switches and 15 links. The network
is equipped with four NFVI-PoPs located in the cities of
Atlanta, Denver, Houston and Indianapolis. Each NFVI-PoP
is equipped with 3072 cores whose average cost per hour is
ccoreav = 1$/h. We assume that one SFC is established for
each tuple of access nodes reported in Fig. 5. We assume
as SFC bandwidth values the real ones reported in [51] for
the ABILENE network. In particular we consider the traffic
values measured at hourly intervals. These values are used to
forecast the future traffic values according to the procedure
illustrated in Sections IV and V. The SFs are supported by
four types of VNFIs whose characteristics, that is maximum
processing capacity and the number of allocated cores, are
reported in Table 2.

Each optical link is organized in 600 FSs each one with a
bandwidth occupancy of 6.25 GHz. The connection between
VNFIs is supported by optical paths with a choice of one of
the followingmodulation systems: Binary Phase Shift Keying
(BPSK), Quadrature Phase Shift Keying (QPSK), 8 Quadra-
ture Amplitude Modulation (8QAM) and 16 Quadrature
Amplitude Modulation (16QAM). The maximum optical

TABLE 2. Maximum processing capacity and allocated number of cores
for the software modules implementing FW, IDS, NAT and Proxy.

path length is 3000 km, 1500 km, 750 km and 375 km for
BPSK, QPSK, 8QAM and 16QAM respectively [12]. The
bandwidth efficiency factor is 1, 2,3 and 4 for BPSK, QPSK,
8QAM and 16QAM respectively [12].

B. SARIMA BANDWIDTH FORECASTING OF A SINGLE SFC
BY MINIMIZING AN ASYMMETRIC COST FUNCTION
We evaluate the proposed forecasting technique for the time
series reported in Fig. 6 reporting the hourly bandwidth
values requested by the SFC instantiated between the nodes
Chicago and Indianapolis. The time series is composed by
480 traffic values measured in the weekdays from May 31st
2004 to June 27th 2004 [51]. We have organized the time
series into three sets: i) the first 240 values are used for the
parameters estimation of the SARIMA model; ii) the next
120 values are used to evaluate the parameter aopt of the
LINEX function as illustrated in Subsection IV-E; iii) the last
120 values are used for the test phase in which the real and
one-step predicted values are compared.

FIGURE 6. Time Series of the hourly bandwidth values requested by the
SFC instantiated between the nodes Chicago and Indianapolis. The time
series is composed by 480 traffic values measured in the weekdays from
May 31st 2004 to June 27th 2004 [51].

The choice of the core costs and processing capacities
of Tables 1 and 2 leads to a cloud resource allocation cost
CRA = 0.025$/Gb for the SFC considered according to the
expression (2).
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We carry out the comparison for the following values of
the QoS degradation cost:
• CQoS = 0.0025$/Gb; that corresponds to the case in
which the OP cost is higher than the UP one;

• CQoS = 0.025$/Gb; that corresponds to the case in
which the OP and UP costs are equal;

• CQoS = 0.25$/Gb; that corresponds to the case in which
the UP cost is higher than the OP one.

We also introduce the parameter w =
CRA
CQoS

; its value

equals 10, 1 and 0.1 when CQoS equals 0.0025, 0.025
and 0.25 respectively.

By applying the procedure illustrated in Subsection IV-B
we have estimated the best parameters of the SARIMA
model; this study has led to the choice of the following
parameter values: i) the value of the parameter s has been
chosen equal to 24 due to the traffic daily periodicity;
ii) both the differentiation parameters d and D for the trend
and seasonality elimination have been chosen equal to 1;
iii) themaximization of the likelihood function for theARMA
model illustrated in Subsection IV-B has led to the choice
of the following parameter values: p = 16, q = 8, P = 1,
Q = 1.

FIGURE 7. Cost function C(a) as a function of the LINEX parameter a for
w equal to 0.1, 1 and 10.

To determine the optimal parameter aopt of the LINEX
function we evaluate, considering the 120 values of the times
series of indexes from 241 to 360, the cost function C(a)
introduced in Subsection IV-E for values of a in the range
[−100,100]; the parameter value aopt is determined by choos-
ing the value of a minimizing C(a). In particular we report
in Fig 7 the function C(a) for a in the range [−100,100] and
for values of the parameter w equal to 0.1, 1 and 10. The
minimization operation leads to choose for aopt the values
−25, −2 and 20 for w equal to 0.1, 1 and 10 respectively.
We can remark from Fig. 7 that:
• when w = 0.1 and consequently the OP cost is lower
than the UP one, the procedure for the choice of aopt

FIGURE 8. Comparison of the Real, MSE and LINEX prediction values for
w = 0.1.

FIGURE 9. Comparison of the Real, MSE and LINEX prediction values for
w = 1.

behaves correctly by determining a negative value aopt
so that the LINEX function expressed by expression (5)
provides a lower cost when the real traffic is higher than
the predicted one and a higher cost in the opposite case;

• when w = 10 and consequently the OP cost is higher
than theUP one, the value aopt is positive and the LINEX
function gives more weight to errors in which the real
traffic is higher than the predicted one;

• when w = 1 and consequently the cloud resources
allocation and QoS degradation costs CRA and CQoS are
equal, the parameter aopt is near to zero and provide a
balanced cost function.

The comparison between real and predicted values of the
time series from index 361 to 480 is reported in Figs 8-10
for w equal to 0.1, 1 and 10 respectively. We report the
prediction values when the MSE and a LINEX cost functions
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FIGURE 10. Comparison of the Real, MSE and LINEX prediction values for
w = 10.

are minimized. From Figs 8-10 we can remark that the MSE
predictions are very near to the real time series values but they
do not allow us to reach the goal of over-estimating or under-
estimating the time series values according to the values of
OP and UP costs; conversely the LINEX predictions allows
for a correct operation mode by overestimating (Fig. 8) and
underestimating (Fig. 10) when w equal 0.1 and 10 respec-
tively. Finally you can notice how the MSE and LINEX
predictions methodology behave similarly (Fig. 9) in the case
of w = 1 that is when the OP and UP costs are equal and a
balanced cost function is the best choice.

C. QoS DEGRADATION AND CLOUD RESOURCE
ALLOCATION COST EVALUATION IN NFV
NETWORK ENVIRONMENT
We compare the operation cost of the NFV network reported
in Fig. 5 in the case of an SARIMA traffic prediction with
minimization of MSE and the LINEX function respectively.
The cost values have been achieved as follows:
• the real traffic values from May 31st 2004 to June 13th
2004 [51] have been used to evaluate the parameter val-
ues of the SARIMA model according to the procedures
illustrated in Subsections IV-A-IV-D;

• the real traffic values from June 14th 2004 to June 20th
2004 [51] have been used to evaluate the optimal param-
eter aopt of the LINEX function according to the proce-
dure illustrated in Subsection IV-E;

• the total cost has been evaluated for the period from
June 21th 2004 to June 27th 2004 when the opti-
cal bandwidth and cloud resources are allocated and
reconfigured on the basis of the predicted traffic val-
ues and by applying the reconfiguration algorithms
described in [12].

We report the cost in Fig. 11 in the cases in which the
SARIMA traffic predictions are performed with the min-
imization of the MSE and LINEX function. Three cost

FIGURE 11. Cost in allocating resources for the NFV network of Fig. 5
when w varies from 0.1 to 10. The total, resource allocation and QoS
degradation costs are reported when the allocation algorithms use MSE
and LINEX predicted SFC bandwidth values.

components are reported as a function of the parameter w:
the total cost, the cloud resource allocation cost and the QoS
degradation cost. From the results reported in Fig. 11 we can
remark that:

• the proposed forecasting solution based on the asymmet-
ric cost function allows for total costs lower than or equal
to the one of the MSE-based forecasting solution; the
total costs of the two solutions are equals only for w = 1
that is when the OP andUP costs are equal; as a matter of
example the total costs of the LINEX andMSE solutions
for w = 0.1 are 1794$ and 2955$ with 40% cost
advantage of our proposed prediction solution;

• the better performance in cost total of the LINEX predic-
tions for w lower than 1 is due to the fact that it reduces
the resource under-provisioning periods as highlighted
from the QoS degradation costs that are lower with
respect to the MSE-based prediction solution;

• the better performance in cost total of the LINEX predic-
tions for w higher than 1 is a consequence of the reduc-
tion in the over-provisioning periods that, as highlighted
in Fig. 11, leads to resource allocation costs lower with
respect to the MSE-based prediction solution.

Next we show in Fig. 12 the cost comparison when the
traffic predictions are performed with SARIMA and LSTM
approaches respectively. The LSTM predicted values are
evaluated by applying the proposed traffic forecasting algo-
rithm illustrated in Section V and from the knowledge of
the real requested SFC bandwidth values from May 31st
2004 to June 20th 2004 [51]. The real traffic values are
used for the LSTM training. To reduce the training times
we have considered an LSTM network with the following
parameters [36]: i) the number Nnr of neurons equals 8;
ii) the loop-back parameter L equals 24; iii) the batch size Nsz
equals 24; iv) the total number Nep of epochs has been fixed
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FIGURE 12. Cost in allocating resources for the NFV network of Fig. 5
when w varies from 0.1 to 10. The total, resource allocation and QoS
degradation costs are reported when the allocation algorithms use the
LSTM and SARIMA predicted SFC bandwidth values.

FIGURE 13. Comparison of the Real, LSTM and SARIMA prediction values
for w = 0.1.

to 20, that is LSTM training process is executed 20 times to
find the best model to perform forecasting.

We can notice from Fig. 12 as the application of an AI
prediction technique as LSTM allows for lower cost when w
is lower than or equal to 1 that is when the UP costs are larger
than the OP ones. This is justifiable for the best prediction
that the LSTM approach allows to obtain with respect to the
SARIMA one as shown in Fig. 13 where we report the real,
LSTM and SARIMA predicted traffic values between the
nodes Chicago and Indianapolis of the network of Fig. 5 for
the period from June 21th 2004 to June 27th 2004. We can
observe from Fig. 13 that the application of asymmetric cost
function allows both SARIMA and LSTM prediction tech-
niques to provide predicted traffic values larger than the real
ones but the LSTM values are closer to the real ones.

FIGURE 14. Comparison of the Real, LSTM and SARIMA prediction values
for w = 10.

We report in Fig. 14 the real, LSTM and SARIMA pre-
dicted traffic values for the case w = 10 that is when the UP
costs are lower than the OP ones. We can still observe that
the proposed asymmetric SARIMA and LSTM prediction
techniques works correctly underestimating the real traffic
and as before LSTM approach provides results closer to the
real ones with respect to SARIMA. That allows SARIMA,
as shown in Fig. 12, to achieve lower resource allocation costs
as well as total cost slightly lower than LSTM in the case w
larger than 1.

VII. CONCLUSION
We have proposed and investigated traffic prediction tech-
niques in which the predicted values takes into account the
OP and UP costs in NFV networks. Since all prediction tech-
niques make prediction errors then the proposed techniques
aim to predict under-estimates or over-estimates of traffic
depending on whether the OP cost is lower or higher than
the UP one respectively. The techniques have been applied
to traditional and AI-based prediction algorithms by defin-
ing appropriate loss functions. In particular the SARIMA
and LSTM prediction algorithms have been considered with
LINEX and cusp loss functions respectively. The proposed
solutions have been applied to evaluate the operational cost of
an Abilene network equipped with four NFVI-PoPs. We have
verified how the proposed asymmetric loss functions allows
for a cost reduction that can reach the 40% in some cases.
Furthermore we have also shown how the LSTM technique
is more effective than SARIMA one in reducing the total cost
especially when the OP costs are lower then the UP one.

APPENDIX A
EXTENSION OF THE ETSI NFV ARCHITECTURE FOR THE
SUPPORT OF THE TRAFFIC PREDICTION AND RESOURCE
RECONFIGURATION SOLUTIONS
We show an extension of the ETSI NFV architecture [52] for
the support of the proposed LSTM and SARIMA prediction
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FIGURE 15. ETSI compliant architecture supporting the traffic prediction and resource reconfiguration solutions.

and reconfigurations algorithms. In particular the applica-
tion of the traffic prediction and resource reconfiguration
algorithms will occur as illustrated in Fig. 15 where we
report the main functional blocks of the NFV architecture
enriched with some operations that allow for the support of
proposed algorithms. In the reported example, the process-
ing, RAM and disk memory resources are handled in two
NFVI-PoPs. The management and the orchestration of virtu-
alized resources are handed by theVirtual InfrastructureMan-
ager (VIM). In the considered scenario a specialized VIM
is also introduced referred to as WAN Infrastructure Man-
ager (WIM) typically used to establish connectivity between
access switches in different NFVI-PoPs. VIM and WIM are
also helped by Network Controllers to configure both virtual
and legacy electronic and optical switches in order to support
the concatenation of VNFs of a Network Service (NS). The
VNF Managers (VNFM) are responsible for the lifecycle
management of VNF Instances and perform functions like
VNF instantiation and termination, VNF instance scaling
out/in and up/down. The NFV Orchestrator (NFVO) has
the responsibilities of the orchestration of NFVI resources
across multiple VIM and the lifecycle management of NS.
It performs themain followingmain functions: i) on-boarding
of NSs and VNFs in NS and NVF catalogues respectively;
ii) storing in the VNFI repository of information about the
allocated and consumed cloud and bandwidth resources for
the NS instances; iii) NS instantiation and termination and
NS instance scaling out/in and up/down. Operation Sup-
port System/Business Support System (OSS/BSS) allows for
the legacy device management and it provides to submit

requests to the NFVO as the ones to on-boarding NS and
VNF, to instantiating, terminating and resource scaling any
NS and VNF instance. ETSI reports some reference points
(Or-Ma-Nfvo, Or-Vi, Nf-Vi, Vi-Vnfm, Or-Vnfm, Ve-Vnfm-
vnf) in which some interfaces are defined. Through these
interfaces, the functional blocks can call up some operations
which allows for the NFV management and orchestration.
Next we illustrate how we can support the proposed recon-
figuration solution in the NFV architecture scenario depicted
in Fig. [52]. First of all, two modules are added to the ETSI
NFV architectures. The first one is devoted to estimate traffic;
the module performs the estimation by applying algorithms
such as SARIMA and LSTM illustrated in this article. The
estimated traffic data are sent by the OSS/BSS to the NFVO.
The second module provides to the application of the recon-
figuration algorithms on the basis of the estimated traffic data;
it determines how to reconfigure the NSs so as to minimize
the sum of the cloud, bandwidth and reconfigurations costs.
The main procedures involved to support the algorithms are:
• A NS Descriptor (NSD) describing a NS in which the
cloud and bandwidth resources can be re-allocated is
defined; a request is presented by the OSS/BSS to the
NFVO for on-boarding the NSD; the request is pre-
sented by using the operationOn-boardNetwork Service
Descriptor of the Network Service Descriptor interface
defined by ETSI; the NFVO inserts the NSD in the
NSD catalogue and acknowledges the Network Service
on-boarding;

• NFVO receives from the OSS/BSS requests for the
instantiation of NSs; the requests specify some NSD
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descriptor parameters characterizing Access Points,
Egress Points, VNFs and cloud and bandwidth resources
to be allocated; NFVO receives fromOSS/BSS a request
to instantiate a Network Service using the operation
Instantiate Network Service of the Network Service
Lifecycle Management interface defined by ETSI; the
NFVO provides to instantiate the NS by contacting all
of the NFV actors (VIM, WIM, VNFM,. . . ) and if the
operation is successful it acknowledges to the OSS/BSS
the completion of the NS instantiation; a NS instance is
represented with red arrows in Fig. 15 and involve two
VNFIs (VNFI-1 and VNFI-2);

• the estimated traffic data are periodically sent by the
OSS/BSS to the NFVO that executes the proposed
reconfiguration algorithms so as to minimize the sum
of the cloud, bandwidth and reconfiguration costs [7];
next the NFVO activates the VIM, VNFM, WIM and
Network Controllers to reconfigure the NSs according
to the outputs of the algorithm; for instance we have
reported in dashed red arrows the NS reconfigured; in
this case VNF-2 is migrated toward the NFVI-PoPs
whose cloud resource cost is lower than the one of the
NFVI-PoP-2.

APPENDIX B
EVALUATION OF THE TERM σ2

n+j |n (j = 1, . . . ,h)

The ARMA process expressed by (4) can be equivalently
written as follows:

ϕ∗(B)Dt = µ+ ω∗(B)Wt Wt ∼ WN (0, δ2) (12)

where ϕ∗(B) andω∗(B) are polynomials of degree p∗ = p+sP
and q∗ = q+ sQ respectively. It has been shown [50] that the
LINEX predictor has the following expression:

ĝn+j = d̂n+j +
a
2
σ 2
n+j|n

= µ−

j−1∑
i=1

ϕ∗i En[dn+j−i]−
p∗∑
i=1

ϕ∗i dn+j−i

−

q∗∑
i=1

ω∗i wn+j−i +
a
2
σ 2
h+j|h j = 1, . . . , h (13)

where the expression of σ 2
h+j|h is the following:

σ 2
n+j|n =

j−1∑
i=1

(ϕ∗i )
2σ 2

n+i|n +

j−1∑
i=1

(ω∗i )
2δ2

+ 2
j−2∑
i=1

j−1∑
k=i+1

En[ẽn+j−i|nẽn+j−k|n]ϕ∗i ϕ
∗
k

− 2
j−1∑
i=1

j−1∑
k=i

En[ẽn+j−i|nwn+j−k ]ϕ∗i ω
∗
k (14)

where ẽn+j−i|n = dn+j−i − d̂n+j−i (j = 1, . . . , h).
From expression (14) we can notice how the term σ 2

n+j|n
j = 1, . . . , h can be recursively evaluated starting from

j = 1 as long as a recursive evaluation of the terms
En[ẽn+j−i|nẽn+j−k|n] and En[ẽn+j−i|nwn+j−k ] can be accom-
plished.

In particular we need to evaluate the values σ̃i,j =
En[ẽn+i|nwn+j] (i, j = 1, . . . , h) and ρ̃i,j = En[ẽn+i|nẽn+j|n].
By taking account of 13 and after some algebra we achieve

the iterative procedures in Algorithm 3 and Algorithm 4 for
the evaluation of σ̃i,j and ρ̃i,j (i, j = 1, . . . , h) respectively.

Algorithm 3 Iterative Procedure for the Evaluation of σ̃i,j
(i, j = 1, . . . , h)

1: σ̃1,1 = δ
2

2: for i ∈ [1..h] do
3: for j ∈ [1..i− 1] do
4: /*δD(•) is the discrete Dirac impulse*/
5: σ̃i,j =

∑p∗

s=1 ϕ
∗
s σ̃i−s,j −

∑q∗

s=1 δD(s− (h+ p))ω∗i δ
2

6: end for
7: σ̃i,i = δ

2

8: end for
9: Output: σ̃i,j (i, j = 1, . . . , h)

Algorithm 4 Iterative Procedure for the Evaluation of ρ̃i,j
(i, j = 1, . . . , h)

1: ρ̃1,1 = δ
2

2: for i ∈ [1..h] do
3: for j ∈ [1..i− 1] do
4: ρ̃i,j =

∑i−1
s=1

∑j−1
t=1 ϕ

∗
s ϕ
∗
t ρ̃i−s,j−t+

−
∑j−1

s=j−i ω
∗
sω
∗
i−j+sδ

2
+

−
∑i−1

s=1
∑j−1

t=max(0,j−i+s) ϕ
∗
s ω
∗
t ρ̃i−s,j−t+

−
∑i−1

s=0
∑j−1

t=min(j−1,j−i+s) ϕ
∗
t ω
∗
s ρ̃i−t,j−s

5: end for
6: ρ̃i,i = δ

2

7: end for
8: Output: ρ̃i,j (i, j = 1, . . . , h)
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