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ABSTRACT In this paper, we propose the concept of ρ anti-intuitionistic fuzzy sets, ρ anti – intuitionistic
fuzzy subgroups and prove some of their algebraic properties. We investigate a necessary and sufficient
condition for a ρ-anti intuitionistic fuzzy set to be a ρ-anti intuitionistic fuzzy subgroup. We extend this
ideology by defining the notions of ρ anti-intuitionistic fuzzy coset, ρ anti-intuitionistic fuzzy normal
subgroup and derive some of their key algebraic characteristics. In addition, we study the quotient group
of a group induced by ρ-anti intuitionistic fuzzy normal subgroup and establish a group isomorphism
between this newly defined quotient group and the quotient group of groupG relative to its particular normal
subgroup GSρ .

INDEX TERMS Intuitionistic fuzzy set (IFS), ρ-anti intuitionistic fuzzy set (ρ-AIFS), ρ-anti intuitionistic
fuzzy subgroup (ρ-AIFSG), ρ-anti intuitionistic fuzzy coset, ρ-anti intuitionistic fuzzy normal subgroup
(ρ-AIFNSG).
Mathematics Subject Classification 2010: 03E72, 08A72, 20N25.

I. INTRODUCTION
Crisp set theory deals with the situations which are inevitable
and precise and the elements have a Boolean state of nature.
In real life, this deterministic theory does not appropriately
work due to its limitations to deal many physical phenomena
such as small or tall, less or more and so on. Fuzzy logic
gives explanations and measurements of vagueness in these
situations. Fuzzy logic theory is based on the concept of
graded membership function in which there is a gradual
transition from zero to unity. An important extension of
fuzzy sets is the theory of intuitionistic fuzzy sets because
it has more ability to tackle with vagueness and imprecision.
Another approach to deal with the problems and situations
which are vague and not concise is anti-intuitionistic fuzz set.
The anti-intuitionistic fuzzy sets have distinguished feature
of allocating a membership and non-membership value to
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each element. Owing to the complicated pattern of executive
surroundings and judgmental obstacles themselves, judgment
composers can present evaluations or judgments to a few spe-
cific extent however, there may occur an element of mistake,
because sometimes they are also not sure regarding to the
decisions namely, there may exist some reluctancy degree,
such kind of reluctancy is perfectly expressed in the frame-
work of anti-intuitionistic fuzzy sets. This particular theory
deals with the arrangement of instructions and processing
in human brains and such crucial traits as it has the capa-
bility to deal with inconclusiveness and vagueness. It has a
very indispensable role in most of professional and scientific
fields. This phenomenon has useful applications in statistical
investigation, medical screening, transportation, nuclear and
solid state physics.

Zadeh [1] initiated the concept of fuzzy sets in 1965.
The idea of fuzzy subgroups was introduced by Rosen-
feld [2] by utilizing perception of fuzzy sets in 1971. Gupta
and Ragade [3] presented many useful aspects of fuzzy set
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theory along with their implementations in different disci-
plines in 1977. Das [4] defined the level subgroups of a
fuzzy subgroup in 1981. To see more development on fuzzy
subgroups, we refer to [5], [6]. Atanassov [7] character-
ized the concept of IFSs and described its essential features
in 1986. This specific theory has effectively been used in
the formulation of IFS iterated function system to image
analysis [8], topological spaces [9], medical sciences [10],
fractal image construction [11], matrix theory [12] and graph
theory [13]. Yan effectively applied this theory in subring
in [14]. Fathi and Salleh [15] defined the intuitionistic fuzzy
subgroups based over intuitionistic fuzzy space. For more
development on the theory of intuitionistic fuzzy subgroups,
we refer to [16]–[19]. The notion of anti-fuzzy subgroup was
proposed by Biswas [20] in 1990. Kim and Jun [21] intro-
duced the concept of anti-fuzzy R-subgroups of near-ring
in 1999. Li et al. [22] studied anti intuitionistic fuzzy sub-
group (AIFSG) and anti-intuitionistic fuzzy normal sub-
group (AIFNSG) with their important appliances in 2009.
Palaniappan et al. [23] proposed the concept of homomor-
phism and anti-homomorphism of lower level subgroups of
an AIFSG in 2009. Many important properties of AIFSG
were discussed in [24], [25]. Massa’deh [26] explained the
structural properties of intuitionistic anti fuzzy M-subgroups
in 2013. Muthuraj and Balamurugan [27] studied the intu-
itionistic multi anti fuzzy subgroups in 2014. The author [28]
explored the concept of intuitionistic anti L-fuzzy normal
M-subgroups. Wang [29] explained the intuitionistic anti
fuzzy subincline of incline algebra in 2018. Kausar [30] pro-
posed the concept of direct product of finite intuitionistic anti
fuzzy normal subrings over non-associative rings in 2019.
For more on intuitionistic fuzzy sets, we suggest reading
of [31]–[40].

The utmost aim of this article is to obtain a class of
ρ-AIFSG that corresponds to a given AIFSG. The concep-
tion of ρ-AIFSG based on ρ-AIFS along with their discrete
analytical aspects has been presented.We explore the ideas of
ρ-anti-intuitionistic fuzzy coset and ρ-AIFNSG together with
some of their important properties. In addition, the research
of this anomaly has been extended through the concept of
quotient group of a group induced by ρ-AIFNSG and an
important group isomorphism has been formulated in the
framework of ρ-AIFSG.

The rest of paper is designed in this way. In section 2,
essential interpretations related to AIFSGs and their cor-
responding sequels have been assembled. We propose the
notions of ρ-AIFS, ρ-AIFSG and prove some of their
algebraic properties in section 3. In section 4, by prac-
ticing these ideas, we define ρ-anti intuitionistic fuzzy
coset, ρ-AIFNSG and investigate many fundamental alge-
braic characteristics of these phenomena. In addition,
we extend this study to define quotient group of a group
induced by ρ-AIFNSG and establish a group isomorphism
between this newly defined quotient group and the quo-
tient group of group G with respect to its particular normal
subgroup GSρ .

II. PRELIMINARIES
This section carries some basic notions and the consequences
associated to the philosophy of anti-intuitionistic fuzzy sub-
groups which are essential to apprehend this article.
Definition 1 [7]: The IFS S of a universe X is an entity in a

pattern like S = {< x, µS (x) , νS (x) >: x ∈ X , 0 ≤ µS (x)
+νS (x) ≤ 1} where µS : X → [0, 1] and νS : X → [0, 1]
prescribe the membership and non-membership grade of an
element x in X respectively.
Definition 2 [24]: For any two fixed positive real

numbers β and γ within the closed unit interval such that
0 ≤ β + γ ≤ 1, the (β, γ )-cut set of an IFS S is denoted by
S(β,γ ) and is defined as:

S(β,γ ) = {x ∈ X : µS (x) ≤ β, νS (x) ≥ γ }.

Definition 3 [24]: An IFS S of a group G is termed as
AIFSG of G if it assures the subsequent axioms for all
x, y ∈ G.
(i) µS (xy) ≤ max {µS (x) , µS (y)} and νS (xy) ≥

min {νS (x) , νS (y)}
(ii) µS

(
x−1

)
≤ µS (x) and νS

(
x−1

)
≥ νS (x).

Definition 4 [24]: Consider an IFS S of a group G. Then
S is an AIFSG if all of its (β, γ )-cut sets are subgroups of G.
Definition 5 [22]: For any AIFSG S and an element x

of a group G, the anti-intuitionistic fuzzy left coset of G is
denoted by xS and is defined as: x (g) = {µxS (g) , νxS (g)} ={(
µS
(
x−1g

)
, νS

(
x−1g

))
:g ∈ G

}
. Similarly, one can define

the anti-intuitionistic fuzzy right coset of S.
Definition 6 [22]: An AIFSG S of a group G is called an

AIFNSG of G if it satisfies the following assertion:
µS (xy) = µS (yx) and νS (xy) = νS (yx) for all x, y ∈ G.
Definition 7 [19]: Let S and T be any two IFS’s of a uni-

verse X . An averaging operator S@T is defined as follows:
S@T =

{
< x, µS (x)+µT (x)2 ,

νS (x)+νT (x)
2 >: x ∈ X

}
.

III. ALGEBRAIC PROPERTIES OF ρ-ANTI INTUITIONISTIC
FUZZY SUBGROUPS
This section is devoted to initiate the study of ρ-AIFSG
along with various fundamental algebraic postulates of this
ideology.
Definition 8: Let S be an IFS of a universe X and ρ ∈

[0, 1]. Then the ρ-AIFS of X with respect to S is defined as:

Sρ =
{
〈x, µSρ (x) , νSρ (x)〉 : x ∈ X ,
0 6 µSρ (x)+ νSρ (x) 6 1

}
Definition 9: For any two fixed positive real numbers β

and γ within the closed unit interval such that 0 ≤ β+γ ≤ 1,
the (β, γ )-cut set of a ρ-AIFS Sρ is denoted by Sρ(β,γ ) and is
defined as:
Sρ(β,γ ) =

{
x ∈ X : µSρ (x) ≤ β, νSρ (x) ≥ γ

}
.

Definition 10: A ρ-AIFS Sρ of a group G is called
ρ-AIFSG of G if it satisfies the subsequent conditions for all
x, y ∈ G.
(i) µSρ (xy) ≤ max

{
µSρ (x) , µSρ (y)

}
and νSρ (xy) ≥

min
{
νSρ (x) , νSρ (y)

}
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(ii) µSρ
(
x−1

)
≤ µSρ (x) and νSρ

(
x−1

)
≥ νSρ (x).

Example 11: Consider quaternion group, that is, Q8 =

{±1,±i,±j,±k . The IFS of Q8 is given as:

S =


〈1, 0.30, 0.60〉, 〈−1, 0.30, 0.60〉,
〈i, 0.50, 0.40〉,−〈i, 0.50, 0.40〉,
〈j, 0.70, 0.20〉,−〈j, 0.70, 0.20〉,
〈k, 0.70, 0.20〉,−〈k, 0.70, 0.20〉

.
The ρ-AIFS of Q8 corresponding to the value ρ = 0.3 is

defined as:

Sρ =


〈1, 0.50, 0.45〉,−〈1, 0.50, 0.45〉,
〈i, 0.60, 0.35〉,−〈i, 0.60, 0.35〉,
〈j, 0.70, 0.25〉,−〈j, 0.70, 0.25〉
〈k, 0.70, 0.25〉,−〈k, 0.70, 0.25〉

.
In view of Definition (3.3), it is quite evident that Sρ is

ρ-AIFSG of Q8.
Applications 12: One can view some of the important

applications of the phenomenon of ρ-AIFSG in real world
problems like:
(i) An important application of ρ-AIFS is that these sets

are used in project evaluation. Our methodology pro-
vides a significant range of evaluating a project by
choosing a suitable parameter ρ.

(ii) The ρ-AIFSs play an important role in developing a
routing algorithm, which is used by each router to make
its own routing decision on the basis of a appropriate
value of the parameterρ.

(iii) In medical decision making problems, we apply this
phenomenon to determine the amount of dose which
is not harmful for patients by choosing a suitable value
of ρ according to the medical history of patients.

Remark 13: Consider a ρ-AIFS Sρ of a group G, it is said
to be ρ-AIFSG if each (β, γ )-cut set is a subgroup of G.

The following result describes three important features of
any ρ-AIFSG.
Theorem 14: Let Sρ be a ρ-AIFSG of a groupG and x, y ∈

G, then
(i) µSρ

(
x−1

)
= µSρ (x) and νSρ

(
x−1

)
= νSρ (x)

(ii) µSρ (e) ≤ µSρ (x) and νSρ (e) ≥ νSρ (x)
(iii) Sρ(xy−1) = Sρ (e) implies Sρ (x) = Sρ(y).

Proof: (i) In view of Definition (3.3), we have

µSρ

(
x−1

)
≤ µSρ (x), for all x ∈ G. (3.1)

which means that

µSρ

(
x−1

)−1
≤ µSρ

(
x−1

)
. (3.2)

By the combination of (3.1) and (3.2), we obtainµSρ
(
x−1

)
=

µSρ (x). Similarly, one can also prove for non-membership
function.
(ii) The application of Definition (3.3) on an element x of

G yields that

µSρ (e) = µSρ
(
xx−1

)

≤ max
{
µSρ (x) , µSρ

(
x−1

)}
= max

{
µSρ (x) , µSρ (x)

}
.

This implies that µSρ (e) ≤ µSρ (x). The other required
inequality can also be proved in the same way.
(iii) For any x, y ∈ G, we have

µSρ (x) = µSρ
(
xy−1y

)
≤ max

{
µSρ

(
xy−1

)
, µ

Sρ
(y)
}

The application of given condition in the above relation yields
that

µSρ (x) ≤ µSρ (y) . (3.3)

Moreover,

µSρ (y) = µSρ
(
yx−1x

)
≤ max

{
µSρ

(
yx−1

)
, µ

Sρ
(x)
}
.

By using Theorem (3.7) (i), in the above relation, we get

µSρ (y) ≤ max
{
µSρ (xy

−1), µSρ (x)
}
.

By applying the given condition in the above expression,
we get

µSρ (y) ≤ µSρ (x). (3.4)

The comparison of the Relations (3.3) and (3.4) gives the
required equality. Similarly, one can prove the following
relations;

νSρ (x) ≤ νSρ (y) and νSρ (y) ≤ νSρ (x).

Consequently, Sρ (x) = Sρ(y), for all x, y ∈ G.
The following theorem presents an important relation

between an AIFSG and ρ-AIFSG of a group G.
Theorem 15: Every AIFSG(G) is a ρ-AIFSG(G).
Proof: Suppose S is an AIFSG(G). In view of Definition

(3.1), for any x, y ∈ G, we have

µSρ (xy) = ψ1 {µS (xy) , 1− ρ}

≤ ψ1 {max {µS (x) , µS (y)}, 1− ρ}

= max {ψ1 {µS (x) , 1− ρ} , ψ1 {µS (y) , 1− ρ}}.

Therefore,

µSρ (xy) ≤ max
{
µSρ (x) , µSρ (y)

}
.

Moreover,

µSρ

(
x−1

)
= ψ1µS

(
x−1

)
, 1− ρ

≤ ψ1µS (x), 1− ρ

Clearly, µSρ
(
x−1

)
≤ µSρ (x).

Moreover, In view of Definition (3.1) and using the fact
that S is an AIFSG, we have

νSρ (xy) = ψ2 {νS (xy) , ρ}
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≥ ψ2 {min {νS (x) , νS (y)} , ρ}

= min {ψ2 {νS (x) , ρ} , ψ1 {νS (y) , ρ}}.

Therefore,

νSρ (xy) ≥ min
{
νSρ (x) , νSρ (y)

}
.

Moreover,

νSρ

(
x−1

)
= ψ2νS

(
x−1

)
, 1− ρ

≥ ψ2νS (x), 1− ρ.

Clearly, νSρ
(
x−1

)
≥ νSρ (x).

Consequently, an AIFSG(G) is a ρ-AIFSG(G).
The subsequent example shows that the converse of previ-

ous theorem is not true.
Example 16: Consider a unit group under modulo 5, that

is, U5 = {1, 2, 3, 4}. The IFS of U5 is given as:

S = {〈1, 0.11, 0.66〉, 〈2, 0.35, 0.49〉, 〈3, 0.36, 0.50〉,

〈4, 0.22, 0.55〉}.

The ρ-AIFS of U5 corresponding to the value ρ = 0.5 is
defined as:

Sρ = {〈1, 0.31, 0.58〉, 〈2, 0.43, 0.50〉, 〈3, 0.43, 0.50〉,

〈4, 0.36, 0.53〉}.

In view of Remark (3.6), it is quite evident that Sρ is
ρ-AIFSG of U5. Moreover, it can be observed that S is not
an AIFSG of U5. From the above discussion, we conclude
that S is a ρ-AIFSG of U5.
In the following result, we establish a necessary and

sufficient condition for a ρ-AIFS to be a ρ-AIFSG of a
group G.
Theorem 17: A ρ-AIFS Sρ is ρ-AIFSG if and only if Sρ

satisfies the following assertions for all x, y ∈ G.
(i) If µSρ (x) 6= µSρ (y) then

µSρ (xy) = max
{
µSρ (x) , µSρ (y)

}
.

(ii) If νSρ (x) 6= νSρ (y) then
νSρ (xy) = min

{
νSρ (x) , νSρ (y)

}
.

Proof: Suppose Sρ is a ρ-AIFSG of a group G and
µSρ (x) 6= µSρ (y). Take, k = µSρ (x) > µSρ (y). Then
µSρ (xy) ≤ k .

Suppose µSρ (xy) < k . Consider

µSρ (x) = µSρ (xyy
−1).

The applications of Definition (3.3) and the assumption
give thatµSρ (x) < k , which is a contradiction to supposition.
Thus, µSρ (xy) = max

{
µSρ (x) , µSρ (y)

}
, for all x, y ∈ G.

The condition (ii) can be proved in the same way.
Conversely, suppose that any ρ-AIFS Sρ of a group G

admits (i) and (ii). Let Sρ be not a ρ-AIFSG of G.
Then
µSρ

(
x−1

)
> µSρ (x), for all x ∈ G. Since,

µSρ (e) = µSρ
(
xx−1

)
.

By applying (i) in the above equation, we have

µSρ (e)= µSρ

(
x−1

)
> µSρ (x).

This implies that

µSρ (e) > µSρ (x). (3.5)

Consider

µSρ (x) = µSρ (ex).

The application of (i) in the above relation gives us:

µSρ (x) = µSρ (e). (3.6)

Thus, the Relations (3.5) and (3.6) lead to the
contradiction.

Consequently, µSρ
(
x−1

)
≤ µSρ (x), for all x ∈ G.

Similarly, one can also establish the following inequality
in the framework of condition (i) νSρ

(
x−1

)
≥ νSρ (x).

Moreover, assume that µSρ (xy) > µSρ (x). Consider

µSρ (y) = µSρ

(
x−1xy

)
.

By using condition (i) and the assumption in above rela-
tion, we get

µSρ (y) ≥ µSρ (x), for all x, y ∈ G (3.7)

Now assume that µSρ (xy) > µSρ (y).
Consider

µSρ (x) = µSρ

(
xyy−1

)
.

By applying condition (i) and the assumption in above rela-
tion, we obtain

µSρ (x) ≥ µSρ (y), for all x, y ∈ G. (3.8)

The comparison of Relations (3.7) and (3.8) establishes a
contradiction against (i).

Thus,

µSρ (xy) ≤ max
{
µSρ (x) , µSρ (y)

}
.

Similarly, one can apply (ii) in the light of abovementioned
arguments to prove the case for non-membership function
of Sρ .

Consequently, Sρ is a ρ-AIFSG of G.
In the following theorem, we investigate a condition under

which a ρ-AIFS is a ρ-AIFSG.
Theorem 18: Let S be an IFS of a group G and for all x ∈

G, µS (x) = µS
(
x−1

)
and νS (x) = νS (x−1). Moreover, ρ <

max {1− q, r} where q = maxµS (x) , for all x ∈ G and
r = min{νS (x) , for allx ∈ G. Then S is a ρ-AIFSG of G.

Proof: In view of given condition, we have q < 1 − ρ
and r > ρ. It follows that µS (x) < 1 − ρ and νS (x) > ρ,
for all x ∈ G. Therefore, µSρ (xy) ≤ maxµSρ (x) , µSρ (y) and
νSρ (xy) ≥ min νSρ (x) , νSρ (y), for all x, y ∈ G.

Moreover, we have µS
(
x−1

)
= µS (x) and νSρ

(
x−1

)
=

νSρ (x). Thus,

µSρ

(
x−1

)
= µSρ (x) and νSρ

(
x−1

)
= νSρ (x).
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Thus, a ρ-AIFS is a ρ-AIFSG of G.
The following theorem describes that the union of two

ρ-AIFSG’s is a ρ-AIFSG.
Theorem 19: Union of two ρ-AIFSG’s of a group G is a

ρ-AIFSG of G.
Proof: Let Sρ and Tρ be any two ρ-AIFSG’s of a group

G. Then by Definition (3.1) for each x, y ∈ G, we have

µ(S∪T )ρ (xy) = ψ1
{
µ(S∪T ) (xy) , 1− ρ

}
= ψ1 {max{µS (xy) , µT (xy)}, 1− ρ}

=

[
max {ψ1 {µS (xy) , 1− ρ}},
max {ψ1 {µT (xy) , 1− ρ}}

]
= max

{
µSρ (xy) , µTρ (xy)

}
.

The application of Definition (3.3) in above relation yields
that

µ(S∪T )ρ (xy) ≤ max
[
max

{
µSρ (x) , µSρ (y)

}
,

max
{
µTρ (x) , µTρ (y)

} ]
= max

[
max

{
µSρ (x) , µTρ (x)

}
,

max
{
µSρ (y) , µTρ (y)

} ]
.

This implies that

µ(S∪T )ρ (xy) ≤ max
{
µSρ∪Tρ (x) , µSρ∪Tρ (y)

}
.

Moreover,

µ(S∪T )ρ

(
x−1

)
= ψ1

{
µ(S∪T )

(
x−1

)
, 1− ρ

}
= ψ1

{
max{µS

(
x−1

)
, µT

(
x−1

)
}, 1− ρ

}
= max

{
µSρ

(
x−1

)
, µTρ

(
x−1

)}
≤ max

{
µSρ (x) , µTρ (x)

}
.

It follows that

µ(S∪T )ρ

(
x−1

)
≤ µSρ∪Tρ (x).

Moreover, In view of Definition (3.1) and using the fact
that Sρ and Tρ be ρ-AIFSG’s of a group G, we have

ν(S∪T )ρ (xy) = ψ2
{
ν(S∪T ) (xy) , ρ

}
= ψ2 {max{νS (xy) , νT (xy)}, ρ}

=

[
max {ψ1 {νS (xy) , ρ}} ,
max {ψ1 {νT (xy) , ρ}}

]
= max

{
νSρ (xy) , νTρ (xy)

}
The application of Definition (3.3) in above relation yields
that

ν(S∪T )ρ (xy) ≥ min
[
max

{
νSρ (x) , νSρ (y)

}
,

max
{
νTρ (x) , νTρ (y)

} ]
= max

[
min

{
νSρ (x) , νTρ (x)

}
,

min
{
νSρ (y) , µTρ (y)

} ]
.

This implies that

ν(S∪T )ρ (xy) ≥ min
{
νSρ∪Tρ (x) , νSρ∪Tρ (y)

}
.

Moreover,

ν(S∪T )ρ

(
x−1

)
= ψ1

{
ν(S∪T )

(
x−1

)
, ρ
}

= ψ1

{
max{νS

(
x−1

)
, νT

(
x−1

)
}, ρ

}
= max

{
νSρ

(
x−1

)
, νTρ

(
x−1

)}
≥ min

{
νSρ (x) , νTρ (x)

}
.

It follows that

ν(S∪T )ρ

(
x−1

)
≥ νSρ∪Tρ (x).

Consequently, the union of any two ρ-AIFSG is a ρ-AIFSG
of G.
Remark 20: The intersection of two ρ-AIFSG may not be

a ρ-AIFSG of a group G.
Example 21: Consider IFS S and T of group of integers Z

under addition as follows:

µS (x) =

{
0.40 if x ∈ 3Z
0.90 otherwise

and

νS (x) =

{
0.50 if x ∈ 3Z
0.10 otherwise,

µT (x) =

{
0.43 if x ∈ 2Z
0.73 otherwise

and

νT (x) =

{
0.45 if x ∈ 2Z
0.25 otherwise.

The ρ-AIFSG Sρ and Tρ of Z corresponding to ρ = 0.3 are
given as:

µSρ (x) =

{
0.55 if x ∈ 3Z
0.80 otherwise

and

νSρ (x) =

{
0.40 if x ∈ 3Z
0.20 otherwise,

µTρ (x) =

{
0.57 if x ∈ 2Z
0.72 otherwise

and

νTρ (x) =

{
0.33 if x ∈ 2Z
0.28 otherwise.

Consider

µSρ∩Tρ (x) =


0.55 if x ∈ 3Z
0.57 if x ∈ 2Z − 3Z
0.72 otherwise

and

νSρ∩Tρ (x) =


0.50 if x ∈ 3Z
0.33 if x ∈ 2Z − 3Z
0.28 otherwise.

For x = 9 and y = 4, µSρ∩Tρ (x) = 0.55 and νSρ∩Tρ (x) =
0.50, µSρ∩Tρ (y) = 0.57 and νSρ∩Tρ (y) = 0.33.

Moreover,
µSρ∩Tρ (x-y) = µSρ∩Tρ (9− 4) = µSρ∩Tρ (5) = 0.72 >

0.57 and
µSρ∩Tρ (x-y) = µSρ∩Tρ (9− 4) = νSρ∩Tρ (5) < 0.33.
It is quite evident from the above discussion that the inter-

section of two ρ-AIFSG is not a ρ-AIFSG.
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IV. CHARACTERIZATIONS OF ρ-ANTI INTUITIONISTIC
FUZZY NORMAL SUBGROUPS
In this section, we describe the ideas of ρ-anti intuitionistic
fuzzy cosets and ρ-AIFNSG and extend the study of these
concepts to define the notion of quotient group of a group
induced by ρ-AIFNSG along with their many algebraic prop-
erties.
Definition 22: For any ρ-AIFSG Sρ and an element x of

a group G. The ρ anti-intuitionistic fuzzy left coset of G is
denoted by xSρ and

xSρ(g) =
{
µxSρ (g) , νxSρ (g)

}
=

{(
µSρ

(
x−1g

)
, νSρ

(
x−1g

))}
.

Similarly, one can define the anti-intuitionistic fuzzy right
coset of Sρ .
Definition 23: A ρ-AIFSG of a group G is said to be

ρ-AIFNSG of G if

xSρ = Sρx, for all x ∈ G.

In the subsequent theorem, we show that every AIFNSG is a
ρ-AIFNSG of G.
Theorem 24: Every AIFNSG(G) is a ρ-AIFNSG(G).
Proof: Let S be an AIFNSG of a group G. In view of

Theorem (3.8), Sρ is a ρ-AIFSG of a group G. To complete
the proof it is sufficient to show that Sρ satisfies definition
(4.2).

The application of Definition (2.5) yields that

µS

(
x−1g

)
= µS

(
gx−1

)
.

This implies that ψ1
{
µS
(
x−1g

)
, 1− ρ

}
= ψ1µS

(
gx−1

)
,

1− ρ.
Therefore,

µxSρ = µSρx , for all g ∈ G.

Moreover, in view of Definition (2.5) and using the fact
that S is AIFNSG of, we have

νS

(
x−1g

)
= νS

(
gx−1

)
.

This implies thatψ2
{
νS
(
x−1g

)
, 1− ρ

}
= ψ2νS

(
gx−1

)
, 1−

ρ.
Therefore,

νxSρ = νSρx , for all g ∈ G.

Thus, xSρ = Sρx, for all g ∈ G.
The converse of above theorem is not true which can be

viewed in the following example.
Example 25: Consider the dihedral group D3 =

{e, α, α2, β, αβ, α2β. The AIFSG of D3 is given as:

S =


〈e, 0.59, 0.20〉, 〈α, 0.60, 0.19〉,
〈α2, 0.60, 0.19〉, 〈β, 0.59, 0.20〉,
〈αβ, 0.60, 0.19〉, 〈α2β, 0.60, 0.19〉

.

The ρ-AIFSG of D3 corresponding to the value ρ = 0.6 is
defined as:

Sρ =


〈e, 0.50, 0.40〉, 〈α, 0.50, 0.40〉,
〈α2, 0.50, 0.40〉, 〈β, 0.50, 0.40〉,
〈αβ, 0.50, 0.40〉, 〈α2β, 0.50, 0.40〉

.
Clearly, Sρ is a ρ-AIFNSG of D3. Moreover, it can be
observed that S is not an AIFNSG in the framework of
Definition (2.6).

In the following result, we show another important charac-
teristic of ρ-AIFNSG.
Theorem 26: Every ρ-AIFNSG Sρ admits the following

property.
µSρ (xy) = µSρ (yx) and νSρ (xy) = νSρ (yx), for all x, y ∈

G.
Proof: By applying Definition (4.2), for any fixed ele-

ment xof a group G, we have

xSρ = Sρx.

This implies that

xSρ
(
y−1

)
= Sρx(y−1), for all y−1 ∈ G.

Therefore, ψ1
{
µS
(
x−1y−1

)
, 1− ρ

}
= ψ1{µS (y−1x−1),

1− ρ}.
This further shows that,

µSρ (x
−1y−1) = µSρ (y

−1x−1).

The application of Theorem (3.7) (i) yields thatµSρ (yx) =
µSρ (xy), for all y ∈ G.
One can prove that νSρ (xy) = νSρ (yx) in the similar way.
In the following result, we prove the condition for a

ρ-AIFSG of a group G to be a ρ-AIFNSG.
Theorem 27: Let Sρ be a ρ-AIFSG of G such that ρ <

max{1 − q, r}, where q = maxµSρ (x) : x ∈ G and
r = min{νSρ (x) : x ∈ G. Then Sρ is a ρ-AIFNSG of G.

Proof: In view of the given condition, we have q < 1−ρ
and r > ρ. It follows that µSρ (x) < 1 − ρ and νSρ (x) > ρ

for all x ∈ G.
Therefore, µxSρ (g) = µSρ

(
x−1g

)
= α and νxSρ (g) =

νSρ
(
x−1g

)
= β.

Similarly, µSρx (g) = µSρ
(
gx−1

)
= α and νSρx (g) =

νSρ
(
gx−1

)
= β.

Thus, xSρ = Sρx for all x ∈ G.
Theorem 28: Let Sρ be a ρ-AIFNSG of a groupG. The set

GSρ =
{
x ∈ G : Sρ (x) = Sρ (e)

}
is a normal subgroup of G.

Proof: Obviously GSρ 6= ∅ as e ∈ GSρ . By applying
Definition (3.3) for any two elements x, y ∈ GSρ , we have

µSρ

(
xy−1

)
≤ max

{
µSρ (x) , µSρ (y)

}
= max

{
µSρ (e) , µSρ (e)

}
.

This implies that

µSρ

(
xy−1

)
≤ µSρ (e) . (4.1)
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We also know that

µSρ

(
xy−1

)
≥ µSρ (e) . (4.2)

By the comparison of Relations (4.1) and (4.2), we get

µSρ

(
xy−1

)
= µSρ (e).

Similarly, one can prove that
νSρ

(
xy−1

)
= νSρ (e). It follows that xy

−1
∈ GSρ .

Further, in view of Definition (4.2) for any element x ∈
GSρ and g ∈ G, we have

µSρ

(
gxg−1

)
= µSρ (x) = µSρ (e).

Likewise, we can prove that νSρ
(
gxg−1

)
= νSρ (e).

Thus, gxg−1 ∈ GSρ .
Consequently, GSρ is normal subgroup of G.
Theorem 29: Every ρ-AIFNSG of a group G admits the

following properties:
(i) xSρ = ySρ if and only x−1y ∈ GSρ
(ii) Sρx = Sρy if and only if xy−1 ∈ GSρ , for all x, y ∈ G.

Proof: (i) Suppose that xSρ = ySρ . In view of Defini-
tion (4.1), we have

µSρ

(
x−1y

)
= µxSρ (y) = µySρ (y).

This Implies that µSρ
(
x−1y

)
= µSρ (e).

Similarly, one can easily prove that νSρ
(
x−1y

)
= νSρ (e).

Thus, x−1y ∈ GSρ .
Conversely, suppose x−1y ∈ GSρ . By applying Defini-

tion (4.1) for a fixed element x and any element g of G,
we have

µxSρ (g) = µSρ
(
x−1g

)
= µSρ

(
x−1yy−1g

)
= µSρ

((
x−1y

) (
y−1g

))
≤ max

{
µSρ

(
x−1y

)
, µSρ (y

−1g)
}

= max
{
µSρ (e) , µSρ (y

−1g)
}
= µSρ (y

−1g).

This implies that

µxSρ (g) ≤ µySρ (g) . (4.3)

Similarly, in view of above arguments, we obtain

µySρ (g) ≤ µxSρ (g) . (4.4)

The comparison of Relations (4.3) and (4.4) give that
µySρ (g) = µxSρ (g). Similarly, one can establish that
νxSρ (g) = νySρ (g). Consequently,xSρ = ySρ .
The second property can be established in the framework

of the same arguments.
Definition 30: The quotient group of G induced by

ρ-AIFNSG Sρ is denoted byG/Sρ and is defined as:G/Sρ =
{Sρx : x ∈ G under the following binary operation. Sρx ∗
Sρy = Sρxy, for all x, y ∈ G.

Theorem 31: Let G/Sρ be a quotient group of G induced
by ρ-AIFNSG and x ∈ G. Then there is a natural epimor-
phism φ : x → Sρx between groups G and G/Sρ with
ker(φ) = GSρ .

Proof: Consider

φ (xy) = Sρxy, x, y ∈ G.

= Sρx ∗ Sρy = φ (x) φ(y).

This shows that φ is a natural homomorphism.
Moreover, one can easily prove the subjective property of

the mapping φ.
This implies that φ is epimorphism. Now consider

ker(φ) =
{
x ∈ G : φ (x) = Sρe

}
=
{
x ∈ G : Sρx = Sρe

}
.

The application of Theorem (4.8) (ii) in the above relation
yields that

ker(φ) =
{
x ∈ G : x ∈ GSρ

}
= GSρ .

Theorem 32: Let Sρ be a ρ-AIFNSG of G. Then G/Sρ ∼=
G/GSρ .
Proof: Define a map φ : G/Sρ → G/GSρby the rule

φ
(
xSρ

)
= xGSρ , x ∈ G. Consider

xSρ = ySρ

The application of Theorem (4.8) (i) in the above relation
gives us

xGSρ = yGSρ .

This Implies that

φ
(
xSρ

)
= φ

(
ySρ

)
.

It is clear from the above discussion that φ is a well-defined
mapping.
Next, let

φ
(
xSρ

)
= φ

(
ySρ

)
.

This implies that xGSρ = yGSρ .
It follows that x−1y ∈ GSρ . The application of Theorem

(4.8) (i) in the above relation gives us

xSρ = ySρ .

Thus, φ is injective.
Clearly, φ is surjective as for each xGSρ ∈ G/GSρ , there

exists xSρ ∈ G/Sρ such that φ
(
xSρ

)
= xGSρ .

Moreover, φ is homomorphism as for each xSρ , ySρ ∈
G/Sρ

φ
(
xSρySρ

)
= φ

(
xySρ

)
= xyGSρ

= xGSρ yGSρ = φ
(
xSρ

)
φ(ySρ).

Consequently, G/Sρ ∼= G/GSρ .
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V. CONCLUSION
In this paper, we proposed the concept of ρ-AIFSG defined
over ρ-AIFS and proved some of their algebraic proper-
ties. We extended the study of this ideology by defining
the notions of ρ-anti intuitionistic fuzzy coset, ρ-AIFNSG
and presented their various algebraic characteristics. We also
defined the quotient group of a group induced by ρ-AIFNSG
and established a group isomorphism between this particular
quotient group and the quotient group of a group G related to
its normal subgroup GSρ .
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