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ABSTRACT Rapid and massive advances in deep learning have made it possible to address with issues with
computer vision. In recent years, one type of generative model has emerged, generative adversarial networks
(GAN), that enables creating realistic and plausible images. GAN allows for building competition models
based on game theory that allows for modeling data probability distributions. Since the introduction of GAN,
researchers have conductedmany follow–up studies to apply and improve thesemodels. In this article, using a
global optimization technique called a genetic algorithm, we suggest the methodology restoring latent vector
of pre–trained GAN and measure its performance as hyper–parameters and fitness functions; specifically,
we utilize the mating and mutation rate as hyper–parameters of the genetic algorithms and use the mean
squared error and the structural similarity as the fitness functions and evaluate their impact. We obtain image
reconstruction results through experiment using the MNIST, Fashion–MNIST, Cifar10, and CelebA dataset,
and we compare our method with the gradient descent method. We discuss limitations of these experiments
and future research topics.

INDEX TERMS Generative adversarial networks, genetic algorithm, neural networks, image processing,
latent vector.

I. INTRODUCTION
The generative model is considered to be the core of problems
in artificial intelligence because it requires a complete under-
standing of how data are generated in the real world from a
theoretical point of view. The generative model is a method
of learning data distribution from a training dataset so as to
generate new data points using unsupervised learning, and
thesemodels have been studiedwidely. Traditional generative
models such as Hidden Markov Models [1] and Gaussian
Mixture Models [2] can be used to approximate actual data
distribution, but they are based on rigorous and complex
expression, and they must satisfy certain assumptions. Deep
learning algorithms have been used to improve the limitations
of the traditionalmethods, and researchers havemade impres-
sive progress in recent years. In particular, the generative
adversarial networks (GAN), proposed by Goodfellow et al.
[3] in 2014, has become one of the most widely discussed
generative models.
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The GAN is a network structure that consists of a generator
and discriminator that are adversarial to each other [3]. The
generator G learns complex real data x to generate realistic
fake samples G(z) from latent vector z, and the discriminator
D determines whether the data generated G(z) by the genera-
torG are authentic; this competitive learning in turn improves
the performance of these distinct networks. After the model
is trained, the generator can create plausible samples that the
discriminator cannot distinguish.

Since the advent of GAN, investigators have conducted a
broad range of related studies. These networks are mainly
used in computer vision areas such as creating new images
[4]–[7] and recovering low–resolution photos [8], but studies
are underway in other fields such as audio synthesis [9], [10],
object detection [11], [12] and time series [13]. In order to
edit original images, the way to approach the latent vector
is also used [14], [15], and some researchers have studied it
in applications such as inverting generator of GAN [16] and
face–aging [17].

As part of the dimensionality reduction, there have been
several studies on the latent vector of GAN, and most of
their authors relied on gradient descent [18], [19], but other
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FIGURE 1. The overall framework for a methodology restoring latent vectors of pre-trained GANs using genetic algorithm.

researchers have attempted to overcome the limitations of
GAN using genetic algorithms [20], [21]. Their main pur-
pose, however, was not to restore the latent vector but to
improve the networks’ performance.

Fig. 1 presents our proposed framework, and the
contributions of our work are as follows:

1) We propose a method to explore the latent space of
the generator in a GAN using genetic algorithms. The
genetic algorithm updates a candidate solution as it
goes through the process of selection, crossover, and
mutation. Through this process. if the restored latent
vector z∗ is found, then the image produced when it is
used as the input of the pre–trained GAN is compared
with the actual image.

2) In the genetic algorithms, we compared the results
according to the hyper–parameters and the fitness func-
tion. In this case, we used the mating and mutation
rates as hyper–parameters, and we used mean squared
error (MSE) and structural similarity (SSIM) as fitness
functions of the genetic algorithms.

3) We evaluated our method on the MNIST,
Fashion–MNIST, Cifar10, and CelebA datasets to
determine the robustness of the experiment.

The remainder of this article is summarized as follows: In
Section II, we present content related to this study, includ-
ing GAN and genetic algorithms. The detail of GAN and
introduction of fitness function are presented in Section III.
In Section IV, we discuss the experimental results, and
we conclude the paper in and Section V by discussing the
limitations of the study and future research directions.

II. RELATED WORKS
A. GENERATIVE ADVERSARIAL NETWORK
The structure of the GAN consists of two neural networks.
The generator approximates the real data distribution in order
to generate the fake data sample that would confuse the other

neural network and the discriminator classifies whether the
sample is generated from the real data or the fake data. If the
generator can accurately describe the distribution of the real
data, it is impossible to distinguish whether the sample is real
or fake.

That is, a GAN [3] is a system of neural networks that have
the purpose of strengthening their functions by repeatedly
solving a two–player minimax game problem. The generator
and discriminator are trained by the loss function:

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log(1− D(G(z)))] (1)

where generator G generates a data point G(z) by receiving a
latent vector z sampled from a data distribution pz(z), which
is generally a normal or uniform distribution.

From the perspective of minimizing the loss function ofG,
it can be seen that the first term of the Eq. (1) is not related
to G and the second term of the equation is lower the closer
D(G(z)) gets to 1. In this way, G is trained to deceive the
discriminator D, and D meanwhile is trained to maximize
Eq. (1). In the first and second terms of Eq. (1), if D(x) is
1 and D(G(z)) is 0, the loss function has the maximum value,
and this indicatesD is trained to distinguish between real and
fake.

B. THE LATENT VECTOR OF GAN
The ability of a GAN to generate realistic images by mapping
from latent vectors implies that the generator’s latent vector
can detect the features of real data. To more clearly under-
stand this implication, there have been a number of studies
related to the latent vector of GAN.

Some researchers used Riemannian geometry to smoothly
change from one fake image to another through geometric
analysis and interpolation of latent vectors [22]–[24]. These
investigators obtained better images than they did with other
metrics, but their main concern was not the latent vector
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reconstruction or semantic control but the geometric analysis
of the latent space.

By applying the arithmetic feature of the latent vector,
Radford et al. [25] modified images using a simple latent
vector operation. Similarly, Upchurch et al. [26] showed that
image features could be extracted and that the image could be
smoothly edited using interpolation.

There has also been work to restore the latent vectors.
In particular, to manipulate the existing image, Zhu et al.
[14] expressed the original image as a low–dimensional
latent vector and then reconstructed it using GAN; they
assumed that all images could be mapped to an ideal
low–dimensional manifold. However, because it is difficult to
directly model this manifold, the authors approximated using
GAN. In a similar way, Lipton and Tripathi [15] proposed a
method of recovering the latent vector using gradient–based
optimization that minimized the L2 norm.
Using the encoder to restore the latent vector,

Antipov et al. [17] modified face images to fit different age
groups. They combined conditional GAN (cGAN) and an
encoder. Specifically, through the encoder, the latent vector
of the original image is restored, and the conditional vector
of cGAN is modified to generate a rejuvenated or aged
image. Similarly, Perarnau et al. [27] proposed the invertible
conditional GAN (IcGAN) that combined two encoders and
cGAN for image editing. They extracted the latent vector
and the conditional vector using one encoder for each and
modified the original image to satisfy the condition through
represented conditional vector modification.

Unlike existing methods for restoring latent vector, our
novel process attempts to restore latent vector through an
approach using genetic algorithms. As a result of restoring
the image using this, it was shown that an image similar to
the target image was created. Also, we did not adopt the
method of introducing encoder for rapid optimization. This
is because the use of additional encoders to restore the latent
vector increases the parameters that model needs to learn.
In addition, images that were not used during GAN learning
were restored to confirm whether there was overfitting.

C. GENETIC ALGORITHMS
Genetic algorithm is one of the global optimization tech-
niques: In 1975, Holland [28] proposed amethod of modeling
the evolutionary process of organisms that adapt to their
natural environments through genetic changes. The genetic
algorithm expresses a given problem in a genetic form and
then derives an optimal solution to the problem through
evolutionary calculations such as natural selection, crossover,
and mutation. Fig. 2 shows several steps of the genetic
algorithm. First, a randomly generated initial population is
constructed to search for an optimal solution. The initial pop-
ulation is evaluated based on the fitness function, and among
them, the best individuals are naturally selected. Some of the
selected individuals then produce the next generation through
a crossover that exchanges genetic information and a muta-
tion process that randomly alters the genetic information.

FIGURE 2. The flowchart of genetic algorithms.

Through repetitions of repeating this procedure, the optimal
solution can be found.

III. METHODOLOGY
In this work, we propose to restore the latent vector of gen-
erator using genetic algorithms as an alternative to gradient
descent based on Lp metrics. Similar to our objective, other
researchers have attempted to reconstruct images by restoring
the latent vector [15], [16]. In restoring the latent vector,
genetic algorithms have the advantage of being able to find a
global optimal point, while gradient descent methods, have
the risk of finding a local optimal point. It is also possi-
ble to modify images through restoring the latent vector of
pre—trained GAN using genetic algorithms.

A. DATASET
In this article, we used four common public datasets for
restoring the latent vector of GAN:MNIST, Fashion–MNIST,
Cifar10, and CelebA. MNIST is collection of 70,000 hand-
written digit pictures from 0 to 9, consisting of 28 × 28
grayscale images [29]. Fashion–MNIST is a dataset derived
from MNIST that consists of 28 × 28 grayscale images and
has 10 fashion categories [30]. Unlike the previous ones,
Cifar10 is a dataset of color images, each 32 × 32 [31].
CelebA is a dataset of color images of celebrities around the
world, each size of 178 × 218 [32].
For our experiments, we resized CelebA dataset images

to 32 × 32.

B. MODEL STRUCTURE OF GAN
Our goal with the experiments in this study was to restore
the latent vector of GAN, so we used a simple structure.
The generator consisted of two fully connected layers and
two deconvolution layers and used the batch normalization
[33] to increase the efficiency of learning to the rest of the
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layers except the output layer. We used the rectified linear
unit (ReLU) function [34] for the rest of the layers except the
last output layer as activation function, and in the last output
layer, we used the hyperbolic tangent function to match the
range of the pixel range with the output value of the actual
image.

The discriminator consists of two convolution layers and
two fully connected layers and used the batch normalization
except the input and output layer. We used leaky ReLU [35]
for the rest of the layers except the last output layer as the
activation function, and we used the sigmoid function as
the activation function to distinguish between real and fake
images in the last output layer.

C. FITNESS FUNCTION FOR GENETIC ALGORITHMS
The selection of the loss function did not attract much atten-
tion in the computer vision area, but there is study on which
loss to choose [36]. The loss function mainly used in the
image restoration task is squared L2 norm, and some studies
mentioned in Section II [14], [15], [17] are based on this.

However, the L2 norm has a limitation that does not reflect
the properties of the Human Visual System well [37]. As an
alternative to this limitation, SSIM designed to assess visual
quality difference and similarity is also used, and we applied
these two functions to latent vector optimization through
genetic algorithms.

1) Lp DISTANCE
The Lp distance is the most general distance function that
describes the distance between two places and defined as:

‖x-y‖p=

(
n∑
i=1

|xi − yi|p
) 1

p

(2)

It is commonly used when p is 0,2 and ∞ [38]. L0 counts
the number of non-zero elements, that is, the number of
data points that have changed. L2 represents the Euclidean
distance between two points x and y, which is the root mean
squared error. When p is infinite, it represents the largest
change of all data points.

We used MSE, the square of L2 distance, as a fitness
function of the genetic algorithms; in this study, MSE ranged
between 0 and 1 because we normalized the images. There-
fore, in order to more intuitively understand, we changed
the formula so that MSE closer to 0 was different from the
original image andMSE closer to 1 was similar to the original
image. Eq. 3 presents the actual fitness function that we used,
defined as:

M SE =
n∑
i=1

(xi − yi)2/n

Fitness = 1− M SE (3)

2) STRUCTURAL SIMILARITY
The SSIM index reflects structural information for measuring
the quality of an image [37]. The index is obtained by cal-
culating the luminance, contrast, and structure between two

FIGURE 3. The result images of trained GAN.

images and multiplying them. When the image size is N ×N ,
expressed as image x = {xi|i = 1, 2, · · · ,N ×N } and image
y = {yi|i = 1, 2, · · · ,N × N }, the SSIM index is defined as:

SSIM (x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ

2
y + c1)(σ 2

x + σ
2
y + c2)

(4)

In this case, µx and µy are the means within each image win-
dow, and σx and σy are the variances within each window. The
SSIM index ranges from 0 to 1 where there is no structural
similarity between the two images at 0 they become more
structurally similar as the index is closer to 1:

IV. EXPERIMENTAL RESULTS
A. THE RESULT OF TRAINED GAN
As mentioned in III-B, we used a simple structure to train the
GAN, and Fig. 3 shows the result; we trained the network on
300 iterations. In the cases of MNIST and Fashion–MNIST,
despite the simple structure, the training results looked good,
while with Cifar10 and CelebA, the overall outline and color
were trained, but not to the image details.

B. FITNESS FUNCTION COMPARISON
We utilized MSE, a converted form of L2 distance, and SSIM
as a fitness function of genetic algorithms, and the overall
results were better with MSE than with the SSIM index.
However, the difference was not large as shown in Fig. 4.
The detailed differences between the two fitness functions
can be found in Fig.5. The first and third lines in the Fig. 5
are images with MSE as a function of fitness, and the second
and fourth lines are images with SSIM applied. While MSE
rather than SSIM as a fitness function showed better overall
performance, but tended to be similar for images without
background. This is because SSIM does not reflect the color
difference [39].
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FIGURE 4. Image restoration according to genetic algorithm iterations after mating rate is fixed.

FIGURE 5. Image restoration according to genetic algorithm iterations,
First row: fitness function is MSE; Second row: fitness function is SSIM.

C. HYPER–PARAMETER SETTING
The hyper–parameters that we adjusted were the mating rate
and the mutation rate relative to the population of genetic
algorithms. We set the population per generation to 200 and
experimented with a grid search method, increasing each
experimental parameter by 0.1 from 0.1 to 0.9. The exper-
iment showed that both the mating and mutation rate were
good around 0.2 and 0.4; with parameters beyond the proper
range, the optimal updates are not performed well.

Table. 1 shows the average of all four datasets as scores
for each hyper–parameter using MSE as a fitness function.
Similarly, Table. 2 shows the result of using SSIM as the
fitness function. We can confirm that mutation rate has a
greater effect on image restoration than mating rate. In addi-
tion, when the mutation rate goes from 0.3 to 0.4, it can be
confirmed that the performance decreases rapidly. The range
of hyper–parameters that show the best performance for each
dataset was 0.2 to 0.3 for mutation rate and 0.2 to 0.5 for
mating rate. In fact, the datasets excluding the MNIST show
the best performance when the mutation rate was 0.3.

TABLE 1. The result of grid search using MSE as a fitness function for
each hyper–parameter value.

TABLE 2. The result of grid search using SSIM as a fitness function for
each hyper–parameter value.

To detailed identify parameters that have a greater impact
on the restoration of the latent vector, we fixed one ele-
ment with a value of 0.3, which we thought was appropriate
through the experiment, and then conducted the experiment
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TABLE 3. Scores of using MSE as a fitness function for each epoch after
fixing mating rate.

TABLE 4. Scores of using SSIM as a fitness function for each epoch after
fixing mating rate.

by adjusting the values of the other elements. As a result of
adjusting the mating and mutation rates, we confirmed that
the fitness value was more sensitive to the mutation rate than
the mating rate.

1) FIX MATING RATE
Table. 3 and 4 present the fitness function scores using the
MSE and SSIM between the regenerated images and the
actual images for each mutation rate and the number of itera-
tions after we fixed the mating rate of the genetic algorithms
to 0.3. Each value in the Table. 3 and 4 is the average for
just one batch, shown in Fig. 4. The figure presents the
corresponding batch images from each dataset that used the
hyper–parameter with the best MSE and SSIM.

First, looking at the instance of optimization using MSE,
in the cases of MNIST and Fashion–MNIST, which are

TABLE 5. Scores of using MSE as a fitness function for each epoch after
fixing mutation rate.

TABLE 6. Scores of using SSIM as a fitness function for each epoch after
fixing mutation rate.

grayscale datasets with relatively well–trained GAN learn-
ing, the best solution was quickly found, while the color
datasets Cifar10 and CelebA, updated at a slower rate. Next,
we proceeded with optimization using SSIM. Similar to the
case of using MSE, the grayscale image showed good restore
results. However, the optimization speed was slow for the
color dataset. In addition, when the mutation rate is 0.4 or
higher, the optimal update is no longer well performed when
the number of iteration exceeds 100.

2) FIX MUTATION RATE
Table. 5 and 6 show the fitness function scores using the
MSE and SSIM between the regenerated and actual images
for each mating rate and the number of iterations after we
fixed the mutation rate of the genetic algorithms to 0.3.
Table. 5 and 6 show that the scores by number of repetitions
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FIGURE 6. Image results by hyper–parameters of genetic algorithms.

FIGURE 7. Image restoration results and average fitness score for each batch are shown, left column:
original image; middle column: gradient descent result; right column: genetic algorithms result.

did not greatly differ. Although the detailed hyper–parameters
for each dataset were different, they coalesced to find the
optimal within a specific range.

Comparing Tables for each fitness function confirms the
impacts of hyper–parameters. The range of values according
to the number of repetitions has a larger range when the muta-
tion rate varies for bothMSE and SSIM. This suggests that the
mutation rate has a greater effect on the optimization of the
latent vector. Our experiments demonstrated that themutation

rate has a greater effect on restoring the latent vector, reflected
in the results shown in Fig. 6.

The figure presents the results of restoring images with
each hyper–parameter using MSE as a fitness function of
genetic algorithms. Fig. 6 (a) presents the images and fit-
ness scores after we fixed the mating rate, and (b) shows
the images and scores after we fixed mutation rate. If the
mutation rate varies a value of 0.4 or higher restores a quite
dissimilar image from the original, as shown in Fig. 6 (a).
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FIGURE 8. Boxplot according to fitness score of each restoration result.

In contrast, however when the mating rate varies, the image
details differ slightly but the images generated are generally
similar, and the fitness score is also similar.

D. COMPARISON OF GRADIENT DESCENT METHOD AND
GENETIC ALGORITHMS METHOD
We also compared the result from restoring the latent vector
based on genetic algorithms after 200 iterations with the
findings for gradient descent after 20,000 iterations for each
dataset. We conducted the experiment in the same envi-
ronment, and the time required was similar. Fig. 7 shows
the comparison results, with better overall performance for
restoring images using genetic algorithms.

The performance difference between the two methods is
clear in the grayscale datasets MNIST and Fashion–MNIST.
In the case of the gradient descent method, there were cases
where the restoration was not successful to the target, while
the genetic algorithms method showed the successful restora-
tion to the same category, and the restoration accuracy was
also better. As a result of restoration using Cifar10 and
CelebA datasets, both methods were able to capture the over-
all outline of object, but the restoration accuracywas not high.

In order to examine the generalization ability of each
method, restoring latent vectors was performed using test
set that unused when GAN learning. The image restoration
results are shown in Fig. 7 (b). Both fitness scores and result
of images restored are not much different from when using
training set.

Fig. 8 is a boxplot using fitness scores of image restoration
results depending on dataset and method. Overall, the image
restoration results are better when using genetic algorithms,
and the results using test set show the similar performance as
training set.

Within the same time period, the method using genetic
algorithms has a much fewer iterations than the gradient
descent method, but showed a better approach to finding the
optimal points.

V. CONCLUSION
In this work, we restored the latent vector of GAN using
the basic genetic algorithm for convenience with two fit-
ness functions. Based on this experiment, we compared the
regenerated images with the original images and confirmed
the result by measuring the fitness scores. The score showed

higher values when using MSE, but this is due to struc-
tural differences in calculations, and the reconstructed result
images did not show significant differences between the two
functions.

As we expected, our proposed method not only found
the latent vector of the images but also allowed for mod-
ifying the pre–trained GAN. Comparing with the gradient
descent method, our method showed better performance in
the restoration results. Since the method to be compared was
the gradient-descent method usingMSE, we usedMSE as the
fitness function of genetic algorithms. Genetic algorithms can
find global optimal points, so finding hyper–parameters in an
appropriate way can result in images similar to the original.

We verified the generalization performance by restoring
using test set as well as training set used when learning the
GAN. The restored latent vector was able to capture the prop-
erties of original images and also showed good performance
even for test set that was not used when training GAN.

Despite the light structure of the GAN, it showed good
restoration results for grayscale datasets. Although our
method succeeded in restoring plausible latent vector, there
were several limitations to the study. Primarily, we conducted
our experiments using various datasets to test the robustness
and effectiveness of our methods. But we did not conduct
proper training on the three channel image datasets with
the result that the color datasets received low fitness scores.
In future work, we plan to use the modified genetic algorithm
and various fitness functions, and compare the results with
experimental methods based on encoder.
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