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ABSTRACT Game theory is a very profound study on distributed decision-making behavior and has been
extensively developed by many scholars. However, many existing works rely on certain strict assumptions
such as knowing the opponent’s private behaviors, which might not be practical. In this work, we focused
on two Nobel winning concepts, the Nash equilibrium, and the correlated equilibrium. We proposed a
policy-based deep reinforcement learning model which instead of just learning the regions for corresponding
strategies and actions, it learns why and how the rational opponent plays. With our proposed policy-based
deep reinforcement learningmodel, we successfully reached the correlated equilibriumwhichmaximizes the
utility for each player. Depending on the scenario, the equilibrium can reach outside of the Nash equilibrium
convex hull to achieve higher utility for the players, while the traditional non-regret algorithms cannot.
In addition, we also proposed a mathematical model to inverse the calculation of the correlated equilibrium
probability to estimate the rational opponent player’s payoff. Through simulations, with limited interaction
among the players, we showed that our proposed method can achieve the optimal correlated equilibrium
where each player gains an equal or higher utility than the Nash equilibrium.

INDEX TERMS Correlated equilibrium, deep learning, game theory, joint distribution, machine learning,
neural network, reinforcement learning.

I. INTRODUCTION
Game theory is the study of mathematical models regard-
ing the rationality of decision making strategic interaction.
Originally, game theory addressed the two-player zero-sum
non-cooperative games where each participant’s gains or
losses are exactly balanced by those of the other partici-
pants [1]. Today, game theory applies to a wide range of
behavioral relations such as cooperative game [2], contract
theory, auction theory, matching game, dynamic game and
more [3], [4].

The main idea for game theory is for each rational player
to maximize his or her utility. Take the Nobel winning Nash
equilibrium solution concept for example. The Nash equilib-
rium solution concept, named after the mathematician John
Forbes Nash Jr., is a solution of a non-cooperative game
involving two or more players. A Nash equilibrium in the
game is where no player has utility increment by changing
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only their strategy [5]. However, the solution under the Nash
equilibriummight be far from the centralized solution. Hence,
in 1974, there was another mathematician named Robert
Aumann discussed another Nobel winning solution concept
called correlated equilibrium [6]. The idea in the correlated
equilibrium concept is that all players will choose an action
according to a public signal. If all players are satisfied by the
recommended strategy, the distribution is called a correlated
equilibrium distribution [7]. With this concept, players can
achieve equal or higher utility in the game since they con-
sider the joint distribution instead of the marginal distribution
as the Nash equilibrium. However, there does not exist a
distributed strategy on how to reach correlated equilibrium
outside the Nash equilibrium convex hull since there does
not exist a clear way on how to design the public signal for
the players to obtain. Some existing works using non-regret
learning [8], [9] can only achieve the Nash equilibrium con-
vex hull but cannot learn the better correlated equilibrium.

The reason that the players in a non-cooperative game are
unable to achieve the correlated equilibrium is due to the
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fact that they are unable to mine some of the information
out from the public signal provided to them. Fortunately,
a technique called machine learning was developed for study-
ing the underlying factor of the data. Many works, such
as [10]–[13] and more, showed the robustness of the machine
learning technique for data mining tasks. However, even
today, the link of machine learning with the correlated equi-
librium solution concept in game theory is seldom studied.
Although few articles tried to apply machine learning with
correlated equilibrium solution concept in some applications,
there are concerns within their research when applying to
real-life scenarios. For example, some research showed that
the Q-Learning method [14], [15] could achieve the cor-
related equilibrium within the system [16]–[18]. However,
the issues with the Q-Learning method are high space and
power consumption. Moreover, in order for them to achieve
the correlated equilibrium, they need a centralized system to
perform the equilibrium calculation which is not practical for
a large system in real-life scenarios.

Motivated by the above facts, we proposed a policy-based
deep reinforcement learning model to determine the strategy
to reach equilibrium under limited information given to the
player. We then estimate the payoffs of other players via our
proposed mathematical model. Once we have all the payoffs
from the other players, we can determine the correlated equi-
librium between other players without them interacting with
each other. Thus, the contribution we made in this work can
be summarized as follows:
• We first define the public signal in the system for the
player to obtain that contains limited information of the
players.

• With limited information, players will start to interact
with the environment. By applying our proposed deep
reinforcement learning model, the player not only can
understand the structure of the environment but also
learn the joint distribution among all of the players when
exploring the environment. In the end, the players can
reach a correlated equilibrium where no one wants to
deviate.

• With the correlated equilibrium probability distribution
that all players satisfied with, we proposed a mathemat-
ical model that combines the concept of the correlated
equilibrium and the force of tension to estimate the
payoff vectors of other players.

• By knowing the payoff vector of other players in
the system, we could compute the correlated equi-
librium. In other words, with those payoff vec-
tors, deep reinforcement learning learns why and
how the rational opponent plays, instead of just
learning the regions for corresponding strategies and
actions.

• This paper combines game theory withmachine learning
in the sense that the proposed machine learning learns
what is the game player’s payoff, instead of just catego-
rizing the strategies of actions according to the current
situation.

The rest of the paper is organized as follows. In Section II,
we discuss the basic concept in the Nash equilibrium and
correlated equilibrium concepts along with our system model
and problem formulation. Next, in Section III, we show how
the player interacts with the environment with our proposed
policy-based deep reinforcement learning model and learn
the joint distribution among the players. In the same section,
we also proposed a mathematical model to estimate the infor-
mation of the opponent players. Next, we show the numerical
results for our proposed methods in Section IV. Finally,
we conclude our work in Section VI.

II. SYSTEM MODEL AND BASIC EQUILIBRIUM CONCEPT
In this section, we will first go through the basic concept
of the Nash equilibrium and the correlated equilibrium in
Section II-A. In Section II-B, we will study the relation-
ship between the environment and the players in our system
model. Finally, in Section II-C, we will discuss the problem
formulation.

A. NASH EQUILIBRIUM AND CORRELATED EQUILIBRIUM
BASICS
The Nash equilibrium is a solution concept for a
non-cooperative game for two or more players [5]. The
equilibrium outcome of a non-cooperative game is one where
no player wants to deviate from his or her chosen strategy
after considering the opponent’s decision. In other words,
an individual cannot increment his or her utility from unilater-
ally changing his or her strategies, assuming the other players
remain their strategies. There might be none or multiple Nash
equilibrium in a non-cooperative game depending on the
setup of the game and the strategies used by each player.
A formal definition of Nash equilibrium is as follows.
Definition 1: An I -player game is characterized by an

action set 8i. Let Bi (ς−i) ⊂ 8i be the set of player pi’s best
response strategy against ς−i ∈ 8−1. ς∗ =

(
ς∗1 , . . . , ς

∗
I

)
∈

8 is a Nash equilibrium if ς∗ ∈ Bi
(
ς∗
−i

)
for every i ∈ I .

On the other hand, the correlated equilibrium is also a
solution concept that is more general than the Nash equi-
librium [19]. The idea of the correlated equilibrium solution
concept is that each player chooses their decision according to
their observation of a public signal [20]. A strategy assigns an
action to every possible decision set Dh a player can choose.
If no player wants to deviate from the recommended strategy,
the distribution is called a correlated equilibrium. A formal
definition is as follows.
Definition 2: An I -player strategic game (I ,8i, ui) is

characterized by an action set 8i and utility function ui for
each player i. when player i chooses strategy ςi ∈ 8i and
the remaining players choose a strategy profile ς−i described
by the I − 1 tuple. Then the player i’s utility is ui (ςi, ς−i).
A strategy modification for player i is a function φi : 8i →

8i. That is φi tells player i to modify his or her behavior by
playing action φi (ςi) when instructed by play ςi. Let (�,9)
be a countable probability space. For each player i, let Fi be
his or her information partition, qi be i’s posterior and let
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FIGURE 1. Game of chicken decision set layout.

si : � → 8i, assigning the same value to states in the same
cell of i’s information partition. Then ((�,9) ,Fi, si) is the
correlated equilibrium of the strategic game (I ,8i, ui) if it
satisfies the condition∑
ω∈�

qi (ω)ui (si (ω) , s−i (ω))

≥

∑
ω∈�

qi (ω)ui (φi (si (ω)) , s−i (ω)) (1)

for every player i and for every strategy modification φi.

B. SYSTEM MODEL
There are two major components in our system model
– the players and the environment. We can consider the
environment is a set of states S where each state sk =
(ρ1, ρ2, . . . , ρH ) is a unique tuple which contains the proba-
bilities for each decision set Dh ∈ D for h = 1, 2, . . . ,H ,
where D is a set of permutation of all players’ decision.
In other words, state sk contains a probability distribution of
the decisions in D. The order of the players’ decision in the
decision set Dh will always start from player p1 to player pI .
Take the game of chicken (Fig. 1) for example. The set D
contains total four elements where D1, D2, D3, and D4 are
set to (Chicken, Chicken), (Chicken, Dare), (Dare, Chicken),
and (Dare, Dare), respectively.

On the other hand, there is a set of players P in our
system model where P contains a total of I players where
2 ≤ I ∈ Z. Each player pi has their own payoff vector
Vi, policy πi, and a set of actions A. The payoff vector Vi
contains rewards vi,h that player pi will receive when agreeing
on performing the decision set Dh in the game. The sum of
all the elements in the payoff vector Vi has to be equal to one.
This allows us to determine the ratio between each element
when we estimate the payoff vector for the other players
in Section III-E. Next, the policy πi is the behavior on how
player pi will interact with the environment. Policy πi states
that player pi will follow a certain probability distribution to

FIGURE 2. Game of chicken variables layout.

choose an action aj ∈ A to perform based on the current state
sk that the player is currently in and the previous state sk−1
that the player came from. The action setA is the permutation
of increase, decrease, or no change on the probability of
each of the decision set Dh for 1 ≤ h ≤ H − 1. The
amount of increasing or decreasing the probability is set to
be ϑ ∈ (0, 1]. The reason why the action does not contain the
change of decision DH is due to the fact that the probability
distribution of all decisions in D needs to sum up to one.
Hence, we can get the probability of DH by subtracting the
summation of all other decisions’ probabilities from one.
In addition, even though the probability adjustment amount
ϑ is a constant, if the probability is out of the range of [0, 1]
after increasing or decreasing the amount of ϑ , depending on
the action, the probability will only increase or decrease a
certain amount so the probability will still within the range
of [0, 1]. Next, depending on the action the player chooses,
the player will be moving to another state. The detail on how
the player will interact with the environment will be discussed
in Section III-B.
Moreover, according to Robert J. Aumann, the correlated

equilibrium is a general form of strategy randomization than
mixing. This means that the solution of the Nash equilibrium
is within the convex hull of the correlated equilibrium. Hence,
we set a restriction where there must be at least two Nash
equilibrium sets in the system. Moreover, the Nash equilib-
rium sets have to be found using the mixed strategy. This
restriction future expresses as the rewards in Vi for player pi
will be unique values when the decisions are fixed for other
players. Otherwise, there will be no solution to the mixed
strategy. Take Fig. 2 as an example. The rewards constraint is
that v1,1 6= v1,3 and v1,2 6= v1,4 for player 1, and v2,1 6= v2,2
and v2,3 6= v2,4 for player 2.

C. PROBLEM FORMULATION
Although players could achieve correlated equilibrium to
obtain a higher reward by using the correlated strategy instead
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FIGURE 3. Nash equilibrium vs. correlated equilibrium.

of the mixed strategy in a non-cooperative game, there exist
few challenges within the correlated equilibrium solution
concept itself. First, as mentioned in Section II-A, the corre-
lated equilibrium concept is a more general form of strategy
randomization than the mixing Nash equilibrium strategy.
We can see the relation between the correlated equilibrium
convex hull and the Nash equilibrium convex hull from the
game of chicken shows in Fig. 3. Although it is true that the
reward obtained by the player might be higher when apply-
ing the correlated strategy rather than the Nash equilibrium
strategy. However, at the same time, this also means there
is a probability that the player can obtain a lower reward.
Second, the correlated equilibrium concept is built on the idea
of having a public signal for players to observe. Based on this
public signal, the player will choose the suggested decision.
However, this public signal must fulfill constraint (1). This
means that the public signal must be generated based on the
payoff vectors from all of the players. This further implies
that the payoff vectors from all of the players are public
information which violates the purpose of a game. Other-
wise, this will become a centralized system with centralized
solutions. Hence, without knowing the payoff vectors from
other players, there is no guarantee the game can reach a
correlated equilibrium. Thus, the above challenges within the
correlated equilibrium solution concept motivate us to design
a public signal that contains limited information about each
of the players and a strategy for players that allow them to
achieve the correlated equilibrium. Moreover, the correlated
equilibrium they achieved will also maximize each players’
reward.

III. PROPOSED METHOD
Our proposed method will be split into two major parts –
correlated equilibrium distribution determination and payoff

vectors estimation. The first part is to determine the correlated
equilibrium distribution between players and maximize the
summation of each of the player’s reward under this distri-
bution. We first provide an overview of the proposed pro-
cess in Section III-A. Then we discuss how players interact
with the environment and collect data during the interac-
tion in Section III-B. Next, we then discuss our proposed
a policy-based deep reinforcement learning model and the
model training process that leads players to the correlated
equilibrium in Section III-C and Section III-D, respectively.
The second part is to estimate the payoff vectors of others
via our proposed mathematical model that involves the idea
of the force of tension in Section III-E. In Section III-A,
we summarize the entire process along with the use of our
proposed models.

A. PROCESS OVERVIEW
In our system, we start with the player pmain’s point of view.
This means that at this point, we only know the information
of player pmain such as player pmain’s payoff vector Vmain and
policy πmain. The process flowchart is shown in Fig. 4 and
outlined as followed.

We first find the set of players Pagainst ∈ P who obtain
more than one Nash equilibriumwhen interacting with player
pmain. We considered the player pt in set Pagainst to be
against the main player pmain and the rest of the players
are cooperating with player pmain. The reason we say the
players in Pagainst are against to player pmain is due to the
payoff vectors of those players are monotonously increasing
in the opposite direction as main player pmain. The detail on
the monotonously increasing property will be discussed in
Section III-E.
Once we have the set Pagainst , we will let players pmain and

pt ∈ Pagainst to interact with the system. During the interac-
tion, both players will have to try their best to cooperate but
also not to reveal too much information to others. This means
each player not only has to discover the environment but also
analyze the observed public information during the interac-
tion. The public signals in our system model are the players’
state after each action they performed. This information only
tells a player what the other player’s preference for each of the
decision set Dh but does not reveal the actual payoff vector
of others. Some may argue that revealing the player’s state
gives too much information to the opponents. However, this
is not true. Take the mixed strategy for example, although no
player will know what the probabilities have been assigned to
each pure strategy by the opponents, after certain rounds of
game play, the player can base on the statistics to determine
those probabilities. Therefore, revealing the players’ states as
the public signals is valid. Along with player’s own infor-
mation, each player will learn from their experience through
their own deep neural networks which will be discussed in
Section III-C. Our proposed policy-based deep reinforcement
learning model will learn the joint distribution between two
players and lead them to the state that both players agreed on
while still obtaining a certain amount of reward.
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FIGURE 4. Proposed method process flowchart.

As for the termination of the interaction, since no player
knows the payoff vector of the other player, we cannot termi-
nate the interaction process based on a certain expect rewards
of a player nor can we set a distribution goal to indicate the
players have reached the correlated equilibrium distribution
with an expect reward from both of the players. Hence,
the only termination condition we can set is the number of
actions the player can perform during the interaction. The
number of actions has a restriction which will be discussed
in Section III-B along with the interaction process and data
collection process. After a certain amount of interactions,
we can see that no matter how long the players interact with
the environment, they will always be ending up in the same
state. This means that the learning has been completed and
they have reached state sce where the probability distribution
of decision setD satisfied the correlated equilibrium distribu-
tion definition and also maximize the joint rewards of both of
the players based on this distribution.

Once we get the estimated correlated equilibrium distri-
bution state sce, we can now go to the second part of our
proposed method to estimate payoff vector V̂t of player
pt . In order to estimate the payoff vectors, we proposed a
method that combined the idea of the rationality defined
in the theorem of correlated equilibrium in game theory
and the idea of the force of tension. First, due to the fact
that correlated equilibrium distribution is calculated with the
rationality conditions regarding the payoff vectors of both
of the players, when we estimating the payoff vector V̂t for
player pt , the constraints still need to fulfill the rationality
conditions. Next, we can treat the probabilities in the prob-
ability distribution as a type of preference for the decisions
for each of the players. Based on the preference, we can
determine the tension on a decision Dh between each player.
With these constraints, we can estimate the payoff vector Vt
by solving a linear equation to maximize the reward of the
player pt .

Once we estimate the payoff vector of player pt , we will
repeat this process until we go over each player in set Pagainst
and estimated the payoff vector for all players in set Pagainst .
As mentioned before, the player who is not in the set of
Pagainst is considered as the player whose cooperating with
the main player pmian. This means these players who coop-
erate with player pmain will most likely be against the player
pt ∈ Pagainst . Hence, if we can set either one of the players in
Pagainst as main player pmain, we can find the players who are
against the newmain player pmain and repeat the process until
we get the payoff vector for all players. Keep in mind that
the termination condition can be triggered before each player
interacts with each other. Hence, this means some players
will not interact with some other players at all. However,
we can still compute the correlated equilibrium among those
players simply by the correlated equilibrium theorem that we
discussed in Section II-A.

B. DATA COLLECTION
We let player pl ∈ {pmain, pt } interact with the environment
forM rounds independently. At the start of each round, player
pl will always start at the same state sdef ∈ S. From this
state, player pl will choose an action aj ∈ A to perform
according to player pl’s policy πl . Once the action has been
completed, player pl will enter another state sk ∈ S. Player pl
will then repeat the process of performing the next action and
entering into another state until player pl obtained N states
for each round m for a total of M rounds. The number of
states, N , a player needs to obtain is an integer greater or
equal to

⌈
ϑ−1

⌉
. The reason being that since the player does

not know the exact state which is satisfied by the other player,
each player must have the ability to discover the entire envi-
ronment in order to have the chance to reach the correlated
equilibrium state. Also, since each of the probability in a state
sk is within the range of [0, 1], a minimum of

⌈
ϑ−1

⌉
− 1
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actions will guarantee that the player has the ability to reach
any state in the environment.

Back to the data collection process, player pl will record
the action number of ak , i.e., k , that performed at the n-th
action in round m in choice cl,m,n and the corresponding
state in sl,m,n along the process. Here, the choice cl,m,n is an
one-hot encode data. For example, if there are five actions
in the action set A and the player chose action a2 at the n-th
action in round m, than the choice cl,m,n = 01000. Once M
rounds of interactions have been completed, player pl will
have a set of actions’ number Cl , i.e.,

Cl =

 cl,1,1 · · · cl,1,N−1
...

. . .
...

cl,M ,1 · · · cl,M ,N−1

 (2)

and a set of corresponding states Sl , i.e.,

Sl =

 sl,1,1 · · · sl,1,N
...

. . .
...

sl,M ,1 · · · sl,M ,N

 . (3)

where sl,m,1 = sdef .
Once player pl has finished interacting with the environ-

ment forM rounds, we will need to calculate the rewards that
player pl gained in each state in Sl . However, we cannot just
calculate the reward for player pl based only on Sl since for
each action that player pl performed was depending not only
on player pl’s policy πl but also depends on the action of the
other player. Hence, when we calculate the reward gained in
state sl,m,n, we need to consider the n’s states in roundm from
the other player where 1 ≤ m ≤ M and 1 ≤ n ≤ N . The
relationship between both of the n’s states in round m from
each of the players is that those states are equally important.
Hence, the final state ŝm,n for both players will be at the
middle point of both of the n’s states in round m from both
players. Thus, in order to do determine the state ŝm,n, we need
to gather both of the state sets from each player and averaging
them element-wise to form the average state set Savg, i.e.,

Savg =

 ŝ1,1 · · · ŝ1,N
...

. . .
...

ŝM ,1 · · · ŝM ,N

 (4)

where

ŝm,n =
1
2

∑2

l=1
sl,m,n. (5)

With the calculated average state set, we can then calculate
the reward rl,m,n that player pl gained in the each of the state
in the average state set Savg by computing the dot product of
the average state ŝm,n and the transport of the player’s payoffs
vector Vl , i.e.,

rl,m,n = ŝm,n · V T
l . (6)

C. POLICY-BASED DEEP REINFORCEMENT LEARNING
NEURAL NETWORK
The structure of our proposed policy-based deep reinforce-
ment learning neural network (Fig. 5) has two input layers
where the input data for the first input layer will always be a
set of states sl,m,n and the input data for the second input layer
will be a set of states sl,m,n−1 for 2 ≤ n ∈ N . With these two
input layers, the neural network can determine which direc-
tion the player is heading to. However, before determining the
relationship between states sl,m,n and sl,m,n−1, the network
has to understand and recognize the information delivered by
the probability distributions in each of the states. Therefore,
right after each of the input layers, there is a hidden layer
to analyze the input data. After the input analyzation layers,
we concatenate the output of those two hidden layers with
respect to the second axis of the data.

Followed by the concatenation layer are three sequential
fully connected hidden layers. These three hidden layers are
for the neural network to determine the relationship between
the two input data. Since the difference between the two
input data might result in some negative values, the activation
function for these three hidden layers should allow nega-
tive values to pass through. Moreover, as mentioned at the
beginning of Section III, the neural network works similarly
as a classifier. This means the output values should only be
positive numbers. Hence, the activation function for these
three hidden layers are set to the leaky rectified linear unit
(Leaky ReLU) [21], i.e.,

f (x) =

{
0.2x, for x < 0,
x, for x ≥ 0.

(7)

This allowed certain negative values to pass through and also
allowed the neural network to focus more on the positive
values to match the output values.

What follows next is also another three sequential fully
connected hidden layers. However, the difference is that the
number of units in each of these hidden layers is twice the size
of the layer in the previous three sequential hidden layers.
Also, the activation functions in these three hidden layers
are rectified linear unit (ReLU). The main purpose of these
three hidden layers is to learn the joint distribution among
the players in order for the deep neural network to determine
the optimal action to perform.

Finally, the output layer is a fully connected layer with
J units which is the same as the number of actions in the
action set A. The activation function in the output layer is
the softmax activation function, i.e.,

f (x)i =
exi∑J
j=1 e

xj
(8)

for i = 1, . . . , J where xi is the element of the input vector x.
The softmax activation function ensures the elements in the
output vector to be within the range (0, 1) and also ensures
the L1-norm of the output vector is equal to 1. In other words,
the output vector represents the probability distribution of the
possible actions based on the input states.
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FIGURE 5. Policy-based deep reinforcement learning neural network structure.

D. MODEL TRAINING
We have discussed the structure of our proposed policy-based
deep reinforcement learning neural network in the previous
subsection where the output of the network is the probability
distribution of the actions. Now we are going to discuss how
we update the weights in the neural network. First of all,
the output of the deep learning neural network works simi-
larly as most of the multi-class classification but not exactly
the same. In most of the multi-class classification, the loss
function will be fed in a batch of output data along with the
corresponding one-hot encoded labels. After each training
via an optimizer, the probability for the correct predict label
will be increased. There is nothing wrong with this process.
However, most of the time, even if the input data only contains
one category, some probabilities for the incorrectly predicted
labels will also be slightly increased. As mentioned before in
Section II-B, the way we choose action ak is not based on
the arguments of the maxima among the output vector but
instead the probability distribution of the actions given by the
output vector. Hence, when we increase the probability of one
of the labels, we need to make sure the other probabilities do
not increase. Therefore, the way we achieved this property
is to calculate the loss for each of the probabilities. Here,
we use the logarithmic loss for our loss function and scale the
value by a weight. The absolute value of the weight indicates
the change rate of the probability and the sign of the weight
indicates whether the probability should move tower or away
from the target for the positive and negative sign, respectively.
The best and valid value to present as the weight for the
loss function in our system is the reward rl,m,n that we have
mentioned in Section III-B. However, wewill need to perform
post-processing on the reward data in order for our model to
efficiently learn the joint distribution between the players.

In the post-processing procedure, we first multiply the
reward rl,m,n by a discount factor γ to the power of N − n

and get r̄l,m,n, i.e.,

r̄l,m,n = γ (N−n)rl,m,n (9)

where γ ∈ [0, 1]. This is due to the different importance of
each action that the player performed during the interaction.
Action al,m,N−1 will have more influence on which state
player pl will be ended up on than the action al,m,N−2, and
so on and so forth. In other words, we can consider actions
al,m,n for n = 1, 2, . . . ,N is a time series data set since
action al,m,n will always be performed after action al,m,n−1.
In other words, al,m,N−1 will be the most recent action that
player pl performed in roundm. Based on the property of time
series data, longer time horizons have much more variance
as they include more irrelevant information, while short time
horizons are biased towards only short-term gains. Hence,
we need a discount factor to reduce the variance in the data
set. With the calculated rewards r̄l,m,n, we get another set R̄.

Now, the discount factor γ has taken care of the variance
caused by the long-term gains in the data set. There is another
concern from the player’s policy πl itself. As mentioned
before in Section II-B, player pl will sample an action accord-
ing to the probability distribution given by their policy πi
for the state that the player is currently in. This means that
there is a chance that some actions will never or rarely be
chosen based on the probability distribution. The problem
with using the rewards from R̄ to update the weights of
the deep learning neural network is that the deep learning
neural network will only be increasing the probabilities for
sampled actions since reward r̄l,m,n is always positive. Hence,
the probabilities for those actions that have not been sampled
or rarely sampled will be decreased throughout the training
process. In order to overcome this problem, we will subtract
the reward by a bias. Here, the bias for the reward is designed
to be the mean µl,n of the rewards of the n-th observed state
in theM rounds of interaction. We also divided the reward by
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the standard deviation σl,n of the rewards of the n-th observed
state in the M rounds of interaction. This will normalize
the data for stability purposes during the training process.
The post-processed reward r̂l,m,n ∈ R̂ is expression as the
following,

r̂l,m,n =
r̄l,m,n − µl,m

σl,m
(10)

where

σl,n =

√
1
M

∑M

m=1

(
r̄l,m,n − µl,n

)2 (11)

and

µl,n =
1
M

∑M

m=1
r̄l,m,n. (12)

After calculating the loss for each of the probabilities,
we will sum up the losses and feed into the optimizer. In our
proposed deep learning neural network, we applied Adam
optimization with a learning rate of 0.001 to update the
weights. We will keep repeating the process of data collection
and model training until the player’s last state in each round
becomes stable before going to the next process of estimating
the payoff vector of the other players.

E. OPPONENT PAYOFF ESTIMATION
Once we have determined the correlated equilibrium state sce,
the next step will be estimating the payoff vectors for the
other player by using the properties from both the decision
choosing rationality in game theory and the force of tension.
In addition, starting from this section, each player will do
the calculation on their own. This means there will be no
more information sharing among the players. Keep in mind
that the payoff vectors estimation process works for every
player in the system. However, as mentioned before, we will
be discussing the process in player pmain’s point of view.
Therefore, we only know the information about payoff vector
Vmain and the probability distribution that is the correlated
equilibrium state sce at this point.
First, the correlated equilibrium distribution is based on

the rational decision chosen by both of the players. The
optimal probability distributionP for both of the players is the
probability distribution that will maximize the joint reward
of both of the players instead maximize their own reward.
Therefore, under the circumstance where we know the exact
payoff vectors for both of the players, the objective function
Oold (P) for finding the optimal probability distribution P is
expressed as follows,

max
P

Oold (P) = P · (Vmain)T + P · (Vt)T (13)

subject to ρh ∈ P ≥ 0,
H∑
h=1

ρh = 1, (14)

and constraint (1).

Now we want to reverse the calculation to estimate the
payoff vectorsVt when given the optimal probability distribu-
tion iP, the rationality conditions in (1) should still be fulfilled
and the objective function is still be maximizing the reward
summation of all players but based on the payoff vectors, i.e.,

max
Vt

Onew (Vt) = P · (Vt)T . (15)

Here, we can eliminate the reward of player pmain since it is
just a constant.
However, with (1) being the only constraint, the objective

function will only be maximizing the payoff vectors as if each
player’s decision is independent with each other. As men-
tioned before, the constraint in (1) only gives a convex hull
boundary on the probability distributions over the pure strate-
gies. This means for each player, there will be at least one
probability distribution that will benefit himself or herself but
not necessary for others. Hence, even though the solution V̄t
will maximize the objective function Onew (Vt), the solution
V̄t will never equal to the actual payoff vectors with (1) being
the only constraint. Moreover, if we try to solve the objective
function Oold (P) with V̄t , the optimal solution will never be
equal toP. Hence, there need to be some other constraints that
indicate the relationship between the players’ payoff vectors.
This is where the idea of the force of tension steps in.

As mentioned before in Section II-A, a distribution is a
correlated equilibrium distribution if and only if it lies within
the convex hull based on (1). In order to get the optimal
probability distribution P, the player needs to maximize the
objective function Oold (P). In the force of tension point of
view, we can consider optimal probability distribution P as
an equilibrium point where the tensions for each decision set
Dh from both of the players have reached an equilibrium.
Moreover, since the values in the optimal solution P are
probabilities, we can treat those probabilities as the prefer-
ences of each decision set Dh for the players. Based on this
idea, we can list out the constraints regarding the relationship
between the rewards in the payoff vector. There are a few
types of constraints that we will be discussing in this section.
For easier understanding, starting from here, we will use the
game setup shown in Fig. 6 as the scenario where player
p1 and player p2 are ‘‘Player 1’’ and ‘‘Player 2’’ in Fig. 6,
respectively. Keep in mind that we do not know the payoff
vector V2 at this time.

We first need to reorder the elements in the payoff vectors
by sorting both of the payoff vectors and the probability
distribution P based on the payoff vector V1 in the ascending
order. The payoff vector V2 has to future rearrange the ele-
ments where the first element will be move to the end of the
vector. After the reordering process, we get three new vectors
V1→ V̄1, V2→ V̄2, P→ P̄, and D→ D̄, i.e.,

V̄1 =
{
v̄1,1, v̄1,2, v̄1,3, v̄1,4

}
=
{
v1,4, v1,2, v1,1, v1,3

}
, (16)

V̄2 =
{
v̄2,1, v̄2,2, v̄2,3, v̄2,4

}
=
{
v2,4, v2,2, v2,1, v2,3

}
, (17)

P̄ = {ρ̄1, ρ̄2, ρ̄3, ρ̄4} = {ρ4, ρ2, ρ1, ρ3} , (18)
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FIGURE 6. Game setup for payoff vector estimation.

FIGURE 7. Payoff vector reorder.

and

D̄ =
{
D̄1, D̄2, D̄3, D̄4

}
= {D4,D2,D1,D3} . (19)

The idea here is that players will try to move from the
decision set with the lowest reward to the decision set with
the highest reward where the direction for player p1 is from
the left to the right and the right to the left for player p2. This
setup is due to the monotonously increasing property for the
convex set and function [22], [23]. The illustration is shown
in Fig. 7 where we also showed the associated decision set for
each reward. The arrow in the figure indicates the direction of
the force that the player puts on the decision state. With this
setup, we can start to discuss the types of conditions.

The first constraint type is regarding one outgoing force
for each decision set from each player. We look at the first
decision set Dh where the corresponding rewards for both
player p1 and player p2 have an outgoing arrow. We then
subtract the force from player p1 by the force from player
p2 to get the net force Efh, i.e.,

Efh = ρ̄h+1
(
v̄1,h+1 − v̄1,h

)
− ρ̄h−1

(
v̄2,h−1 − v̄2,h

)
(20)

We can than list a constraint based on δEfh where

δEfh
=


Efh ≥ 0, if ρ̄h−1 < ρ̄h ≤ ρ̄h+1,

Efh = 0, if ρ̄h−1 ≤ ρ̄h and ρ̄h+1 ≤ ρ̄h,
Efh ≤ 0, if ρ̄h−1 > ρ̄h ≥ ρ̄h+1.

(21)

The reason for different signs of outgoing net force Efh is due
to the preference according to probability ρ̄h. Reward v̄h with
higher probability ρ̄h means it has a higher preference to the
player which also means that the player will be willing to
move to from a rewardwith lower preference. Take the reward
v̄1,3 for example. If probability ρ̄4 is greater than probabilities
ρ̄3 and ρ̄2, this means p1 will be trying to move from v̄1,3
to v̄1,4. Since no player will be against to himself or herself,
the only force that that will be against to player p1 will came
from player p2 which is the force from v̄2,3 to v̄2,2. However,
since the preference on reward v̄2,4 for player p2 is also higher
than reward v̄2,3 and v̄2,2, player p2 will also be moving to
reward v̄2,4 as well. Therefore, the force from reward v̄1,3 to
reward v̄1,4 should be greater or equal to the force from player
p2 from reward v̄2,3 to reward v̄2,4. The same idea applied on
other two signs in (21).

The second constraint type is regarding one incoming force
for each decision set from each player. We look at the first
decision set Dh where the corresponding rewards for both
player p1 and player p2 has an incoming arrow. We then
subtract the force from player p1 by the force from player
p2 to get the difference

←

f h, i.e.,

←

f h = ρ̄h
(
v̄1,h − v̄1,h−1

)
− ρ̄h

(
v̄2,h − v̄2,h−1

)
(22)

for

v̄2,h−1 =

{
v̄2,1, if h = H ,
v̄2,h−1, otherwise.

(23)

We also can than list a constraint based on
←

f h where

δ←
f h
=


←

f h ≥ 0, if ρ̄h−1 > ρ̄h ≥ ρ̄h+1,
←

f h = 0, if ρ̄h−1 ≤ ρ̄h and ρ̄h+1 ≤ ρ̄h,
←

f h ≤ 0, if ρ̄h−1 < ρ̄h ≤ ρ̄h+1.

(24)

for

ρ̄h+1 =

{
ρ̄1, if h = H ,
ρ̄h−1, otherwise.

(25)

The different signs of the incoming net force
←

f h is the same
idea as we mentioned in constraint (21).

We will repeat these two types of constraints with L con-
tinuous outgoing force for the first type constraint and L
continuous incoming force for the second type constraint
for L =

{
2, 3, . . . ,

⌊H
2

⌋}
. Finally, we will add few more

constraints as follows,

vi,h ≥ 0, (26)
H∑
h=1

vi,h = 1, (27)

and the equality in the Nash equilibrium with the mixed
strategy has to be established.
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Algorithm 1 Overall Proposed Method
Definition:
Di,j is a set of all possible decision combination di,j,k of all
players in P except player pi and pj where i 6= j;
NEi,j,k be the set of the Nash equilibria with the mixed
strategy between player pi and player pj when other players
decision is fixed to di,j,k ;
Statement f (pi, πi) indicates player pi will interact with
the environment with policyπi based on pi’s DNN to obtain
N states forM rounds and return Ci and Si;
Function <

(
Ŝ,Vi

)
calculates the post-processed reward

set R̂i for player pi;
Initialization:
for each pi ∈ P do

for each pj ∈ P AND i 6= j do
for each di,j,k ∈ Di,j do
if
{
pj, pi, dj,i,k

}
/∈ = then

= append
{
pi, pj, di,j,k

}
;

end if
end for

end for
end for
while = 6= ∅ do

for
{
pi, pj, di,j,k

}
in = do

Other players’ decision set to di,j,k ;
if Vi OR Vj is known then
if size(NEmain,i,di,j,k ) ≥ 2 then

if Vi is known then
pm = pi and pa = pj;

else
pm = pj and pa = pi;

end if
P̃ = ∅
while P̃ not stable do
Cm, Sm = f (pm, πm);
Ca, Sa = f (pa, πa);
Ŝ = 0.5 (Sm + Sa);
R̂m = <

(
Ŝ,Vm

)
;

R̂a = <
(
Ŝ,Va

)
;

Update πm with Cm, Sm, and R̂m;
Update πi with Ca, Sa, and R̂a;
P̃ = Ŝ [−1];

end while
Set proposed constraints;
Maximize O

(
Ṽa
)
with respect to Ṽa;

end if
Remove

{
pi, pj, di,j,k

}
from =;

end if
end for

end while
Compute correlated equilibrium among players with V;

F. METHOD SUMMARY
Now we have gone through the details of each part of our
proposedmethod.We can see that from our proposedmethod,

FIGURE 8. Simulation setup.

all players can learn the joint distribution between each other
with the policy-based deep reinforcement learning model and
reach the correlated equilibrium. The correlated equilibrium
probability distribution they reached allowed the player to
obtain the maximum reward under a rational decision mak-
ing in the game. With the correlated equilibrium probability
distribution, the player can calculate the opponent’s payoff
vector based on our proposed mathematical model which
involves the idea of the force of tension. The overall process
is summarized in Algorithm 1 where we can see that not all
players will interact with all other players. However, we still
can compute the correlated equilibrium among those players
who do not have interaction at all since we already have the
payoff vectors of those players. This reduced the computation
in respect of the entire system.

IV. PERFORMANCE EVALUATION
A. SIMULATION SETUP
In our simulation, the game environment is set up based
on a two-person game where the players are player p1 and
player p2. The decisions available to player p1 are ‘‘U’’ and
‘‘D’’ where the decisions available to player p2 are ‘‘L’’ and
‘‘R’’. Therefore, the decision sets Dh for h = {1, 2, 3, 4}
are (U,L), (U,R), (D,L), and (D,R), respectively. The pay-
off vectors V1 = {0.3571, 0.4286, 0.2143, 0} and V2 =
{0.3571, 0.2143, 0.4286, 0}. The illustration of the setup is
shown in Fig. 8. The step size ϑ is set to 0.005. Therefore,
the action set A is the permutation set among the elements in
each of the three sets {−0.005, 0, 0.005}, {−0.005, 0, 0.005},
and {−0.005, 0, 0.005} which has total of 27 actions. The
player will interact with the environment forM = 40 rounds
and will perform N = 200 actions in each round.

B. NUMERICAL RESULTS
With the setup of our simulation, we let the player p1 be
the main player. This means, at this point, we only know
the payoff vector V1 but not the payoff vector V2. However,
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FIGURE 9. Average reward gained in each epoch.

FIGURE 10. Player 1 reward increasing after learning.

in order to illustrate the relation between both players, wewill
also show the data from player p2 in the later figures.
We first let two players interact with the environment for

more than 300 epochs where the player interacts 40 rounds
in each epoch. As we can see in Fig. 9, both players are
gaining small and unstable rewards at the beginning. As they
interact with the environment with their own policy-based
deep reinforcement learning neural network in each epoch,
they learn from the environment and the opponent and receive
higher rewards as the number of epochs increases. In addition,
the more they learn, the faster they reach the higher reward.
The results were shown in Fig. 10 and Fig. 11 for player
p1 and player p2, respectively. However, around 80 epochs
where they reach mixed Nash equilibrium, they started to
diverge from each other. More specifically, player p2 starts
to pull player p1 tower decision set D2 = (U,R). Around
epoch 130, player p1 realizes that he or she must act to stop
the reduction on his or her reward. Hence, player p1 starts to
pull back player p2. Around epoch 170, both players reach
an equilibrium point where the state at the end of each round

FIGURE 11. Player 2 reward increasing after learning.

FIGURE 12. Track of both players after learning.

of interaction was stabled at
{
1
3 ,

1
3 ,

1
3 , 0

}
. In Fig. 12, we can

see the track of the interaction from both players in different
epochs where the areas of ‘‘CS’’, ‘‘CE’’, and ‘‘NE’’ represent
the set of correlated strategies, the convex hull of the Nash
equilibrium, and the convex hull of correlated equilibrium,
respectively. We can see that as they observe the environment
and learn the opponent’s behavior, they achieve outside of the
Nash equilibrium convex hull and become stable at the cor-
related equilibrium where maximizes both players’ reward.
Even though we simulate more than 500 epochs, the final
state remains stable after epoch 170. Hence, we only showed
the result of up to 300 epochs in each figure.

Once the both players have reached a stable state after
well trained, we use this state as the estimate correlated equi-
librium probability distribution where P̃ =

{
1
3 ,

1
3 ,

1
3 , 0

}
to

determine the estimate payoff table for player p2. Moreover,
if we calculate the correlated equilibrium with the objective
function (13), we can see that the solution P =

{
1
3 ,

1
3 ,

1
3 , 0

}
is exactly the same as the probability distribution in state s.
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FIGURE 13. Three players game.

With the estimated correlated equilibrium probability dis-
tribution P̃, we are able to list out the objective function and
the constraints based on the steps in Section III-E. By solving
this constrained linear multivariable function, we get the
estimate payoff vector Ṽ2 = {0.4167, 0.5000, 0.0833, 0} of
player p2. Compared with the actual payoff vector V2 =
{0.4167, 0.5000, 0.0833, 0}, we can see that there is no error
between these two vectors. Hence, we have successfully com-
puted the payoff vector for the other player.

In the beginning, the players can only apply the mixed
strategy to reach the Nash equilibrium and obtain the reward
0.25 and 0.25 for player p1 and player p2, respectively. Now,
with our proposed deep reinforcement learning model, both
players can obtain a higher reward of 0.3333 and 0.3333 for
player p1 and player p2, respectively, by reaching the esti-
mated correlated equilibrium.

Now, in the case that we have three players in the game as
shown in Fig. 13 where player three p3 can choose the left
or right matrix they will be playing. With player p3 choosing
the left matrix, we will do the same thing as before where
we let player p1 interact with player p2 and get the payoff
vector V2. However, we will also let either player p1 interact
with player p3. By doing so, we can get the payoff vector
V3. By having the payoff vectors V2 and V3, we can compute
the correlated equilibrium between player p2 and player p3
without them interacting with each other. The same thing for
the case where the player p3 chooses the right matrix. This
way, we reduced the computation of the interaction between
player p2 and player p3 in the entire process.

V. DISCUSSION OF APPLICATION SCENARIOS
The correlated equilibrium solution concept has been adopted
in many different areas. However, most of them still relied on
either a centralized system or information sharing between
parties. In this section, we will be discussing the appli-
cations that involve the correlated equilibrium in wireless
communication, smart grid, and resource allocation, where
our proposed scheme can reduce signaling and improve the
performance.

We first look at the applications in wireless communication
where the most common wireless technologies use radio
waves.With radio waves, the transmission distances can be as

short as a few centimeters such as NFC and as far as millions
of miles for deep-space radio communications. However,
there are some challenges in wireless communication such
as signal interference, data throughput, and more need to
be solved in order to have a stable communication between
devices. The author in [24] proposed a distributed cooper-
ation policy selection scheme for interference to perform
subcarrier assignment for uplink multi-cell OFDMA systems
by adopting the correlated equilibrium solution concept that
achieves better performance by allowing each user to consider
the joint distribution among users’ actions to minimize the
interference. Also, in [16], the author showed by using a
game-theoretic learning algorithm which is based on corre-
lation equilibrium in the problem of multi-user multichannel
access in distributed high-frequency diversity communication
networks can completely avoid interference and get optimal
throughput. Moreover, it also guarantees fairness among all
user equipment. Besides the concerns on the interference
in wireless communication, the data throughput is also a
main concern as well. In the work [25], the author showed
a game-theoretic approach based on correlated equilibrium
and regret-matching learning can provide significant gains in
terms of average cell throughput in the Monte Carlo simula-
tions of Long Term Evolution - Advanced like system.

Next, the smart grid is an electrical grid that includes a
variety of operation and energy measures including smart
meters, smart appliances, renewable energy resources, and
energy-efficient resources [26]. Electronic power condi-
tioning and control of the production and distribution of
electricity are important aspects of the smart grid [27].
In energy-aware ad hoc networks, energy efficiency is a
crucial requirement. The authors in [28] present a cooperative
behavior control scheme based on the correlated equilibrium
to reduce and balance energy consumption.

Finally, in the resource allocation problem which arises
in many application domains ranging from the social sci-
ences to engineering [29], [30], the objective is to allocate
resources to different areas under some concerns such as
energy consumption, fairness, and more. In [31], the authors
proposed an energy-efficient resource allocation scheme by
using the correlated equilibrium. Furthermore, the authors
present a linear programming method and a distributed algo-
rithm based on the regret matching procedure to implement
the CE. With their proposed method, they can determine the
desired resource allocation in an uplink orthogonal frequency
division multiple access (OFDMA) system.

From the above applications that we discussed, we can see
that the correlated equilibrium solution concept can highly
improve the performance in many areas. However, as men-
tioned before, most of the applications that adopt the corre-
lated equilibrium solution concept still rely on a centralized
system. The issue has been that the system will need to
allow all the nodes or users within the system to be able to
communicate with each other or through a master node. This
means that the data transmission and computation power are
two of the main factors that limited the system’s bottleneck.
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Moreover, information sharing among the system will also
lead to some privacy issues. With our proposed method, these
issues could be overcome since each node or user does not
have to directly communicate with each other to share their
private information but to learn other’s behavior and reach the
correlated equilibrium within the system which could highly
improve the system performance.

VI. CONCLUSION
In this work, we have successfully overcome the issue regard-
ing the public signal in the correlated equilibrium solution
concept through our proposed policy-based deep reinforce-
ment learning model. We can see from the numerical results
that the model learned the joint distribution of all the players
and reached the state of the correlated equilibrium probability
distribution. Moreover, with the information from the player
himself or herself and the correlated equilibrium probability
distribution, achieved from the deep reinforcement learning
model, we propose a mathematical model to estimate the
payoff vector of the other player, which combines the concept
of the rationality in game theory and the force of tension.
Once we have the estimated payoff vectors of other players,
we can compute the correlated equilibrium among the player
and the other players who have not interacted with each other.
This paper combines game theory with machine learning in
the sense that the proposed machine learning learns what
is the game player’s payoff, instead of just categorizing the
strategies of actions according to the current situation. More-
over, unlike most of the systems out there that adopted the
correlated equilibrium solution concept, our proposed system
does not require a centralized synchronized system. However,
due to the limited information sharing in our system, it might
lead to performance loss for a small system that could ignore
the data transmission latency or privacy concern. In our future
work, we will be looking into these concerns and improve our
system model to overcome it.
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