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ABSTRACT It is essential for seamlessly delivering intended hand motion to surgical robots while actively
suppressing undesired hand tremor during microsurgery. To achieve this goal, we propose a novel method
for predicting voluntary motion based on deep learning with the signal decomposition and ensemble
approach. This approach can thus deal with various forms of voluntary signals, such as either highly
stationary or rather highly cyclic at a low range of frequencies. The proposed method comprises a series
of signal blocks to decompose complex hand motion into multiple sub-signals using deep neural networks
upon their signal characteristics. The signal block yields parameterized sub-signal and predicted voluntary
motion. In addition, an ensemble layer allows for accurately predicting future voluntary motion by combining
predicted motion from each signal block with the optimal weight. These signal blocks are connected by a
decomposition flow in series and also by a forecast flow in parallel to ensemble the prediction output of each
block. Given real data sets, we evaluated the prediction performance of the proposed algorithm compared to
other data-driven deep learning models. The generalizability of the proposed algorithm was also investigated
by applying the trained models to new data sets from new tasks and a different subject, which had not been
involved in training procedures. As a result, the proposed algorithm outperforms the other baseline models
in terms of prediction error and accuracy. Furthermore, we explored whether the proposed method could
suppress tremor via spectral analysis, which shows substantial tremor attenuation more than -10 dB in a
frequency of interest, 6—14 Hz. It is also found that the proposed method has the predictive power for
dealing with inevitable control delays, where prediction error increased only by 2% per one-time sample,
approximately 4.2 ms.

INDEX TERMS Ensemble deep learning, signal decomposition, motion prediction, hand tremor, active
tremor compensation, surgical robots.

I. INTRODUCTION

Analyzing and interpreting human hand motion have
attracted great interests from a variety of research areas,
such as prosthesis [1]-[3], rehabilitation [4], and surgical
robotics [5]-[10]. For example, the estimation of unintended
hand motion, such as pathological tremor, is required to ana-
lyze the degree of patients’ disorders or to suppress the tremor
through prosthetic devices. The pathological tremor affecting
everyday life, such as Parkinson’s disease, is involuntary and
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pseudo-rhythmic movement from several age-related neuro-
logical disorders, which occurs in a broad frequency range
of 3—14 Hz [11]. On the other hand, identifying voluntary
motion and physiological tremor inherent from normal hand
motion is a focus of research in surgical robotics. The volun-
tary motion in microsurgical operation is described as signals
in frequencies below 2 Hz. In contrast, physiological tremor
is originated from the combination of mechanical-reflex com-
ponents and oscillation in a central nervous system [12],
which is known to have an RMS (root-mean-square) ampli-
tude on the order of 50-200 pm at a frequency commonly in
the 6-14 Hz band [13].
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Specifically, teleoperated surgical robots, well-known as
Da Vinci Surgical System (Intuitive Surgical, USA) [6], col-
lect hand motion data from a master device, then deliver
filtered and/or scaled-down motion to slave manipulators.
Alternatively, handheld robots, known as Micron [9], [10],
iTrem [14], first sense their own motion of the robots and then
selectively filter out erroneous motion such as hand tremor.
For such active tremor cancellation, the handheld robots use
control signals as the counter-motion of tremor signal or the
estimated voluntary motion at the end of the tool tip. Since
the cancelation of hand tremor needs to be immediately done
as soon as sensing its own motion, no latency in a control
loop is preferred. However, inevitable delays in controlling
the robots would degrade the performance of active tremor
cancellation because the estimated motion at present becomes
out of date at the instance of canceling. Therefore, the pre-
diction of hand motion is required to seamlessly accomplish
active tremor cancellation with a high level of accuracy,
as compensating for the time delay in control.

Despite the need for hand motion prediction in active
tremor compensation, no algorithm generalizable to various
users and operation in microsurgery has been introduced yet.
A common approach introduced in the literature is to esti-
mate hand tremor via online learning. This approach regards
spectro-temporal hand tremor as the combination of sinu-
soidal motions. The learning model either adaptively updates
the time-varying frequencies [15] and amplitudes or update
the amplitudes of a fixed set of multiple frequencies [16].
However, the proposed algorithm is prone to failure in reach-
ing convergence because it is sensitive to initial parameters
for searching the frequencies and amplitudes. A data-driven
approach has recently been proposed to address the issues
raised by the stringent modeling of hand tremor [17], [18].
Although such deep-learning-based methods offer a cer-
tain level of generalized performance, enormous train-
ing procedures and high computational power hinder the
application of the algorithms to real-time active tremor
cancellation.

To overcome those problems in estimation and predic-
tion of hand motion, we propose a novel method for vol-
untary motion prediction with deep neural networks based
on decomposition and ensemble learning. In the proposed
model, we take advantage of signal decomposition that sep-
arates a raw signal into voluntary and tremor signals while
mitigating the time delay, which is inherently yielded in
a real-time lowpass filter. Hence, time-series data of hand
motion is decomposed by a set of deep neural networks rep-
resenting either voluntary motion or hand tremor. The predic-
tion of future voluntary motion is then accomplished by the
ensemble of prediction outputs from the decomposed signal
blocks, as represented in Fig. 1. Given this end-to-end learn-
ing model, we evaluate the accuracy of the voluntary motion
prediction on real data sets while comparing it with other
data-driven machine learning algorithms. The generalized
performance of the proposed algorithm is also investigated
by applying the model to new tasks and different subjects.
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Finally, we explore how efficiently the proposed algorithm
could suppress physiological hand tremor while maintaining
the voluntary motion for active tremor cancellation.

Il. RELATED WORK

The proposed model for voluntary motion prediction
is closely related to two research topics: (II.LA) hand
tremor estimation and (I.B) decomposition and ensemble
learning.

A. HAND TREMOR ESTIMATION

To accurately and effectively estimate hand tremor, vari-
ous machine learning techniques have been introduced to
this problem. The weighted-frequency Fourier linear com-
biner (WFLC) utilizes a multilayer perceptron (MLP) to learn
time-varying frequencies and amplitudes of hand tremor [15].
However, the WFLC algorithm may suffer from distinguish-
ing adjacent frequencies and assigning appropriate parame-
ters for convergence [16]. The band-limited multiple Fourier
linear combiner (BMFLC) was also proposed to overcome
these issues by adapting linear combinations of harmonic
signals of a fixed set of multiple frequencies [16]. The coeffi-
cients of the linear combiner can be found by a stochastic gra-
dient descents algorithm or the Kalman filter, which offers an
optimal solution to continuous Markov chain models assum-
ing linear Gaussian noise models. However, computational
load rises as more frequencies are combined to improve the
accuracy of estimation. A support vector machine (SVM)
was also adopted to estimate hand tremor using nonlin-
ear kernels [19]. Although it outperforms the MLP algo-
rithms, the heavy load in computation limits its application
to real-time operation. Furthermore, these algorithms that
estimate hand tremor primarily at the present time step are
prone to failure in predicting future tremor because of the
non-stationary nature of hand tremor. To overcome such the
limitation, tremor prediction models have also been proposed,
including autoregressive (AR) and autoregressive-moving-
average (ARMA) models [20]. Tremor prediction methods
based on least square-support vector machine (LS-SVM)
[19], extreme learning machine [21] were also introduced.
Recently, Shahtalebi et al. proposed a deep learning-based
methodology to both estimate and predict pathological hand
tremor [17]. However, the application of the proposed model
was still less generalizable to various scenarios of motion.
To address the limitation, a generalizable model adopting a
deep recurrent model trained with a sizeable dataset was also
proposed [18]. However, the proposed model entails a high
computational load led by a complex learning architecture
and enormous training.

B. DECOMPOSITION AND ENSEMBLE LEARNING

A hybrid approach embedding appropriate preprocessing
models in deep learning architectures can improve learning
performance because it eases to find learnable features [22].
Decomposition-and-ensemble is one of such hybrid models,
of which main ideas are as follows. Firstly, it decomposes
a raw signal into sub-signals with a decomposition method.
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FIGURE 1. Overview of predicting voluntary motion for active tremor compensation using deep learning
model based on the signal decomposition and ensemble approach.

Each sub-signal block then outputs a target signal to be
predicted, respectively. Finally, it ensembles the multiple
predictions from each processing block in order to obtain a
final output.

A Fourier transform is one of the common decompo-
sition algorithms used to analyze hand motion in time-
series [23], [24]. It decomposes a raw signal into sinusoidal
sub-signals corresponding to frequencies of interest. Empir-
ical mode decomposition (EMD) is another decomposition
method suitable for forecasting of timeseries data [25], which
is a part of Hilbert-Huang transform (HHT). EMD also used
in tremor decomposition to overcome limitations yielded by
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the prior assumption of Fourier transform-based methods:
linearity and stationarity [26]. Although we can decompose
signals using existing methods, the decomposed signals are
not optimized for signal prediction. Recently, Wang et al.
introduced a neural network-based decomposition adopting
a wavelet decomposition network (WDN) [27]. It can thus
decompose timeseries data into a group of sub-signals in
the form of frequencies, which is crucial for taking into
account frequency factors in prediction. Consequently, neural
network-based decomposition can take advantage of both
timeseries decomposition and the learning ability of neural
networks.
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FIGURE 2. The architecture of deep neural networks with signal decomposition and ensemble for voluntary motion prediction:
(a) signal block and (b) entire model with sub-signal blocks and ensemble.

lll. PROPOSED METHOD

A. OVERALL ARCHITECTURE

We propose a deep learning model incorporating neural
network structures that decompose complex signals into
sub-signals and ensemble them to accurately and efficiently
predict future voluntary motion. The overall structure of
the model comprises sequential signal blocks correspond-
ing to decomposed sub-signals. Each signal block estimates
sub-signal and predicts future voluntary motion. The signal
blocks used in our model can be classified as a voluntary
signal block and a tremor signal block, depending on the
characteristics of signals to be estimated. Signal blocks are
connected by a decomposition flow in series and also by a
forecast flow in parallel to ensemble the prediction output of
each block. The overall architecture is represented in Fig. 2.
The algorithm details are as follows.

B. SIGNAL BLOCK

Each signal block is responsible for estimating a specific
model of sub-signal and predicting voluntary motion that
would occur the next time step. For a specific size of historical
time window from the present time, a block input is described
by X, and the dual outputs of the block are by y;, and Op, from
the bth block. We define the input Xj, as in (1).

Shii |» ey

where s;;, is the input signal of the bth block at the ith
timestamp ¢#;, and the size of historical window is set by
0.5 s in our model. The output y, represents the prediction
of voluntary motion at the next time step #;4+1. In addition,
another output 0, is sub-signal subject to decomposition
from the bth signal block. The input to the next block Xp 1 is
given by subtracting O, from X, and it is repeated until the
end of the signal block. The details of the decomposition flow
are described in III.C.

Xb = [sb’ti—Fs/ZJrl ) )
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Depending on the type of sub-signal subject to decompo-
sition, the signal block is modeled differently while taking
its signal characteristics into account. Herein, we introduce
two types of the signal blocks to decompose raw signal into
voluntary motion and hand tremor. For the voluntary signal
block, we approximate the signal as a low-order polynomial
with a small degree of P since voluntary motion appears
as fairly monotonic or cyclic with frequencies below 2 Hz
within the specified time window. The predicted voluntary
signal is then obtained by extrapolation of the polynomial as
in (2).

P
=Y OF (tiy1 — 1), ®)

p=0

where 915 » is the pth coefficient of the polynomial for fore-

cast. The output of the signal block f)b, which describes the
voluntary motion in the given time window, is also obtained
by a parameterized function in (3) as we assume the predicted
voluntary motion as a low-order polynomial.

P
obk = Y00t —tiY 3)
p=0

where Glfp is the pth coefficient of the polynomial for decom-
position and k = [i — Fy/2 + 1,...,i] with sampling
frequency Fy. The output O is then constructed as in (4)
using (3).

Ob.1; | “

On the other hand, the outputs of the tremor signal block 35
and Oy are approximated by the sum of sinusoidal signals
while considering its thythmical and oscillatory character-
istics. Accordingly, the output y; from the tremor block is

Ob = [Ob’[ing/2+l’ Y
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described by the Fourier series as in (5).

N-1
I = Z [Gizm cos 2xfintiv1) + 952,,,“ sin (Zﬂfmti+1)],

m=0
Q)]

where 6/ ,, and 6}, . are Fourier coefficients for a set
of multiple frequencies, f,, = [l 2, - FS/Z].
Ob corresponding to the decomposed tremor signal is then
constructed using (4) and (6) in the same manner.
N-1
Op ke = Z [9£2m cos 2mfmty) + 9£2m+1 sin (anmtk)],

m=0
(6)

where 6,,, and 6;,, | are Fourier coefficients to describe
decomposed tremor signal. We obtain those parameters from
each signal block using a neural network with four hidden
layers. Each layer has an activation function for nonlinear
mapping (a rectified linear unit, ReLU [28]), and the last
layer consists of a fully connected layer without an activation
function.

C. FORECAST AND DECOMPOSITION FLOWS

The two types of outputs y, and O, from each signal block
are used for a forecast flow and a decomposition flow,
respectively.

In the forecast flow, the ensemble of the prediction results
from the multiple signal blocks allows accurately predicting
voluntary motion at the next time step. The formula for the
forecast flow is as follows:

n
Y= wpdp @)
b=1

where 7 is the number of blocks used and wy, is the weight
of prediction outcome from the bth block. Consequently,
the final prediction y is attained by the weighted sum of
prediction results from the multiple signal blocks.

The decomposition flow serves to decompose the entire
signal into multiple sub-signals while proceeding in the
cascaded model. Each block estimates sub-signal modeled
by a specific type of the signal block. The formula in the
decomposition flow is as follows:

Xpi1 = Xp — 0 and 8)
b—1

X, =X-) 0, ©)
i=1

where X is a raw signal input and X is equal to X at the
first signal block. As noticed in (8), the input of each block is
connected to the output of the previous block with residual
connection [29]. Therefore, subtracting the output of each
block from the given input signal leads the sub-signal found
in the current block to be excluded in the next estimation.
By proceeding with this process, the entire signal is decom-
posed into each sub-signal.
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IV. EXPERIMENTAL RESULTS

We evaluated the proposed prediction algorithm on real hand
motion data by comparing its prediction error and accuracy
with those of other machine learning algorithms: 1) artificial
neural networks (ANN) [30], 2) recurrent neural network
(RNN) [31], 3) long short term memory model (LSTM) [32],
and 4) PHTNet that employs bidirectional gated recurrent
units (bi-GRU) [18]. Given trained models, the first step was
to validate the prediction performance of the proposed algo-
rithm on trained data. Next, we tested the algorithm on new
data sets that were not involved during training procedures
in order to investigate the generalizability of the prediction
algorithm: for new tasks and different subjects.

A. HAND MOTION DATASET

We collected hand motion data using a magnetic tracker
(LibertyTM with Micro Sensor 1.8™ Polhemus Ltd., USA),
which provides six-degrees-of-freedom (6-DOF) motion with
amicron level of precision at a sampling frequency of 240 Hz;
we thus aimed to predict voluntary motion at the next
time step, approximately 4.167 ms ahead. To collect hand
motion data, which would potentially occur during surgi-
cal operation, the sensor was fixed on one end of a hand-
piece. In addition, a 23G hypodermic needle was attached
to the other end of the hand-piece to mimic a surgical
tool. The position of the tool tip was then retrieved by a
homogenous transformation given the 6-DOF motion of the
Sensor.

Two types of tasks were designed for the experiments:
point/line and circle tracing. These tasks are regarded as
relatively static and dynamic, respectively. For the static
task, the subject was instructed to hold the tool tip above a
printed target surface during data collection. The task was
performed under four different scenarios: blind, bare eye, low
magnification (1.5X), and high magnification (6X) using a
stereo-microscope (SZX7, Olympus Corp., Japan). For the
dynamic task, the subject was instructed to trace various sizes
of circles above the printed target surface, where the sizes of
the circles were 1, 2, and 10 mm. Each task under the various
settings was repeated five times. A single trial was logged
for 30 seconds, which resulted in 7080 data sets for training
and testing from 7200 samples, regarding a historical time
window of 120 samples. Consequently, we collected about
310,000 data sets in total: 9 of 10-tasks sets for training a
model and the rest of the data for testing.

B. MODEL TRAINING

We adopted the zero-phase filter of the seventh’s order Butter-
worth with a cut-off frequency of 2 Hz on raw motion signal
to provide the ground-truth of predicted voluntary motion.
In addition, mean squared error (MSE) between the predicted
motion and the ground-truth was used as a loss function
for training the proposed model. The model was trained for
1000 epochs using a learning rate of 10~3. To prevent overfit-
ting, the learning rate decayed by 0.5 times if no decrement in
the loss was found for five epochs. An early stopping criterion
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was invoked to prevent overfitting if the loss would not be
decreased for 40 epochs.

We set the total eight signal blocks for the model: the
first four blocks for the decomposition of voluntary signal
and the rest of four blocks for tremor signal. Two of the
four voluntary blocks were parametrized as linear functions
for estimating voluntary motion, and the other two blocks
were defined as cubic functions. The four tremor blocks were
modeled as the combination of cyclic functions. For example,
the DC offsets of the input signal were taken from the first two
voluntary blocks. Then, the next sub-signals were fitted into
cubic functions for the estimation of voluntary signal, while
approximating voluntary motion with a frequency of 2 Hz
as the third-order polynomial within a time series window
of 0.5 s.

Learning procedures were accomplished by applying a
backpropagation algorithm to minimize root-mean-square-
error (RMSE) in prediction. We also used the adaptive
moment estimation (Adam) as an optimizer. We performed
the 9-fold cross-validation to test the performance of the
proposed model. The learning settings were set for the other
baseline models, ANN, RNN, LSTM, and PHTNet, in the
same manner.

C. DESCRIPTION OF BASELINE MODELS

In this section, we introduced the four baseline models in
detail. The ANN model consists of two hidden layers and
a single output layer. The first layer of the ANN is a dense
layer with 480 hidden units. In this layer, we used ReL.U as
an activation function for nonlinear mapping. The first layer
is followed by another dense layer with the same number of
hidden units and the activation function. The second layer is
followed by the output layer that contains a single unit for
prediction output without any activation function. The RNN
model consists of an RNN layer and an output layer. The RNN
layer includes eight hidden units, in which a hyperbolic tan-
gent (tanh) function was used as an activation function. The
cell output of the RNN layer is connected to the single unit
of the output layer without any activation function. Similarly,
the LSTM model incorporates an LSTM layer and an output
layer. The LSTM layer also consists of eight hidden units with
the tanh activation function. Finally, the cell output of the
LSTM layer is connected to the output layer that has a single
unit for prediction output without any activation function.
The architecture of the PHTNet comprises the four layers
of bi-directional GRU [30] and one output layer. The first
layer of the PHTNet is bi-direction GRU (bi-GRU) layer with
four hidden units. In this layer, we used ReL.U as an activa-
tion function. The first layer is followed by another bi-GRU
layer with the same setting, which is repeated for the third
and fourth bi-GRU layers. The fourth layer is then followed
by an output layer that has one unit without any activation
function.

D. PERFORMANCE MEASURE
For quantitative analysis of the performance, we measured
the root mean square error (RMSE) between actual voluntary
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motion signal and predicted signal as in (10). In addi-
tion, accuracy was also investigated whether an algorithm
accurately predicts target signal with respect to the ground
truth.

1 T
RMSE = | =% (v(®) =3 ), (10)

t=1
where T is the total length of signal, y (¢) is actual voluntary
motion, and y (¢) is the predicted voluntary motion signal at
the rth timestamp. Accuracy is defined as below:
RMS(sx) — RMSE
RMS (sx)

Herein, s, is equal to y(f) and RMS(sy) is the
root-mean-square amplitude of the voluntary signal.

Accuracy = x 100(%). (11)

E. VOLUNTARY MOTION PREDICTION

We first validated our trained models by comparing them with
the other algorithms. For the comparison of prediction per-
formance, we trained two types of models. One was trained
from nine task sets out of the total 10 task sets, excluding
one of the static tasks: Model I. The other model was trained
from nine task sets, excluding one of the dynamic tasks:
Model II. As a result, we obtained the smallest RMSEs with
our proposed method in both models among the five algo-
rithms. In addition, the highest accuracies were also achieved
with our algorithm. Interestingly, PHTNet shows consider-
ably lower performance than those of the proposed method
in Model I (static), but the performance was improved in
Model II (dynamic), showing a similar level of performance
to our algorithm. On the other hand, the LSTM model shows
a similar performance to our algorithm with Model I, but
the model resulted in the worst performance with Model II.
Fig. 3 shows the resulting trajectories of predicted voluntary
motion from the five algorithms: ANN, RNN, LSTM, PHT-
Net, and the proposed method. The RMSE and accuracy are
summarized in Table 1.

F. GENERALIZED PERFORMANCE

We also evaluated whether the proposed model would be
generalizable to data sets with new distributions by testing
the prediction model on new tasks and a different subject.
The first experiment was to verify generalized performance
on the new tasks that had not been involved in the training pro-
cedures. As summarized in Table II, the generalized perfor-
mance of the proposed method is comparable with PHTNet.
The resulting trajectories are also shown in Fig. 4. The second
test was to see the generalizability of the algorithm to new
data from different subjects. In this experiment, the proposed
method sill shows its generalizability on the new data set,
of which results are similar to those obtained from PHTNet.
Fig 5 presents the resulting trajectories in voluntary motion
prediction given a trained model by another subject. All
results are summarized in Table III. In this experiment, it is
noted that the different subject shows a smaller level of hand
tremor than the subject participated in model training, which
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FIGURE 3. Voluntary motion prediction resulted from model validation on static and dynamic tasks with four baseline models: ANN,
RNN, LSTM and PHTNet. Raw signal (grey) and voluntary signal (black dashed) are depicted for reference. (a) Static and (b) dynamic

tasks.

TABLE 1. Model validation result.

TABLE 2. Model test on new task.

Static Dynamic Static Dynamic
Model RMSE Accuracy RMSE Accuracy Model RMSE Accuracy RMSE Accuracy
(mm) (%) (mm) (%) (mm) (%) (mm) (%)
0.287 74.89 0.370 79.43 0.286 87.13 0.182 84.07
ANN[30] (0.084) (7.36) (0.080) (4.43) ANN[30] (0.056) 2.54 (0.020) (1.72)
0.263 76.30 0.397 77.90 0.494 77.73 0.238 77.30
RNN[31] (0.030) (2.72) (0.124) (6.87) RNN[31] (0.313) (14.09) (0.047) (4.53)
0.219 80.29 0.347 80.71 0.482 78.28 0.187 82.18
LSTM [32
LSTMIR21 | 0.017) (1.52) (0.042) 2.34) STM[32] Osrn @18 | (015 (73
0.254 77.82 0.283 84.28 . . . .
PHTNet [18
PHTNetI8] | (0.038) 330) | (0010) (057 U8 0oy e 0.007)  (0.58)
Proposed 0.193 83.14 0.260 85.56 Proposed 0.259 88.33 0.143 87.52
Method (0.016) (11.88) (0.044) (2.43) Method (0.010) 0.45 (0.008) (0.73)

The number in parenthesis is standard deviation.

may result in smaller RMSE and higher accuracy overall.
Even for various tasks and subjects, the proposed model
shows consistent performance overall, whereas the perfor-
mance of the RNN and the LSTM models varied significantly,
depending on the test sets.

G. SPECTRAL ANALYSIS

Our ultimate goal of the voluntary motion prediction is
to actively cancel undesired hand tremor while seamlessly
maintaining voluntary motion without time delay in control,
specifically for robotic microsurgery. Therefore, we exam-
ined how much hand tremor would be suppressed by applying
the future voluntary motion to robots for control. Hence,
we conducted the spectrum analysis on raw signal and
predicted voluntary motion using short-time Fourier trans-
form over the time of operation: as an indication of active
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The number in parenthesis is standard deviation.

tremor compensation. As shown in Fig. 6, hand tremor dras-
tically was suppressed within a frequency range of 6—14 Hz
over the time of operation. Furthermore, we ran the analysis
of power spectrum density on the predicted signals. As a
result, it is found that hand tremor is decreased by -10.9 and
-13.1 dB for a frequency of interest, 6—14 Hz, while applying
voluntary signals predicted in the new task and the different
subject to control, respectively.

H. PREDICTABILITY

The proposed model can predict voluntary motion one-time-
step ahead as well as further voluntary motion over time hori-
zon because the motion is parameterized by a time sequence.
Hence, we explored the prediction capability on voluntary
motion multiple-time-steps ahead. The RMSE at each future
time step is depicted in Fig. 8. With the advancement of the
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FIGURE 4. Voluntary motion prediction resulted from test on untrained new task data with four baseline models: ANN, RNN, LSTM and
PHTNet. Raw signal (grey) and voluntary signal (black dashed) are depicted for reference. (a) Static and (b) dynamic tasks.
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FIGURE 5. Voluntary motion prediction resulted from test on different user data with four baseline models: ANN, RNN, LSTM and
PHTNet. Raw signal (grey) and voluntary signal (black dashed) are depicted for reference. (a) Static and (b) dynamic tasks.

time step, the RMSEs also gradually increased. In particular,
the prediction error at the 10-time step ahead from the present
time step increases by 25%, compared to the error obtained
at the time one step ahead.
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V. DISCUSSION

Compared with the previous studies to predict voluntary
motion [17], [18], [31], the proposed algorithm addresses the
issues raised in the existing models [18] by adopting a hybrid
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FIGURE 6. Short-time Fourier transform (STFT) of hand motion for 20 s: (a) raw signal and (b) voluntary signal predicted by the

proposed method.

TABLE 3. Model test on different subject.

Static Dynamic
Model RMSE Accuracy RMSE Accuracy
(mm) %) (mm) (%)

0.090 92.14 0.068 93.96
ANN [30] (0.300) 2.62 (0.020) (1.82)
0.078 94.10 0.071 92.28
RNN[31] (0.020) (1.85) (0.023) 2.12)
0.060 94.72 0.054 95.06
LSTMD32] | 0013y (120) (0.006) (0.57)
0.068 94.06 0.052 95.20
PHTNet [18] | 502 (1.88) (0.005) (0.44)
Proposed 0.060 94.72 0.055 94.94
Method (0.007) 0.64 (0.005) (0.50)

The number in parenthesis is standard deviation.

model capable of interpreting such complex hand motion as a
composition of sub-signals. Moreover, the ensemble learning
approach enables accurately predict nonstationary voluntary
signals. As a result, the proposed algorithm outperforms all
of the baseline models, including a general (ANN) and the
state-the-of-art (PHTNet) algorithms overall in terms of pre-
diction error, accuracy. Specifically, the proposed algorithm
is also superior in predicting voluntary signals because the
algorithm can deal with various circumstances. For exam-
ple, the decomposition and ensemble approach can adapt to
various forms of voluntary signals: either highly stationary
(nearly DC motion) or rather highly cyclic at a range of
low frequencies. Consequently, our model can seamlessly
accommodate various hand motion signals, which allows us
to attain the lower RMSE as well as the lower standard
deviation in prediction compared to the baseline models used,
which may imply a lower probability of yielding excessive
error.
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FIGURE 7. Power spectral density of raw signal versus voluntary signal
predicted by the proposed method.

Moreover, the proposed algorithm allows for predicting
future voluntary motion over multiple time steps ahead via the
parametric modeling of voluntary motion rather than simply
taking a black-box model. Hence, the proposed model can
also deal with the motion prediction at any time step requested
potentially by inconsistent time delay in control. For instance,
the prediction error was increase only by 2.2% per time step
(4.17 ms) in the experiments.

Lastly, the proposed algorithm 1is substantially
time-efficient in learning models since it mitigates the
issues raised by the high complexity of deep learning-based
approaches. For comparison, the proposed algorithm took
40 seconds to reach one epoch while it was about 5 minutes
for PHTNet.
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FIGURE 8. Predictive performance for future time steps. (a) Test on the
new task, (b) test on the different user.

VI. CONCLUSION AND FUTURE WORK

In summary, this study aims to develop a new deep learning
model that can accurately predict voluntary motion from
complex and nonstationary hand motion. It is essential for
actively suppressing undesired hand tremor and seamlessly
delivering voluntary motion to surgical robots during micro-
surgery. To achieve this goal, we proposed the deep neural
network with the decomposition and ensemble approach that
can predict future voluntary motion with minimal error. This
model thus decomposes complex hand motion into multiple
sub-signals and ensembles the parameterized outputs for pre-
dicting future voluntary motion. As a result, the proposed
model outperforms the other algorithms, which were taken
as a baseline for comparison in terms of prediction error
(RMSE) and accuracy. Moreover, the algorithm could also
be generalizable to new data from the new tasks and also by
different subjects. Finally, the proposed algorithm was tested
for active tremor suppression, which resulted in substantial
tremor attenuation in a frequency of interest, 6—14 Hz.
Furthermore, the proposed algorithm is capable of predicting
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future voluntary motion within a certain time window with
low error increment since the output is parameterized with
respect to the time step.

To improve the proposed algorithm, future work involves
the optimization of the preset historical time window and the
number and types of signal blocks. In addition, reinforcement
learning to evolve a trained model according to new data
would be preferable to enhance overall performance as well
as adaptability to various circumstances.

We also plan to apply this algorithm to a surgical robot plat-
form to explore its capability of active tremor compensation.
We thus believe the proposed decomposition and ensemble
method also suggests a direction to address the time delay
caused by linear filters commonly used for active tremor com-
pensation. Finally, the approach and structure of the proposed
algorithm would also be utilized in other research areas, such
as estimation of pathological tremor for rehabilitation.
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