
Received September 24, 2020, accepted October 15, 2020, date of publication November 3, 2020,
date of current version November 18, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3035703

Improved Collaborative Filtering
Recommendation Through
Similarity Prediction
NIMA JOORABLOO 1, MAHDI JALILI 1, (Senior Member, IEEE),
AND YONGLI REN 2
1School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
2School of Science, RMIT University, Melbourne, VIC 3001, Australia

Corresponding author: Mahdi Jalili (mahdi.jalili@rmit.edu.au)

This work was supported by the Australian Research Council under Project LP180101309.

ABSTRACT Collaborative Filtering (CF) approaches have been widely used in various applications of
recommender systems. These methods are based on estimating the similarity between users/items by
analyzing the ratings provided by users. The existing methods are often domain-specific and have not
considered the time of the ratings being made in the calculation of the similarity. However, users’ preferences
vary over time, and so their similarity. In this paper, a novel method is proposed by re-ranking the users/items
neighborhood set considering their future similarity trend. The trend of similarity is predicted, and depending
on increased/decreased trend, we update the final nearest neighbor sets that are used in CF formulation.
This method can be applied on a broad range of CF methods that are based on similarities between users
and/or items. We apply the proposed approach on a set of CF algorithms over two benchmark datasets and
show that the proposed approach significantly improves the performance of the original CF recommenders.
As the proposed method only re-ranks the neighborhood set, it can be applied to any existing non-temporal
similarity-based CF recommenders to improve their performance.

INDEX TERMS Collaborative filtering, recommendation system, sequential pattern, similarity measure,
time, prediction.

I. INTRODUCTION
Providing personalized user experience is a critical issue
for product/service providers on the Web. Recommenda-
tion systems (RSs) have been developed to deal with this
problem by filtering unnecessary information and providing
personalized content and service delivery to users. Global
industry firms have applied RSs to predict the potential
preferences of customers and recommend relevant prod-
ucts/services to them. This approach has improved the
user experience and made a huge impact on their com-
mercial success [1]. The existing research papers in the
RSs field have mainly focused on movie recommenda-
tions [2], [3]. There are also some research works in other
domains, such as e-commerce [4], books [5], documents [6],
music [7], television programs [8], applications in mar-
kets [9], e-learning [10], social network [11], and Web
search [12]. The approaches for recommendation can be
classified as collaborative filtering (CF), content-based (CB),

The associate editor coordinating the review of this manuscript and

approving it for publication was Mario Luca Bernardi .

and hybrid [13] methods. CF is a widely used approach in
RSs, which is based on users’ past behavior and the way
they have rated items [14]. The main idea for user-based CF
is if two users have similar behavior in the past, e.g. have
rated some items similarly, they will likely prefer similar
items in the future. A user-based CFs consists of three main
steps to recommend items which are shown in Fig. 1. These
are: i) generating the similarity matrix which contains sim-
ilarity between all users, ii) selecting top-N users with the
highest similarity as a neighborhood set of a target user, and
iii) recommending items to the target user from the list of
those that highly liked by their neighbors. On the other hand,
an item-based CF works based on the similarity between
items calculated based on users’ ratings of those items.

CFRSs rely on explicit data such as user ratings, or implicit
data which is captured from the behavior of users such as
viewing or purchasing an item. Along with using rating infor-
mation, there is other valuable information that is not often
considered in classical RSs, including time, device type, and
location. Considering such extra information often improves
the quality of recommendations [15]–[18]. Using sequences

202122 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-8322-7857
https://orcid.org/0000-0002-0517-9420
https://orcid.org/0000-0002-3137-9653
https://orcid.org/0000-0002-3223-7032

N. Joorabloo et al.: Improved CF Recommendation Through Similarity Prediction

FIGURE 1. The main steps to recommend items by a user-based collaborative filtering recommender system.

of ratings and time information can be useful in improving the
accuracy of recommendations. Often, users’ behaviors and
preferences vary over time [19]. Therefore, the time factor
can play an important role in providing effective personalized
recommendations and consequently improving the accuracy
of predictions [17], [20]. Although several studies have been
proposed to use temporal information to enhance the perfor-
mance of the recommender [21], [22], there are still some
gaps. First, the existing methods are often domain-specific
and do not work across all domains [23]. Time information
has not been considered in many of the domain-specific
algorithms and proposing a universal method to add temporal
information to themmay improve their performance. Second,
some algorithms have used a time-decay function to decrease
the effect of old ratings by decaying their influence [24]–[26].
The issue is that, if users’ preferences stay consistent over
time for a particular type of items, old ratings related to that
type may help to improve the accuracy of prediction; how-
ever, such information is lost in the conventional time decay-
based algorithms [27]. Third, creating a high-performance
and scalable recommendation system is not an easy task
in the current era of Web. Typically, very specialized sys-
tems are developed to deal with the problem of high-quality
recommendations on large datasets [28]. Conventional CF
algorithms have the lowest computational complexity, which
makes them suitable for large-scale systems, but they are not
highly accurate.

To address the above issues, in this manuscript, a novel
method is proposed to add valuable time information to
similarity-based RSs. The proposed method can be applied to
all similarity-based RSs available in the literature to improve
the performance of their recommendations. Fig. 1 shows
a schematic process of a user-based recommender system.
Based on this, we can boost the recommendation perfor-
mance by either improving the neighbor scoring function
in the second step, or by the way this function is used in
the recommendation process in the third step, or both [29].
Our proposed method only makes a change in the sec-
ond step – neighborhood selection – while leaving other
steps unchanged. Our algorithm tracks the trend of simi-
larity changes between two users/items to predict whether
their similarity will increase or decrease in the future. The
algorithm then re-ranks neighbors for each target user/item
using the predicted similarity trends so as to get a better
neighborhood ranking, which leads to achieving better per-
formance than the original RS. Our experiments on bench-
mark datasets show that the proposed method significantly

improves the performance of many similarity-based CF
recommenders.

The rest of the paper is as follows. Related studies are
reviewed in Section II. The proposed method is introduced
in section III, and section IV shows the experimental results
by comparing the performance of some algorithms after and
before applying the proposed method. Finally, we conclude
our work in Section V.

II. RELATED WORKS
Temporal information of the ratings is useful metadata, which
can help us to track changes in users’ behavior and pref-
erences over time [20]. Lee et al. performed an empirical
study to show the important effect of temporal information on
the performance of recommendations [30]. Several methods
have been proposed in the literature to take into account the
rating time for recommendations. Some of these methods
use a time-decay function to decrease the effect of old rat-
ings in the recommendation process. Ding and Li assigned
a weight to each user’s rating based on an exponential time-
decay function [26]. However, not all recent data are more
important than old ones, and if the users’ preference stays
consistent over time for a particular type of item, neglecting
old ratings related to that type may negatively impact the
recommendation accuracy [27].

Zimdars et al. first sorted data based on time and then
used a decision-tree learningmodel for recommendation [31].
Ricci and Nguyen considered users’ long-term preferences
using their past interactions and let users explicitly define
a set of stable preferences [32]. The temporal factorization
model was used to model the historical data in [33] by Koren
to predict ratings of movies in the Netflix dataset. They
recognized that users’ bias and preference change over time,
and proposed an RS by incorporating temporal information
into an item–item neighbor modelling. Tang et al. improved
the performance of the CF recommender system using movie
production years and scaling down candidate sets [34].
The Recommendation accuracy was improved in [35] by
considering purchase time and also launch time of items.
Karahodza et al. proposed a user-based CF algorithm over
movie datasets by considering temporal contextual informa-
tion, which led to an increase in accuracy [36]. The weight
function proposed in their study is based on changes in
the group user’s preferences over time. In [37], Xia et al.
redefined the item-based similarity in a different way based
on time-decay and proposed a top-N item-based RS which
recommended items dynamically.

VOLUME 8, 2020 202123

N. Joorabloo et al.: Improved CF Recommendation Through Similarity Prediction

Lathia et al. proposed a time-based method to update
neighborhood sizes automatically instead of setting a fixed
size [38]. They formalized the problem as a time-dependent,
iterative prediction problem and performed a temporal anal-
ysis of the Netflix dataset. They showed that due to the
dynamic nature of the data, a certain algorithm with accurate
predictions on the Netflix dataset did not show the same
behavior with growing data. Chen et al. showed that users’
interests and the popularity of topics shift very fast in online
social platforms. They used an online ranking technique to
propose a topic recommender system to provide the right
topics (hashtags) at the right time for Twitter users [39].
Zheng et al. used opinion-mining technology and SVD++
to propose a tourism destination recommender system that
considered user sentiment, and employed a temporal dynam-
ics to represent changes of user preference in destinations
over time [40]. A taxi recommender system for determin-
ing the next cruising location was proposed in [41], which
considered the distance between the current location and the
recommended location, waiting time for the next passengers,
expected fare for the trip and the most likely location to pick
up passengers from drivers’ points of view.

III. RECOMMENDATION BASED ON IMPROVED
SIMILARITY ESTIMATION THROUGH SIMILARITY
PREDICTION
In this section, a novel domain-independent recommendation
method is proposed based on predicting the similarity trend
between users/items. The proposed method can be applied
on any existing similarity-based CF recommenders. Although
this method works for both user-based and item-based CFs,
here we explain the methodology for user-based CF, and one
needs a similar adoption to use it for item-based CF. The
proposed method works based on rating sequences and pre-
dicting the trend of user-user similarity in the future. To this
end, users’ ratings are first transferred into a formal sequential
model, and then a time-window is applied on the sequences
to calculate the similarity between users in different time-
windows. Having this, a time-series of user-user similarity
values are obtained instead of single similarity value. The
next step is to obtain the similarity trend using these time
series, and then to determine whether a particular similar-
ity value will increase or decrease in the future. After that,
we re-rank users’ neighborhood sets which are used in the
recommendation process using the predicted trends. In the
following, we provide details of the above steps.

A. SEQUENTIAL PATTERN REPRESENTATION
To effectively consider the sequence of ratings, a formal
representation model for sequential patterns is introduced.
This model is based on the order of items rated by the users.
Let us consider I as the set of items,U as the set of users, and
R as the set of ratings in the system. Su = <x1, x2, . . . ,xl >
represents the sequence of rating for target user u where each
xi in this sequence is denoted as (i, r). i ∈ I is an item
rated by target user u, and r is its corresponding rating value.

Items of a sequence are sorted based on time of ratings in
ascending order. As an example, for a simple user-based CF,
suppose that the history of ratings for two users u and v is
like Table 1. The sequential pattern for users u and v are
represented by = < (i3, 5), (i5, 2), (i30, 4), (i1, 1), (i13, 1),
(i41, 2), (i5, 3), (i9, 3), (i2, 4) > and Sv = < (i22, 1), (i22, 1),
(i8, 4), (i6, 4), (i1, 2), (i9, 3), (i2, 5) >, respectively.

TABLE 1. Example rating history for users u and v.

B. PREDICTING SIMILARITY TREND
Algorithms based on user similarity, first extract the neigh-
borhood list for each target user by finding the most similar
users, i.e., a subset of users is chosen with the highest simi-
larities as the nearest neighbors for the target user.

In its simplest way, a similarity value between user u and v
is calculated by calculating the similarity between their rat-
ings history. The existing CF algorithms have proposed vari-
ousways to calculate the similarity between users, andCosine
measure [42] is one of the simplest one which is function as
follows:

Sim (u, v) =

∑
i∈(Iu∩Iv)

(
ru,i
) (
rv,i
)√∑

i∈(Iu∩I v)
(
ru,i
)2√∑

i∈(Iu∩I v)
(
rv,i
)2 , (1)

where ru,i is the rating given by user u to item i and Iu is the
sequence of items in Su. Iu∩Iv is the set of items which are
rated by both users u and v. The user-user similarity matrix is
used to select the set of neighbors for each target user, which
are those with the highest similarity values to the target user.

In the proposed method, a time-series of user-user simi-
larity values are obtained instead of single similarity value.
This time-series is obtained by calculating the similarity of
Su partialized with respect to Sv. To this end, we define a
dynamic time-window with an initial size of w. Then, we cal-
culate the similarity between u and v based on the items in
Sv and the first w items in Su. We iteratively increase the
size of the time-window and calculate the similarity between
u and v until all items in Su are covered. In fact, we expand
the size of the time-window step-by-step to involve more

202124 VOLUME 8, 2020

N. Joorabloo et al.: Improved CF Recommendation Through Similarity Prediction

recent items of u in calculating similarity. As a result, we have
a time-series of similarity values with length of l for user
u and v, which is denoted by:

ST (u, v) = {Sim (u, v)1, Sim (u, v)2,, Sim (u, v)l}, (2)

where l is the number of iterations to cover all items in Su and
calculated as follow:

l =
⌈
|Iu|
w

⌉
(3)

and Sim (u, v)p is the similarity value between u and v in the
p-th iteration and calculated as follow:

ST (u, v)p∈{1,...,l}

=

∑
i∈(I (1:d)u ∩Iv)

(
ru,i
) (
rv,i
)√∑

i∈(I (1:d)u ∩Iv)

(
ru,i
)2√∑

i∈(I (1:d)u ∩Iv)

(
rv,i
)2 (4)

In above, d is the size of the time-window in p-th iteration
which is obtained by Eq. 5, and I (1:d)u is the subset of early
items in Su with length of d.

d =

{
p ∗ w, if p < l
lenght (Iu) , if p == l

(5)

Sim (u, v)l , the last value in ST (u, v), is generated based
on the total available ratings of u and v, which is indeed the
similarity value calculated by the original Cosine algorithm.
For some of the similarity measures like Cosine and Jaccard,
we can calculate the similarity values accumulatively, and it
does not need to calculate them several times from scratch.
In fact, calculations for each iteration can be used to calculate
the next value in the time-series, which helps us to prevent a
significant increase in the algorithm complexity. It is obvious
that by selecting smaller time-windows, the complexity of
the proposed algorithmmay significantly increase. A pseudo-
code for the proposed process is shown in Algorithm 1 where
simFunction is the similarity function of RS.

Algorithm 1 Obtaining Time-Series of Similarities Between
User u and v

1. Input: Su, Sv, w
2. Output: ST (u, v)
3. ST (u, v)← []
4. p← 1
5. d ← 0
6. l ← ceil(lenght (Iu) /w)
7. while (p <= l)
8. if (p == l)
9. d←lenght (Iu)

10. else
11. d←p ∗ w
12. end if
13. Simp (u, v)← simFunction(I (1:d)u , Iv)
14. Insert Simp (u, v) into ST (u, v)
15. p←p+ 1
16. end while

Fig. 2 depicts the process of generating ST (u, v) over
different time-windows for the example of Table 1. In this
example, the initial size of the time-window is set to 3, and
Cosine correlation is used as a similarity function. As a result,
we have three similarity values, one for each time window:
Sim1 (u, v) = 0, Sim2 (u, v) = 0.11, and Sim3 (u, v) = 0.56.
these values are similarity values for user u partialized to
user v. Using these values, a time-series of similarity is cre-
ated as ST (u, v) = < 0, 0.11, 0.56 >.

FIGURE 2. Process of generating trend of similarity ST (u, v) for user u
partialized to user v over different time-windows.

C. OBTAINING SIMILARITY TREND BETWEEN USERS
Time series forecasting is to predict the future trend using
historical data [43]. In this paper, we aim at predicting
whether the trend of similarity between users will increase
or decrease in the near future. This is indeed one step ahead
prediction. However, we often do not have many data points
in our time-series to use sophisticated prediction methods.
Therefore, this limits the choice of prediction methods. Many
sophisticated methods require enough data points to create a
prediction model with reasonable accuracy, which is not the
case here. Often under limited data constraint, testing, and
validation processes are hard if not impossible. Any model
with more than one or two parameters often produces poor
forecasts due to the overfitting problem and the estimation
error [44]. Linear Regression is one of themost widely known
techniques in learning predictive modelling [45]. In this
technique, the dependent variable is continuous, the inde-
pendent variable(s) can be continuous or discrete, and the
nature of the regression line is linear. In the general problem
of linear regression, assume that we want to model some
observed data point D in a linear function. D is denoted as
follow:

D = {(X1,Y1) , (X2,Y2) , . . . , (Xn,Yn)}, (6)

where the Xi’s are independent and defined on an interval λ
and the Yi’s are generated by the regression model,

Yi = β0 +
∫
λ

β1Xi + εi (7)

Here, β0 is the intercept which is a constant number, β1 is
a square-integrable function on λ denoting the slop function,
and ε is error. The best-fit line can be easily obtained by Least
Square method, which works by minimizing the sum of the
squares of the vertical deviations from each data point to the
line. Here, we predict the trend of similarity by calculating β1

VOLUME 8, 2020 202125

N. Joorabloo et al.: Improved CF Recommendation Through Similarity Prediction

which is the slope of the fitted line. For each user pair u and v,
first we define data points D as follows:

D (u, v)

={(w1, ST (u, v)1) , (w2, ST (u, v)2) , . . . , (wl, ST (u, v)l)},

(8)

where ST (u, v)p is the obtained similarity by considering the
p-th time-window and wp is its position in sequence ST (u, v)
with length l. We denote the slop of fitted line to D (u, v)
data points by SimTrend(u,v), which indeed indicates the
future trend of the similarity between u and v. SimTrend(u,v)
shows whether the similarity trend is upward or downward.
The downward trend shows that the similarity will likely
decrease in the future, while the upward trend indicates
increased similarity in the future. We do this process for all
pairs of users in the system. As a result, we have SimTrend,
which is a user-user matrix of similarity trends in the
system.

In the example shown in Table 1, we use the classical
user-based CF with similarity values obtained by Cosine
correlation. Fig. 3 shows the proposed method to obtain the
future trend of similarity between users u and v. In this
example, SimTrend(u,v) is positive and takes an upward trend.
Therefore, based on our proposed method, we predict that
their future similarity, Simf (u, v), will increase.

FIGURE 3. Obtaining The similarity trend for users u and v over a
time-window with length three.

D. OBTAINING THE NEAREST NEIGHBORHOOD SET
The aim of this step is to re-rank users in the nearest neigh-
borhood set using the similarity trend obtained in the previous
step. In a similarity-based RS, the neighborhood list for each
target user is extracted by finding its most similar users. Thus,
a subset of users with the highest similarities is chosen as the
nearest neighbors, which are then used to predict ratings for
items not yet rated by the target user. Our idea here is that
users with upward similarity could be better neighbors than
those with downward trends. Thus, we strengthen (weaken)
upward (downward) similarities.

With these assumptions, the similarity between two users
in terms of trend and value can be categorized in one of
following classes: i) upward and positive (UP), ii) upward

and negative (UD), iii) downward and positive (DP) and
iv) downward and negative (DN). Our hypothesis is that the
most similar users to a target user, in order of preference are
UP, UD, DP and then DN. Each item in these lists has a
membership degree which is stored inWUP,WUD,WDP, and
WDN, respectively. The membership degree for users u and v
is equal to their original similarity value, the one that is stored
in Sim (u, v)l .

In the next step, we obtain the final ranking list of neigh-
bors of target user u, denoted by neighboru. To this end, first
we sort the items in each class based on their importance
weight and obtain neighboru by concatenating lists from
higher priority to lower ones as follow:

neighboru = Concatenate(UPu,UDu,DPu,DN u), (9)

where UPu,UDu,DPu,DN u are classes for user u. The main
difference between classical methods and our method is the
way we rank neighbors. While classical methods rank users
based on the original similarity value, our proposed method
ranks them regarding their future similarity trend and also
their similarity values.

E. RECOMMENDATION
The last step is to use the updated neighborhood to pro-
vide recommendation lists to target users. In the proposed
user-based RS, first the neighborhood list for each target
user u is selected from Top_P items in neighbouru and
denoted byKu. In the next step, they are used to predict ratings
for items not yet been rated by u. The user-based CF obtains
the predicted rating of item j for the target user u as:

Pu,j = r̄u +

∑
e∈Ku,j Sim (u, e)l ∗ (re,j − r̄u)∑

u∈Ne,j Sim (u, e)l
, (10)

where Ku,j is the set of users in Ku who have rated item j, r̄u is
the average ratings made by user u and Sim (u, e)l is the last
similarity value in ST(u, e).
Note that we do not change anything with the recommen-

dation process but only re-rank the similarity values based on
the predicted trend of the similarity. This results in choosing
more effective neighbors for target users leading to improved
performance of recommendations. The same approach can be
applied to item-based CF. To this aim, the similarity between
items is calculated in different time-window, and then simi-
larity trends between items are used to update neighborhood
sets. In the last step, after predicting the rates of the unseen
items for the active user, the algorithm selects those of the
Top_N items to be recommended.

IV. EXPERIMENTAL RESULTS
In this section, we study the performance of some classical
and state-of-the-art CF recommendation algorithms using the
proposed update rule for the similarity. To evaluate the rec-
ommendation results, we split the ratings into a training set,
and a test set. Time-unaware RSs mostly split data randomly,

202126 VOLUME 8, 2020

N. Joorabloo et al.: Improved CF Recommendation Through Similarity Prediction

however in time-aware RSs the order of ratings is impor-
tant [46]. To perform the experiments in this work, first all
ratings are sorted according to their timestamps in an ascend-
ing order. Then, 20% of the most recent ratings are selected
for testing and the rest are taken as the training set. Similar
approach has already been used in previous time-aware RSs,
e.g. [18], [19], [47]–[49].

A. BENCHMARK ALGORITHMS
We consider the following benchmark algorithms:
1) Cosine (COS) [42]: Cosine is one of the most popular

similarity measures for CF RSs to evaluate how much
two users are correlated. The Cosine similarity between
is calculated by (1).

2) Pearson Correlation Coefficient (PCC): Pearson is an
improved version of Cosine measure by adding an
average of ratings to calculations. Pearson Correlation
reflects the similarity between users more accurate than
Cosine and is one of the most popular measures used in
classical similarity-based CF RSs [50].

PCC (u, v)

=

∑
i∈Iu,v

(
ru,i − r̄u

) (
rv,i − r̄v

)√∑
i∈Iu,v

(
ru,i − r̄u

)2√∑
i∈Iu,v

(
rv,i − r̄u

)2 ,
(11)

where r̄u is the average rating of user u for co-rated items
represented by set I .

3) Spearman Rank Correlation (SRC): is a statistical mea-
sure of the strength of a monotonic relationship between
paired data [51]. The following formula is used to
calculate the Spearman Rank Correlation:

SRC (u, v) = 1−
6 ∗

∑
i∈Iu,v d

2
u,v

n
(
n2 − 1

) , (12)

where du,v is the difference between the ranks of cor-
responding variables, and n is the number of items in
common itemset I .

4) Jaccard: that takes into account the number of common
preferences between two users. Jaccard does not con-
sider the rating values but the number of items being
rated. Two users are more similar if they have more
commonly rated items [52].

J (u, v) =
|Iu ∩ Iv|
|Iu ∪ Iv|

, (13)

5) Jaccard-Pearson Correlation Coefficient (JPCC): this
measure calculates the combination of Jaccard and Par-
son Correlation Coefficient to get better similarity value.
JPCC is obtained as follow:

JPCC (u, v) = Jac (u, v) ∗ PCC (u, v) , (14)

6) Constrained Pearson Correlation Coefficient (CPCC): it
is the same as PCC, but instead of the average ratings
co-rated by both users, it uses themedian value for rating
scale [53].

CPCC (u, v)

=

∑
i∈Iu,v

(
ru,i − rmed

) (
rv,i − rmed

)√∑
i∈Iu,v

(
ru,i − rmed

)2√∑
i∈Iu,v

(
rv,i − rmed

)2 ,
(15)

where rmed is the median value for the rating scale.
7) Jaccard-Constrained Pearson Correlation Coefficient

(JCPCC): obtains similarity between two users using
the combination of Jaccard and Constrained Pearson
Correlation Coefficient, which is calculated as follows:

JCPCC (u, v) = Jac (u, v) ∗ CPCC (u, v) , (16)

8) Jaccard-Spearman Rank Correlation (JSRC): obtains
similarity between two users using the combination of
Jaccard and Spearman Rank Correlation which is calcu-
lated as follows:

JSRC (u, v) = J (u, v) ∗ SRC (u, v) , (17)

9) Jaccard-Cosine (JCOS): calculates the similarity
between users with combining Jaccard Cosine Corre-
lation which is calculated as follows:

JCOS (u, v) = J (u, v) ∗ COS (u, v) , (18)

10) Weighted Pearson Correlation Coefficient (WPCC): the
size of the common item set is not taken into account in
the classical Pearson correlation coefficient. To resolve
this issue, Weighted Pearson Correlation Coefficient has
been proposed [54]. If two users have fewer than F
commonly rated items, a weight wu,v is applied to their
correlation. If there are more than F co-rated items, wu,v
is set to one. WPCC for users u and v is calculated as
follows:

WPCC (u, v)

=

∑
i∈Iu,v wu,v ∗

(
ru,i−r̄u

) (
rv,i−r̄v

)√∑
i∈Iu,vwu,v∗

(
ru,i−r̄u

)2√∑
i∈Iu,vwu,v∗

(
rv,i−r̄u

)2 ,
(19)

where wu,v is obtained as follows:

wu,v =

{ n
F
, if correlated items is less than F

1, otherwise,
(20)

where n is the number of co-rated items.
11) Proximity-Impact-Popularity (PIP): This similarity

measure considers three different aspects which are
proximity (the simple arithmetic difference between two
ratings), impact (how strongly an item is preferred or
disliked by buyers) and popularity (giving bigger value
to similarity for ratings that are further from the average
rating of a co-rated item) [55]. Finally, PIP similarity is
obtained by merging them as follows:

PIP (u, v) = proximity (u, v) ∗ impact (u, v)

∗ popularity (u, v) (21)

VOLUME 8, 2020 202127

N. Joorabloo et al.: Improved CF Recommendation Through Similarity Prediction

12) New heuristic similarity model (NHSM): This similar-
ity measure considers the fact that different users have
different preference scale [56]. NHSM is a combination
of JPSS and User Rating Preference URP) similarity
measures, which is based on mean and variance of the
users’ rating. NHSM values range is between 0 to 1 and
calculated as follows:

NHSM (u, v) = JPSS (u, v) ∗ URP (u, v) (22)

13) Adjust Cosine (ACOS): This similarity measure con-
siders the difference in the rating scale used by each
user [55]. ACOS similarity subtracts the average rating
of user u for all the items rated by user u and is obtained
as follows:

ACOS (u, v)

=

∑
i∈Iu,v

(
ru,i − r̄u

) (
rv,i − r̄v

)√∑
i∈Iu,v

(
ru,i − r̄u

)2√∑
i∈Iu,v

(
rv,i − r̄u

)2 ,
(23)

where r̄u is the average rating of all items rated by user u.
14) Mean Squared Difference (MSD): considers the abso-

lute ratings to calculate the similarity [56]. MSD is
obtained as follow:

MSD (u, v) = 1−

∑
i∈Iu,v

(
rv,i − ru,i

)2
|I |

(24)

15) Multi-level Collaborative Filtering (MLCF): divides
the similarity calculated by PCC into different levels
and improves the accuracy of the recommendations by
adding constraints to each level [57]. In this algorithm,
predefined thresholds (t1, t2, t3, t4) represent the con-
straints on the number of co-rated items for each level.
The similarity between users in this method is calculated
as follow:

MLCF (u.v) =

PCC (u, v)+ x, if
|I |
T
≥ t1

and PCC (u, v) ≥ y

PCC (u, v)+ x, if
|I |
T
< t1

and
|I |
T
≥ t2 and PCC (u, v) ≥ y

PCC (u, v)+ x, if
|I |
T
< t2

and
|I |
T
≥ t3 and PCC (u, v) ≥ y

PCC (u, v)+ x, if
|I |
T
< t3

and
|I |
T
≥ t4 and PCC (u, v) ≥ y

0, otherwise,
(25)

where T is the total number of co-rated items, x and y are
real positive numbers which are different at each level.

16) Jaccard Mean Squared Difference (JMSD): This com-
bines MSD and Jaccard to obtain a new similarity mea-
sure. It is defined as follows [58]:

JMSD (u, v) = J (u, v) ∗MSD (u, v) (26)

17) Sigmoid function based on Pearson Correlation Coef-
ficient (SPCC): is a modified form of PCC [59]. This
measure is an exponential version of PCC, and users
with a smaller number of co-rated items have a weaker
similarity. SPCC is obtained as follow:

SPCC (u, v) = PCC (u, v) ∗
1

1+ exp(− |I |2)
(27)

18) Item-based CF (ICF): is a form of collaborative filtering
that works based on the similarity between items [60].
Similarities between items are calculated using one of
several similarity measures in the literature like Cosine.
Then these similarity values are used to predict ratings
for unseen items of a target user.

The details of the experiments are presented in the following
sections.

B. DATASET
Movielens and Goodreads are two well-known benchmark
datasets used in the experiments to verify the effective-
ness of the proposed method [61], [62]. Movielens dataset
contains 1682 movies, 943 users, and 100,000 differ-
ent ratings. Goodreads dataset contains ratings of nearly
47,000 users over around 2 million books. We randomly
chose 800 anonymous users for our experiment, who rated
more than 40 books. The total number of books rated by these
users is about 83,000 titles, and the total number of ratings is
126,881. The rating values are integer numbers in the range
of 1 (bad) to 5 (excellent). While rating density in Movielens
dataset is 6.30%, Goodreads dataset is heavily sparse with a
rating density of only 0.18%. Applying the proposed method
on these datasets allow us to evaluate the performance on
dataset with different densities.

C. EVALUATION METRICS
1) PRECISION
Precision metric evaluates the accuracy of recommendations.
Precision of recommending N items to user u is denoted by
Pu(N) and defined as the percentage of relevant items in the
recommendation list of user u. Precision of a system that
recommends N items to its users is shown by with P(N) and
is calculated as:

P (N) =

∑
u∈TestSet Pu (N)
|uTestSet |

, (28)

where TestSet is the part of the dataset that we assume as a
test set.

2) RECALL
Recall for a target user u is the number of relevant recom-
mended items to the total number of relevant items and is

202128 VOLUME 8, 2020

N. Joorabloo et al.: Improved CF Recommendation Through Similarity Prediction

TABLE 2. Comparing the performance of original and modified version of algorithms using proposed method over Movielens. Note that in the proposed
algorithm we re-rank users’ neighborhood sets using the predicted similarity trends.

denoted by Recallu. Recall for a system with M users is
defined as follow:

Recall =

∑
u∈testSet Recallu

M
(29)

3) F1 SCORE
Since recall and precisionmetrics are inversely correlated and
are also dependent on the number of recommended items,
researchers have often used the combination of them to eval-
uate RSs:

F1 =
2 ∗ P (N) ∗Recall
P (N)+ Recall

(30)

D. RESULTS
As mentioned, to perform the experiments in this work, first,
the ratings are sorted based on the time, and then the first
80% of the ratings are selected as the training set, and the
remaining data is used as the test set. To generate the result
for the proposed method, the initial size of time-window is
set to 20. With this setting, the average number of iterations
to compute the time-series for each pair of users inMovielens
and Goodreads dataset are 4.24 and 6.33, respectively. As it
mentioned earlier, it does not need to calculate the similarity
measures, the obtained value in each iteration can be used
to calculate the value for the next iteration. This approach
prevents the time complexity of the algorithm blowing out.

Our experiments show that the runtime of the proposed algo-
rithm is at most three times more than the original algorithm.

The results of the experiments for Movielens and
Goodreads dataset are reported in Tables 2 and Table 3,
respectively. As one can see from these results, the proposed
method significantly improved the classical algorithms and
outperformed the original methods over these datasets, espe-
cially in Movielens. For example, some algorithms, such
as MLCF, PCC, ICF, experienced more than 30% improve-
ments. Although classical algorithms such as COS, PCC, and
ICF have the worse results in terms of precision, by applying
the proposed method, their precision improved about 36%,
40% and 63%, respectively.Moreover, these algorithms expe-
rienced 24%, 29% and 63% improvement, respectively in
terms of recall. From Table 2 we can see that all modified
version of algorithms outperformed their original ones in
terms of F1 metric. For example, the performance of MLCF
and ACOS in terms of F1 was improved by 25% and 23%,
respectively.

Table 3 compares the performance of the original algo-
rithms and their improved versions over Goodreads dataset.
The highest improvements in terms of precision are in MSD
and ACOS algorithms. Besides, the results also show that
the modified version of algorithms surpassed their original
ones over recall and F1 metrics; JMSD and JPCC are two
good examples that experienced about 10% improvement
in terms of recall. Compared with original ICF and MSD,

VOLUME 8, 2020 202129

N. Joorabloo et al.: Improved CF Recommendation Through Similarity Prediction

TABLE 3. Comparing the performance of original and improved algorithms on Goodreads dataset.

our proposed model obtained 18% and 11% better perfor-
mance over F1.

As one can see from these results, we have different levels
of improvement for different similarity measures. Indeed, the
quality of collaborative filtering recommendations is related
to how the similarity metrics are defined, e.g. how complete
they can describe the relationship between users. For exam-
ple, PCC takes the average of ratings made by the user into
consideration, but COS take each user as a vector without
considering their average of ratings. On the other hand, the
performance of similarity metrics and recommendations is
highly dependent on the problem parameters such as number
of users, number of items, sparsity level, etc., [63]–[65].
Mentioned parameters vary according to the size of the time-
window, which affects the calculated similarity value in each
iteration, and consequently causes various improvement lev-
els at the time of using different similarity measures. Unlike
many state-of-the-art recommendation methods providing
better accuracy over classical CF algorithms, our proposed
method does not significantly increase the computational
complexity of the original algorithm and also don’t change
their similarity calculation and recommendation proposed
methods is the update provided on the neighborhood selection
step. This is an important issue for online RSs in particular,
in which one has to deal with billions of uses, items, and rat-
ings. process. The only difference between the original and in
some cases, one has also to deal with lots of changes in a short
period of time to keep the recommendation up-to-date for
customers. Simple CF algorithms, e.g. classical user-based

CF, has found the greatest success in real large-scale datasets,
and the proposed method can be simply integrated with
them without significantly increasing computational burden
on them. Our experimental results showed that applying the
proposed method on simple and basic algorithms can add
valuable temporal information to them, and consequently
lead to significant performance improvement. Furthermore,
unlike many other temporal methods in the literature, the
proposed method is not domain-specific and according to the
experiment results, it can be applied to any similarity-based
CF recommendation algorithm.

V. CONCLUSION
In this paper, a novel recommendation approach is proposed
to effectively consider temporal information of ratings pro-
vided by the users in the recommendation process. To this
end, first the ratings are converted to a sequential pattern
based on the time of the rating. Then, a time-series of sim-
ilarities between a pair of users over time is generated, which
is used to predict the trend of similarity between them in the
future.

In a similarity-based RS, a subset of users/item with the
highest similarities is first selected as the nearest neighbors
for each user/item in the dataset, and then are used in the
recommendation process. It is a fact that users’ preferences
vary over time, and so their similarity. Although several
studies have been proposed to use temporal information
in similarity-based RSs, these methods are often domain-
specific. Some of them have used time-decay functions to

202130 VOLUME 8, 2020

N. Joorabloo et al.: Improved CF Recommendation Through Similarity Prediction

decrease the effect of old ratings, which is not effective
approach if users’ preferences stay consistent over time for
a particular type of item. In this case, old ratings may help to
improve the accuracy of prediction.

In this work, we proposed a universal and domain-
independent method for adding temporal information to any
non-temporal RS. To this end, we predict the future similarity
trend between all users/items and then re-ranking their neigh-
borhood sets by giving more (less) priority to users/items
with upward (downward) trends. The updated neighborhood
sets are used within the target RS to recommend items.
As such, the proposed method can be applied to any CF
recommendation algorithm that is based on user-user and/or
item-item similarity estimation. As the proposedmethod only
make some small modification to the neighborhood selection
step of the recommendation process, it does not significantly
increase the computational complexity of the original RS
algorithm. Our experiments on two benchmark movies and
book recommendation datasets showed that this simple trick
could significantly improve accuracy of many existing and
state-of-the-art CF algorithms. According to the experiment
results, the proposed method in some cases could improve
accuracy by more than 50%.

REFERENCES
[1] B. Smith and G. Linden, ‘‘Two decades of recommender systems

at Amazon.com,’’ IEEE Internet Comput., vol. 21, no. 3, pp. 12–18,
May 2017.

[2] P. Winoto and T. Y. Tang, ‘‘The role of user mood in movie recommenda-
tions,’’ Expert Syst. Appl., vol. 37, no. 8, pp. 6086–6092, Aug. 2010, doi:
10.1016/j.eswa.2010.02.117.

[3] V. Subramaniyaswamy, R. Logesh, M. Chandrashekhar, A. Challa, and
V. Vijayakumar, ‘‘A personalised movie recommendation system based
on collaborative filtering,’’ Int. J. High Perform. Comput. Netw., vol. 10,
nos. 1–2, pp. 54–63, 2017.

[4] J. J. Castro-Schez, R. Miguel, D. Vallejo, and L. M. López-López,
‘‘A highly adaptive recommender system based on fuzzy logic for B2C
e-commerce portals,’’ Expert Syst. Appl., vol. 38, no. 3, pp. 2441–2454,
Mar. 2011.

[5] E. R. Núñez-Valdéz, J. M. C. Lovelle, O. S. Martínez, V. García-Díaz,
P. O. de Pablos, and C. E. M. Marín, ‘‘Implicit feedback techniques on
recommender systems applied to electronic books,’’Comput. Hum. Behav.,
vol. 28, no. 4, pp. 1186–1193, Jul. 2012.

[6] C. Porcel, A. Tejeda-Lorente, M. A. Martínez, and E. Herrera-Viedma,
‘‘A hybrid recommender system for the selective dissemination of research
resources in a technology transfer office,’’ Inf. Sci., vol. 184, no. 1,
pp. 1–19, Feb. 2012.

[7] S. Tan, J. Bu, C. Chen, B. Xu, C. Wang, and X. He, ‘‘Using rich social
media information for music recommendation via hypergraph model,’’
ACM Trans. Multimedia Comput., Commun., Appl., vol. 7, no. 1, p. 22,
Oct. 2011.

[8] A. B. Barragáns-Martínez, E. Costa-Montenegro, J. C. Burguillo,
M. Rey-López, F. A. Mikic-Fonte, and A. Peleteiro, ‘‘A hybrid content-
based and item-based collaborative filtering approach to recommend TV
programs enhanced with singular value decomposition,’’ Inf. Sci., vol. 180,
no. 22, pp. 4290–4311, Nov. 2010.

[9] E. Costa-Montenegro, A. B. Barragáns-Martínez, and M. Rey-López,
‘‘Which app? A recommender system of applications in markets: Imple-
mentation of the service for monitoring users’ interaction,’’ Expert Syst.
Appl., vol. 39, no. 10, pp. 9367–9375, Aug. 2012.

[10] J. Bobadilla, F. Serradilla, and A. Hernando, ‘‘Collaborative filtering
adapted to recommender systems of e-learning,’’ Knowl.-Based Syst.,
vol. 22, no. 4, pp. 261–265, May 2009.

[11] S. Ahmadian, N. Joorabloo, M. Jalili, Y. Ren, M. Meghdadi, and
M. Afsharchi, ‘‘A social recommender system based on reliable implicit
relationships,’’ Knowl.-Based Syst., vol. 192, Mar. 2020, Art. no. 105371.

[12] K. McNally, M. P. O’Mahony, M. Coyle, P. Briggs, and B. Smyth, ‘‘A case
study of collaboration and reputation in social Web search,’’ ACM Trans.
Intell. Syst. Technol., vol. 3, no. 1, pp. 1–29, Oct. 2011.

[13] M. Jalili, S. Ahmadian, M. Izadi, P. Moradi, and M. Salehi, ‘‘Evaluating
collaborative filtering recommender algorithms: A survey,’’ IEEE Access,
vol. 6, pp. 74003–74024, 2018.

[14] J. Wei, J. He, K. Chen, Y. Zhou, and Z. Tang, ‘‘Collaborative filtering and
deep learning based recommendation system for cold start items,’’ Expert
Syst. Appl., vol. 69, pp. 29–39, Mar. 2017.

[15] G. Adomavicius, A. Tuzhilin, and R. Zheng, ‘‘REQUEST: A query lan-
guage for customizing recommendations,’’ Inf. Syst. Res., vol. 22, no. 1,
pp. 99–117, Mar. 2011.

[16] L. Baltrunas and F. Ricci, ‘‘Experimental evaluation of context-dependent
collaborative filtering using item splitting,’’ User Model. User-Adapted
Interact., vol. 24, nos. 1–2, pp. 7–34, Feb. 2014.

[17] Y. Ren,M. Tomko, F. D. Salim, J. Chan, C. L. A. Clarke, andM. Sanderson,
‘‘A location-query-browse graph for contextual recommendation,’’ IEEE
Trans. Knowl. Data Eng., vol. 30, no. 2, pp. 204–218, Feb. 2018.

[18] N. Joorabloo, M. Jalili, and Y. Ren, ‘‘A probabilistic graph-based method
to improve recommender system accuracy,’’ in Proc. Int. Conf. Eng. Appl.
Neural Netw. Cham, Switzerland: Springer, 2019, pp. 151–163.

[19] S. Ahmadian, N. Joorabloo, M. Jalili, M. Meghdadi, M. Afsharchi, and
Y. Ren, ‘‘A temporal clustering approach for social recommender sys-
tems,’’ in Proc. IEEE/ACM Int. Conf. Adv. Social Netw. Anal. Mining
(ASONAM), Aug. 2018, pp. 1139–1144.

[20] N. N. Liu, M. Zhao, E. Xiang, and Q. Yang, ‘‘Online evolutionary collab-
orative filtering,’’ in Proc. 4th ACM Conf. Recommender Syst. (RecSys),
2010, pp. 95–102.

[21] R. Rafeh and A. Bahrehmand, ‘‘An adaptive approach to dealing with
unstable behaviour of users in collaborative filtering systems,’’ J. Inf. Sci.,
vol. 38, no. 3, pp. 205–221, Jun. 2012.

[22] N. Koenigstein, G. Dror, and Y. Koren, ‘‘Yahoo! Music recommendations:
Modeling music ratings with temporal dynamics and item taxonomy,’’ in
Proc. 5th ACM Conf. Recommender Syst. (RecSys), 2011, pp. 165–172.

[23] L. Cao, ‘‘Non-IID recommender systems: A review and framework of rec-
ommendation paradigm shifting,’’ Engineering, vol. 2, no. 2, pp. 212–224,
Jun. 2016.

[24] Y. Ding, X. Li, and M. E. Orlowska, ‘‘Recency-based collaborative filter-
ing,’’ in Proc. 17th Australas. Database Conf., vol. 49. Darlinghurst, NSW,
Australia: Australian Computer Society, 2006, pp. 99–107.

[25] C. Xing, F. Gao, S. Zhan, and L. Zhou, ‘‘Collaborative filtering recommen-
dation algorithm incorporated with user interest change,’’ Jisuanji Yanjiu
yu Fazhan, Comput. Res. Develop., vol. 44, no. 2, pp. 296–301, 2007.

[26] Y. Ding and X. Li, ‘‘Time weight collaborative filtering,’’ in Proc. 14th
ACM Int. Conf. Inf. Knowl. Manage. (CIKM), 2005, pp. 485–492.

[27] Y. Zhang and Y. Liu, ‘‘A collaborative filtering algorithm based on time
period partition,’’ in Proc. 3rd Int. Symp. Intell. Inf. Technol. Secur. Infor-
mat., Apr. 2010, pp. 777–780.

[28] J. Suchal and P. Návrat, ‘‘Full text search engine as scalable k-nearest
neighbor recommendation system,’’ in Proc. IFIP Int. Conf. Artif. Intell.
Theory Pract. Berlin, Germany: Springer, 2010, pp. 165–173.

[29] A. Bellogín, P. Castells, and I. Cantador, ‘‘Neighbor selection and
weighting in user-based collaborative filtering: A performance prediction
approach,’’ ACM Trans. Web, vol. 8, no. 2, pp. 1–30, Mar. 2014.

[30] T. Q. Lee, Y. Park, and Y.-T. Park, ‘‘An empirical study on effectiveness
of temporal information as implicit ratings,’’ Expert Syst. Appl., vol. 36,
no. 2, pp. 1315–1321, Mar. 2009.

[31] A. Zimdars, D. M. Chickering, and C. Meek, ‘‘Using temporal data for
making recommendations,’’ in Proc. 17th Conf. Uncertainty Artif. Intell.
San Mateo, CA, USA: Morgan Kaufmann, 2001, pp. 580–588.

[32] F. Ricci and Q. N. Nguyen, ‘‘Acquiring and revising preferences in a
critique-based mobile recommender system,’’ IEEE Intell. Syst., vol. 22,
no. 3, pp. 22–29, May 2007.

[33] Y. Koren, ‘‘Collaborative filtering with temporal dynamics,’’ in Proc.
15th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2009,
pp. 447–456.

[34] T. Y. Tang, P. Winoto, and K. C. C. Chan, ‘‘Scaling down candidate sets
based on the temporal feature of items for improved hybrid recommenda-
tions,’’ inProc. IJCAIWorkshop Intell. Techn.Web Personalization. Berlin,
Germany: Springer, 2003, pp. 169–186.

[35] T. Lee, Y. Park, and Y. Park, ‘‘A time-based approach to effective recom-
mender systems using implicit feedback,’’Expert Syst. Appl., vol. 34, no. 4,
pp. 3055–3062, May 2008.

VOLUME 8, 2020 202131

http://dx.doi.org/10.1016/j.eswa.2010.02.117

N. Joorabloo et al.: Improved CF Recommendation Through Similarity Prediction

[36] B. Karahodza, H. Supic, and D. Donko, ‘‘An approach to design of time-
aware recommender system based on changes in group user’s preferences,’’
in Proc. 10th Int. Symp. Telecommun. (BIHTEL), Oct. 2014, pp. 1–4.

[37] C. Xia, X. Jiang, S. Liu, Z. Luo, and Z. Yu, ‘‘Dynamic item-based rec-
ommendation algorithm with time decay,’’ in Proc. 6th Int. Conf. Natural
Comput., vol. 1, Aug. 2010, pp. 242–247.

[38] N. Lathia, S. Hailes, and L. Capra, ‘‘Temporal collaborative filtering with
adaptive neighbourhoods,’’ in Proc. 32nd Int. ACM SIGIR Conf. Res.
Develop. Inf. Retr. (SIGIR), 2009, pp. 796–797.

[39] C. Chen, H. Yin, J. Yao, and B. Cui, ‘‘TeRec: A temporal recommender
system over tweet stream,’’ Proc. VLDB Endowment, vol. 6, no. 12,
pp. 1254–1257, Aug. 2013.

[40] X. Zheng, Y. Luo, L. Sun, J. Zhang, and F. Chen, ‘‘A tourism destination
recommender system using users’ sentiment and temporal dynamics,’’
J. Intell. Inf. Syst., vol. 51, no. 3, pp. 557–578, Dec. 2018.

[41] R.-H. Hwang, Y.-L. Hsueh, and Y.-T. Chen, ‘‘An effective taxi recom-
mender system based on a spatio-temporal factor analysis model,’’ Inf. Sci.,
vol. 314, pp. 28–40, Sep. 2015.

[42] C. C. Aggarwal, Recommender Systems: The Textbook, 1st ed. Cham,
Switzerland: Springer, 2016.

[43] J. G. De Gooijer and R. J. Hyndman, ‘‘25 years of time series forecasting,’’
Int. J. Forecasting, vol. 22, no. 3, pp. 443–473, Jan. 2006.

[44] R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Prac-
tice. Melbourne, VIC, Australia: OTexts, 2018.

[45] W. Huiwen andM. Jie, ‘‘Predictive modeling on multivariate linear regres-
sion,’’ J. Beijing Univ. Aeronaut. Astronaut., vol. 33, no. 4, p. 500, 2007.

[46] P. G. Campos, F. Díez, and I. Cantador, ‘‘Time-aware recommender sys-
tems: A comprehensive survey and analysis of existing evaluation proto-
cols,’’ User Model. User-Adapted Interact., vol. 24, nos. 1–2, pp. 67–119,
Feb. 2014.

[47] P. Sánchez and A. Bellogín, ‘‘Time and sequence awareness in similar-
ity metrics for recommendation,’’ Inf. Process. Manage., vol. 57, no. 3,
May 2020, Art. no. 102228.

[48] F. Rezaeimehr, P. Moradi, S. Ahmadian, N. N. Qader, and M. Jalili,
‘‘TCARS: Time- and community-aware recommendation system,’’ Future
Gener. Comput. Syst., vol. 78, pp. 419–429, Jan. 2018.

[49] S. M. Daneshmand, A. Javari, S. E. Abtahi, and M. Jalili, ‘‘A time-aware
recommender system based on dependency network of items,’’ Comput. J.,
vol. 58, no. 9, pp. 1955–1966, Sep. 2015.

[50] Y. Shi, M. Larson, and A. Hanjalic, ‘‘Collaborative filtering beyond the
user-item matrix: A survey of the state of the art and future challenges,’’
ACM Comput. Surv., vol. 47, no. 1, p. 3, Jul. 2014.

[51] M. Kendall and J. Gibbons, Rank Correlation Methods (A Charles Griffin
Book), E. Arnold, Ed., 5th ed. London, U.K.: Oxford Univ. Press, 1990.

[52] P. Jaccard, ‘‘Étude comparative de la distribution florale dans une portion
des Alpes et des Jura,’’ Bull. Soc. Vaudoise Sci. Nat., vol. 37, pp. 547–579,
Jan. 1901.

[53] H.-N. Kim, A. El-Saddik, and G.-S. Jo, ‘‘Collaborative error-reflected
models for cold-start recommender systems,’’Decis. Support Syst., vol. 51,
no. 3, pp. 519–531, Jun. 2011.

[54] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, ‘‘An algorithmic
framework for performing collaborative filtering,’’ in Proc. 22nd Annu.
Int. ACM SIGIR Conf. Res. Develop. Inf. Retr. (SIGIR). New York, NY,
USA: Association for Computing Machinery, 1999, pp. 230–237.

[55] H. J. Ahn, ‘‘A new similarity measure for collaborative filtering to alleviate
the new user cold-starting problem,’’ Inf. Sci., vol. 178, no. 1, pp. 37–51,
Jan. 2008.

[56] H. Liu, Z. Hu, A. Mian, H. Tian, and X. Zhu, ‘‘A new user similarity model
to improve the accuracy of collaborative filtering,’’ Knowl.-Based Syst.,
vol. 56, pp. 156–166, Jan. 2014.

[57] N. Polatidis and C. K. Georgiadis, ‘‘A multi-level collaborative filtering
method that improves recommendations,’’ Expert Syst. Appl., vol. 48,
pp. 100–110, Apr. 2016.

[58] J. Bobadilla, F. Serradilla, and J. Bernal, ‘‘A new collaborative filtering
metric that improves the behavior of recommender systems,’’ Knowl.-
Based Syst., vol. 23, no. 6, pp. 520–528, Aug. 2010.

[59] M. Jamali and M. Ester, ‘‘TrustWalker: A random walk model for
combining trust-based and item-based recommendation,’’ in Proc. 15th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD), 2009,
pp. 397–406.

[60] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl, ‘‘Item-based
collaborative filtering recommendation algorithms,’’ inProc.WWW, vol. 1,
2001, pp. 285–295.

[61] F. M. Harper and J. A. Konstan, ‘‘The MovieLens datasets: History
and context,’’ ACM Trans. Interact. Intell. Syst., vol. 5, no. 4, pp. 1–19,
Jan. 2016.

[62] M. Thelwall and K. Kousha, ‘‘Goodreads: A social network site for book
readers,’’ J. Assoc. Inf. Sci. Technol., vol. 68, no. 4, pp. 972–983, Apr. 2017.

[63] K. Verbert, H. Drachsler, N. Manouselis, M. Wolpers, R. Vuorikari, and
E. Duval, ‘‘Dataset-driven research for improving recommender systems
for learning,’’ in Proc. 1st Int. Conf. Learn. Analytics Knowl. (LAK), 2011,
pp. 44–53.

[64] J. Lee, M. Sun, and G. Lebanon, ‘‘A comparative study of collabora-
tive filtering algorithms,’’ 2012, arXiv:1205.3193. [Online]. Available:
http://arxiv.org/abs/1205.3193

[65] M. Grčar, D. Mladenič, B. Fortuna, and M. Grobelnik, ‘‘Data sparsity
issues in the collaborative filtering framework,’’ in Proc. Int. Workshop
Knowl. Discovery Web. Berlin, Germany: Springer, 2005, pp. 58–76.

NIMA JOORABLOO received the B.S. degree
in computer hardware engineer from the Azad
University of Tehran, Tehran, Iran, in 2007, and
the M.S. degree in artificial intelligence from
the Science and Research University of Tehran,
Tehran, in 2010. He is currently pursuing the
Ph.D. degree in electrical and biomedical engi-
neering with RMIT University. His academic
research interests include recommender system,
social network analysis, heterogeneous network,
and sequence mining.

MAHDI JALILI (Senior Member, IEEE) received
the Ph.D. degree in computer and communica-
tions sciences from the Swiss Federal Institute
of Technology Lausanne, Lausanne, Switzerland,
in 2008. He is currently a Senior Lecturer with
the School of Engineering, RMIT University,
Melbourne, VIC, Australia. His current research
interests include network science and engineering.
He was previously an Australian Research Coun-
cil DECRA Fellow and a RMIT Vice-Chancellor

Research Fellow. He is an Associate Editor of Complex Adaptive Systems
Modeling, Complexity, and Mathematical Problems in Engineering.

YONGLI REN received the Ph.D. degree in
information technology from Deakin University,
Geelong, VIC, Australia. He is currently a Lec-
turer with the Computer Science and Information
Technology, School of Science, RMIT University,
Melbourne, VIC, Australia. His research interests
include data analytics, user modeling, personaliza-
tion, and recommender systems. He has won the
Alfred Deakin Medal for Doctoral Thesis 2013 at
Deakin University, and the Best Paper Award at the
IEEE/ACM ASONAM 2012 Conference.

202132 VOLUME 8, 2020

