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ABSTRACT Diagnosis and treatment monitoring of Achilles tendon ruptures (ATRs) are supported by
medical imaging, in particular by magnetic resonance imaging (MRI) for tendon volume and healing
assessment. Therefore, we propose an automatic, multi-step segmentation algorithm for quantitative MRI
T2 mapping of ATRs. Seventy retrospective post-trauma, post-surgery and follow-up studies were included
in this research. The automatic segmentation algorithm for the inhomogeneous, noisy Achilles tendon region
consisted of a multi-step anisotropic denoising, T2 map reconstruction with a weighted log-linear regression,
thresholding with T2 time parameters, region growing and morphological closing. The automatic segmenta-
tion results were compared with those from manual contour tracing (MCT) performed by two radiologists.
The Intersection over Union (IoU), specificity, sensitivity, F1-score, Yasnoff’s normalized distance (YND),
and type I and II errors were used to assess the segmentation accuracy. The segmentation methods were
also compared with a Bland-Altman plot of the volumes of the segmented regions, with mean differences,
correlation coefficients and 95% confidence intervals. The mean specificity and sensitivity values were
high, 99.84+0.1% and 85.9£8.7%, respectively, with corresponding type I and II errors of 0.240.1% and
14.1+8.7%. The IoU, F1-score and YND were 71.0£9.2%, 82.7£6.3% and 0.00740.007%, respectively.
The tendon volumes obtained by manual and automatic segmentation were strongly positively correlated
(R? =0.85), and the Bland-Altman plot depicted good comparability. The average difference was —28 voxels
(95% confidence interval: —2726 to 2782 voxels). For ATRs, our method is reliable, with a strong positive
correlation with MCT and a very high specificity.

INDEX TERMS Achilles tendon, image segmentation, magnetic resonance imaging, quantitative MRI,

T2 mapping.

I. INTRODUCTION

The incidence of Achilles tendon ruptures (ATRs) or injuries
has increased over the last few decades and is approximately
7-22 cases per 100,000 people in the general population
[1]-[5]. ATRs are associated with both recreational activity
and professional sport as well as increased workload [6]. The
post-ruptured histochemical changes in the collagen fibres
are reflected clinically only to a certain extent [7]. There-
fore, diagnosis is supported by medical imaging. Magnetic
resonance imaging (MRI) and ultrasound are commonly used
for diagnosis and during the recovery process. In contrast to
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ultrasound, MRI is regarded as more sensitive in discriminat-
ing pathology [8].

Most MRI sequences allow the qualitative evaluation
of ongoing processes [9]. ATR images differ between
sequences, patients and post-rupture or post-surgery
times [10], [11]. Major changes occur mainly during the
first half year after trauma and are caused by variations in
the tissue water level and collagen fibril orientation during
the regeneration process. The shape of the Achilles tendon
depends on the distance from the rupture, on the associated
oedema and even on the assessed level (distance between the
rupture and the calcaneal enthesis) [12]. Heterogeneity in the
size, brightness levels and fibre arrangements on MRI slices
hinder the diagnosis and segmentation process (Fig. 1).
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FIGURE 1. Manual segmentation of an ATR performed by a radiologist. Automatic segmentation is complicated due to variability in the
shape, texture and intensity of the signal of the Achilles tendon. a) The internal structure of the Achilles tendon is hypointense (darker) and
quite regular, with brighter fibrous scar tissue that divides the tendon area and makes the segmentation process more complex. b)
Enlarged postoperative tendon area with non-homogeneous internal structure (hypo- and isointense regions). The isointense regions have
similar density as surrounding anatomical structures. Therefore, a preprocessing step is necessary to depict the borderlines between the
Achilles tendon and surrounding tissues. c) The post-ruptured, postoperative Achilles tendon area consists of hypo-, iso-, and hyperintense
regions. The completely heterogeneous areas require processing in order to obtain homogeneous areas that can be segmented.

The variability in the tendon volume is one of the key fac-
tors assessed to evaluate its degeneration, and tendon texture
analysis may be used to assess the healing process [13], [14].
Therefore, segmentation of the ruptured Achilles tendon is
not a trivial task. To the best of our knowledge, segmenta-
tions or volume assessments of ATR are performed manually
on MRI by contour tracing [15], [16]. This method is very
time consuming and depends on the radiologist’s experience.
There are only a few manuscripts on automatic segmenta-
tion in healthy patients or patients with minor tendinopa-
thy [17]-[19]. None of these studies used an automatic
identification method on ruptured Achilles tendons.

The aim of this study is to present and evaluate a multi-step
segmentation method for quantitative magnetic resonance
images for ruptured Achilles tendons.

A quantitative T2-weighted sequence consists of several
T2-weighted acquisitions obtained with different echo times
and a map of the T2 relaxation times calculated for each
image voxel (called a T2 map). The main advantage of a
T2 maps is its superiority to other qualitative weighted MRI
sequences due to its potential for providing quantitative and
a more comprehensive characterization of tissues. Moreover,
the assessment of T2 maps is commonly used during the
diagnosis of ATRs [20].

Il. MATERIAL

Seventy retrospective post-trauma, post-surgery and follow-up
MRI studies of ATR patients were included in this
research. A 1.5-T MRI unit (Signa HDxt, GE Medical Sys-
tems, Waukesha, USA) was used. For T2 time measure-
ments, the fast multi-spin echo sequence was used. The
T2 map imaging parameters were as follows: repetition
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time = 1200 ms, eight echo times = {9, 18, ..., 72 ms}, field
of view = 150 x 150 mmz, matrix = 512 x 512 voxels, slice
resolution = 0.29 x 0.29 mm?, slice thickness = 3.5 mm,
spacing between slices = 4.2 mm, 10 slices, and average
acquisition time = 8:17 (min:sec). Each slice of a volume
(10 slices in total) consists of images of eight different echo
times. Therefore, a slice is represented by eight images, and
segmentation of the slice is performed by using these images.

ill. METHODS

The invention of the automated Achilles tendon segmentation
algorithm was a multitask process due to the large
inhomogeneity of tendon tissues and consisted of 1.
a multi-step anisotropic denoiser (MSAD), 2. a weighted
log-linear regression (WLLR) method for reconstructing
mono-exponential T2 maps, 3. thresholding with the T2 time
parameter, 4. region growing from a given seed point and 5.
a morphological closing operation (Fig. 2). Automatic seg-
mentation was compared with MCT performed by a radiol-
ogist. Segmentation quality measurements were introduced
to assess the segmentation accuracy. Automatic segmenta-
tion and measurements were performed on the VisNow-
Plugin-Medical library — a Java plugin for the open-source
VisNow platform that allows medical analysis and visu-
alization. The platform is available at https://gitlab.com/
cnt-uksw/visualization/VisNow [21].

A. MULTI-STEP ANISOTROPIC DENOISER (MSAD)

The MSAD was used to decrease the high noise level of the
obtained T2-weighted acquisitions. The low signal-to-noise
ratio (SNR) of those acquisitions is considered a cause of
distortions during the calculation of the T2 maps. The MSAD
algorithm is used for noise reduction while preserving the
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FIGURE 2. Subsequent steps of automated segmentation for ruptured Achilles tendons shown on a single slice obtained from a

three-dimensional dataset (10 slices of eight T2-weighted sequences).

edges of uniform areas in the image in accordance with their
local characteristics. The MSAD averages voxels with the use
of weighted Gaussian smoothing and consists of two main
steps. First, the standard Gaussian filter is calculated as the
initial anisotropy field (w). Second, the weighted average is
calculated from the local adaptive kernel given as the product
of w and the correcting factor exp(—(w(p)—w(q))z), where p
is a centre and q is a neighbouring voxel within the kernel’s
radius. The kernel’s radius is selected to neither cause the loss
of small details nor to leave a significant noise level. The
detailed description of MSAD was given by Regulski er al.
in [22]. The customizable parameters in the MSAD algo-
rithm were the kernel radius and standard deviation of the
weighted Gaussian distribution (SDWGD). For segmenta-
tion preprocessing, the trial of 3 studies was chosen and
assessed according to the highest values of IoU, specificity,
and sensitivity. A kernel radius of 6 voxels and an SDWGD of
400 units proved to have the highest values of the above-
mentioned measures and were chosen for further segmenta-
tion steps for the whole sample. The MSAD was performed
for each slice separately due to the large spacing between
slices. The two-dimensional MSAD was more efficient in
time than the three-dimensional one. Furthermore, the 2D
MSAD was chosen in order to exclude the heterogeneity
artefacts associated with interpolation.

B. WEIGHTED LOG-LINEAR REGRESSION (WLLR)
METHOD

There are several approaches to computing T2 maps
[23]-[26]. Generally, the mono-exponential approximation
of the model function for the Y(t) signal of T2-weighted
acquisitions is given by:

Y () =A-exp(—t/T) +N(), ey
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where t is the echo time, T is the relaxation time, A is the
amplitude of the signal, and N (t) is the noise level.

In this research, the mono-exponential weighted method
is chosen due to its smoothing effect, which significantly
simplifies the segmentation process [20]. Therefore, the
mono-exponential approximation of the weighted model
function for the Y(t) signal is:

Y () =A-exp(—t/T)- W(t) + N(), 2)

where W(t) is the weights. The weights (W(t)) are introduced
to reduce the role of noise in T2 map reconstruction. The
weights are calculated within a window of a given radius (r) of
one T2-weighted acquisition. The window slides through all
the voxels of the image. The differences between the win-
dow centre (v.) and neighbouring voxels (v,) are calculated.
If the difference is more than two standard deviations of all
the voxels within the window, then v, is rejected to avoid
overestimate the noise within windows containing two or
more regions of considerably different signals. The variance
is calculated from the m(t)-remaining voxels and is intended
to be a local noise measure within the window. The weights
are given by:
1

1 m(t) 2
ol D i—y oi(t)

where m(t) is number of voxels left within window and oi(t)2
is the variance in the m(t) - remaining voxels.

For segmentation purposes, the weights are calculated with
a large radius. The higher the radius, the more blurred the
image is, and the simpler the segmentation is. However,
an excessive increase in the radius blurs the boundaries
between neighbouring regions. On the basis of experimental
data, we have chosen r = 6 to be the best choice to fulfil the
segmentation purposes.

W@ = 3)
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FIGURE 3. Four slices of a T2 map after WLLR reconstruction with a radius of 6.

In this research, the acquired spin echo images were highly
affected by noise. The mean SNR was approximately 1.38.
The low-SNR images may cause some distortions in the
calculation of the T2 times. However, Gudbjartsson and Patz
indicated that the MRI noise signal follows a Rician distri-
bution. The Rician probability density function of the noise
follows a Rayleigh distribution for a low-intensity signal (low
SNR). Therefore, we can assume that low-signal Rayleigh
noise satisfies the condition of a multiplicative noise distri-
bution. The additive noise becomes multiplicative. The noise
level (N(t)) can be incorporated into weights to reduce the
number of approximated parameters [27]:

Y(t)=A-exp(=t/T) - Wn(), “

where W (t) = W(t) eN(t) indicates the weight and the noise
level.
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Then, the WLLR method was applied. We estimated the
relaxation time for each pixel of the T2 map. Consequently,
the approximation function is given by:

y)=a+p-1+ o), &)

where y(t) = In(Y (¢)), @« = In(A), and w(t) = In(Wy (¢)).
An example of the obtained T2 map is presented in Fig. 3.

C. THRESHOLDING OF THE T2 MAPS

Thresholding of the T2 maps allowed the classification of
the leg tissues into two groups: inside and outside a given
threshold range. The upper threshold value was set to 90 ms,
which corresponded to the average supremum the T2 time
in the ruptured Achilles tendon area on MRIs taken immedi-
ately after trauma and surgery. During the recovery process,
the T2 time decreases, therefore, for the follow-up stud-
ies, the upper threshold value was set to 70 ms. The lower
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threshold was set to 1 ms to eliminate noise remaining in the
air surrounding the patient’s leg.

D. REGION GROWING

Classification with the use of the previous step divided the
T2 map image into several regions containing T2 values from
the threshold range. These regions were recognized as fore-
ground, and a further segmentation process was conducted on
them. The rest of the voxels were classified as background
and considered unsuitable for the analysis. On most of the
slices, the Achilles tendon region was connected to a few
foreground regions. To single out the Achilles tendon area
from all the other separate regions, the seed region growing
algorithm was used [28]. We expected the Achilles tendon
area to be in the same relative location in the lower limb in
most cases and its centre-point to be located approximately at
the same distance from the posterior outline of the leg (which
was classified as foreground during thresholding) and close
to the midline of the MRI slice. Therefore, the centre-point
was estimated to be in the same relative position independent
of the image. To overcome the errors related to image mag-
nification, we used the normalized coordinates to estimate
the centre-point. In the antero-posterior direction, the most
posteriorly located foreground voxel was interpreted as 0 and
the most anteriorly located voxel as /. Additionally, in the
medio-lateral direction, the rightmost voxel was interpreted
as 0 and leftmost voxel as /. The centre-point was estimated to
be 0.16 and 0.50 in the antero-posterior and the medio-lateral
directions, respectively.

The estimated foreground regions on one central slice were
morphologically eroded (with a 12-voxel-radius kernel) due
to overlap, and the centroid of the region located closest to the
centre-point (the expected location of the Achilles tendon)
was set as the initial seed point: therefore, the initial seed
point was set automatically. The coordinates of the seed point
were projected to other slices. Manual adjustment of seed
points was also possible on each slice. The region grow-
ing algorithm was performed once per slice. The classifi-
cation of voxels as Achilles tendon was provided with the
ordering attribute. The ordering attribute was defined as the
difference between the analysed voxel and the mean of the
previously segmented voxels (within the Achilles tendon).
The stopping criterion was obtained when the minimal order-
ing attribute of all neighbouring voxels was higher than the
standard deviation of the segmented region voxels. A subse-
quent morphological closing operation was used to close gaps
within a segmented mask (performed for each slice with a
10-voxel-radius kernel).

E. SEGMENTATIONS QUALITY MEASURE AND STATISTICS

The automatically segmented Achilles tendons were com-
pared with manual contour tracing (MCT) performed by the
two experienced radiologists (18 years and 9 years of expe-
rience in radiology, respectively) who traced the boundaries
on 10 transverse slices in each study. The manual segmen-
tation was possible to perform by taking into consideration
the anatomy of the tendon and the surrounding structures.
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The Achilles tendon was covered with the fascia, and pos-
teriorly with the skin. Anteriorly, medially and laterally,
the tendon was adjacent to the areolar, adipose or swollen
tissue, which could be differentiated from the tendon on
the T2-weighted images. OsiriX (Bernex, Switzerland) was
applied for MCT [29]. The tendon was delineated with the
“closed polygon” tool. Small inaccuracies were eliminated
with the “repulser” tool.

We used several common segmentation quality measures,
namely, the mean Intersection over Union (IoU), specificity,
sensitivity (mean accuracy), F1-score, type I and Il errors, and
Yasnoff’s normalized discrepancy distance, to compare our
automatic segmentation algorithm with MCT [30]. Descrip-
tive statistics were calculated for all the measures. The
inter-observer reliability was assessed with the intra-class
correlation coefficient (ICC) based on a mean-rating, 2-way
mixed-effects model and calculated based on the quality
measures.

The automatic and averaged MCT (from two radiologists)
segmentation methods were also compared with
Bland-Altman plots of the volumes (numbers of voxels) of
the segmented regions, mean differences, correlation coef-
ficients (R?) and 95% confidence intervals. In the similar
manner, the correlation coefficients and 95% confidence
intervals between manually traced volumes obtained by both
radiologists were calculated. The statistical analysis was
performed using Statistica (Tibco, Palo Alto, USA) and Excel
(Microsoft, Redmond, USA).

IV. RESULTS

For the comparison of the MCT and automatic segmenta-
tion methods, 70 ruptured Achilles tendons were analysed
(Fig. 4). The mean IoU, specificity, sensitivity, F1-score and
errors were calculated according to the true positive, false
positive, true negative and false negative voxels, which are the
correctly identified, incorrectly identified, correctly rejected
and incorrectly rejected voxels, respectively.

The specificity was very high (greater than 99%), and
the type I error was low (less than 0.5%); therefore, incor-
rectly rejected voxels were in the minority. The values of
the sensitivity (85.9%) and type II error (14.1%) suggest that
the majority of voxels were classified correctly. The spa-
tial information of the missegmented voxels was taken into
account during the assessment of Yasnoff’s distance (approxi-
mately 0.007%), which was calculated as the average distance
between the missegmented voxels and the nearest ones that
belong to the manually segmented region and was normalized
to the image dimensions. The average values and standard
deviations of all measurements (from both radiologists) are
shown in table 1. The inter-rater reliability was excellent in
terms of IoU, Fl-score, specificity and sensitivity (ICC >
90%). Good reliability was obtained for Yasnoff’s distance
and type I and II errors (ICC > 75%, Table 1).

The comparison of the ATR volumes (numbers of voxels)
obtained with the averaged MCT and automatic seg-
mentation methods showed a strong positive correlation
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FIGURE 4. Typical example of the segmentation results. The automatically segmented region is marked in green, and the manual

segmentation performed by the radiologist is marked in red.

TABLE 1. Average values, standard deviations and inter-observer reliability of the comparative measurements from manual and automatic segmentation.

Measure Average + standard deviation Inter-observer reliability
Intersection over Union 0.710+0.092 97.4%
Specificity 0.998+0.001 95.5%
Sensitivity 0.859+0.087 96.6%
Fl-score 0.827+0.063 99.7%
Type I error 0.002+0.001 89.1%
Type II error 0.141+0.087 89.2%
Yasnoff’s distance 7.482E-05+7.012E-05 89.7%

(R> = 0.85, Fig. 5). The Bland-Altman plot depicted good
comparability between the two methods. The average differ-
ence was —28 voxels (—8.2 mm?), and the 95% confidence
interval was —2726 to 2782 voxels (—802.4 to 818.9 mm3).
Therefore, the algorithm showed a slight tendency towards
under-segmentation. Fig. 6. The strong positive correlation
was also obtained between ATR volumes manually traced by
two radiologists (R% = 0.95). The 95% confidence interval
was —2,068 to 2,084 voxels (—608.9 to 613 mm?).

The total computational time of the whole process of
segmentation was 68.4611+0.620 s on a computer station
with an 8-core Intel Xeon Processor E5-2687 W. The time
consisted of MSAD, WLLR, thresholding, region grow-
ing and morphological operation times: 9.267+0.183 s,
57.959+0.424 s, 0.008+0.002 s, 1.520+£0.776 s, and
0.148+0.620 s, respectively.

V. DISCUSSION

We would like to emphasize that, to the best of our
knowledge, this is the first study that presents an automatic
segmentation algorithm for ruptured Achilles tendons.
We conducted a systematic electronic search in Octo-
ber 2019 with the key words (Achilles tendon rupture, auto-
matic segmentation and magnetic resonance imaging) in
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Embase, Medline and Web of Science without obtaining any
results. Achilles tendon volume variability is a widely recog-
nized factor in the healing process. Therefore, we relaxed our
search criteria to find methods that assess volume changes
in ruptured Achilles tendons (key words: Achilles tendon
rupture, volume, length, MRI). Twenty-nine of the 45 found
articles were rejected due to either the usage of different diag-
nostic modalities or the assessment of changes in Achilles-
tendon-neighbouring anatomical structures after its rupture.
In the remaining 16 articles, the assessment was performed
either by analysis of variability of ATR linear measure-
ments and manually acquired tendon volumes or by clinical
scores [13], [31]-[36].

We also searched for segmentation methods for the
Achilles tendon volume with different tendinopathies
(without specifying a rupture; key words: Achilles tendon,
volume, length, MRI). Only five out of the 25 located arti-
cles concerned automatic segmentation [17]-[19], [37], [38].
We would like to emphasize that we were searching not only
for segmentations of Achilles tendon ruptures but also for
segmentations and volume measures of healthy tendons and
those with tendinopathy. In contrast to ATR segmentation,
tendinopathy segmentation was simpler due to the homoge-
nous texture of the tendon. Large differences in the MRI
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signals were not found in the tendon area, especially due to
the short T2 and T2* relaxation times for the Achilles tendon.
The segmentation task was also simpler due to the lack
of time-related volume changes during the rupture healing
process. Therefore, the obtained correlation coefficients and
reliability in manually and automatically traced tendinopathy
of non-ruptured Achilles tendons in different studies were
high and ranged from 0.88 to 0.99.

Shalabi et al. [37] developed a 3D seed growing algo-
rithm that relies on T1-weighted and proton density (PD)-
weighted signal levels and their gradients. The seed point
was selected manually. The inclusion criteria of the neigh-
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bouring voxels were checked to handle leakage problems.
Automatically segmented tendons were compared with ten-
dons manually segmented by two independent radiologists.
The obtained reliabilities depending on the coefficient of
variation were 0.881 and 0.979 for the T1- and PD-weighted
signals, respectively. Gérdin et al. [19], [38] presented a sim-
ilar seed growing algorithm on five MR sequences; however,
this research did not contain a comparative analysis with a
manually segmented ground-truth sequence.

Syha et al. [17], [18] presented a contour detection/
segmentation algorithm of the Achilles tendon of healthy
volunteers and tendinopathy patients. The algorithm con-
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sisted of three main steps: 1. tracking the outer contour
of the leg, 2. subsequent seed growing of the tendon area
and morphology closing, and 3. tracking the boundary of
the Achilles tendon with an active contour model. Manual
correction was performed in cases of missegmentation. The
correlation coefficient for the manual vs. automatic segmen-
tation results was 0.99 in the group of healthy volunteers. The
obtained sensitivity and specificity values within the group
of tendinopathy patients ranged between 0.768-0.962 and
0.731-0.808, respectively, and depended on the distance from
proximal to the cranial border of the calcaneal bone.

In our research, the mean sensitivity value of the ATR
segmentation was higher than that of Syha e al’’s [17], [18]
method for the proximal and distal parts and lower for the
medial part of the tendon. The specificity for our method
was higher than that for Syha ef al.’s [17], [18] method in all
cases, and the other statistics were not comparable. Manual
correction was not performed.

The mean IoU, sensitivity, F1-score and type II error val-
ues, described within this manuscript, were characterized by
high standard deviations. Therefore, there were some studies
in which automatic segmentation gave worse results, which
corresponded with our observations that in late follow-up
studies (3-6 months postoperation) the presented algorithm
was not ideal.

The longer the time after the surgery, the more homoge-
nous the tendon’s image is and the more similar the tendon
is to the surrounding tissues. The weights that were used
in the WLLR reconstruction method excessively blurred the
image. The boundaries between the Achilles tendon and its
surrounding structures were not distinguishable. In those
cases, better segmentation results should be expected with the
use of simple region growing or active contour algorithms.

Our algorithm consisted of simple thresholding and region
growing with morphological closing operation. The lack of
a sophisticated segmentation algorithm was made possible
due to advanced preprocessing steps such as MSAD and
WLLR. This made the total algorithm simpler and potentially
usable in other applications. The described method can be
successfully used for the segmentation of other anatomical
structures. We obtained promising results from the method
described in this manuscript for segmenting the displaced
disc for patients with temporo-mandibular joint disorders
on T2 mapping sequences. However, further studies are
required.

Automatic segmentation of a ruptured Achilles tendon
improves the automatic assessment of its healing process. The
future directions and continuation of our research concern the
assessment of the stage of the healing process of the tendon
after rupture. In the clinical evaluation of the healing process,
it is extremely important to indicate the time when the ten-
don can start loading. The combination of the segmentation
algorithm with feature analysis provides promising results.
In our study, the patients underwent T2 mapping, and other
sequences of MRI were taken after trauma, one, three, six,
nine, twelve and twenty weeks after and as a follow-up to
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surgery (up to 26 weeks after surgery). In the segmented
region of the Achilles tendon with the algorithm presented
in this manuscript, the T2 times are calculated, and the other
tendon features such as size, shape, and texture are extracted.
A variability assessment of segmented tendon features and
their decomposition allows an indication of the stage of heal-
ing of the tendon. The combination of the segmentation algo-
rithm with feature analysis highlights the need to advance to
the next stage of treatment and rehabilitation. Further studies
are required, however, to analyse the healing process [39].

VI. CONCLUSION

In conclusion, this is the first study that presents an automatic
segmentation algorithm for ruptured Achilles tendons. The
method utilizes a multi-step anisotropic denoiser, weighted
log-linear regression reconstruction, region growing and
thresholding algorithms. It proved to be reliable for quanti-
tative MRIs. Compared to MCTs performed by the two expe-
rienced radiologists, it showed a strong positive correlation
and very high specificity. Taking into consideration the other
studies evaluating the automatic segmentation algorithms of
simpler cases — that is, the non-ruptured Achilles tendons
with tendinopathies — the sensitivity and specificity are the
highest in our method, proving its superiority. The multi-step
segmentation method of ATR provides a first step for com-
plex algorithms analysing the healing process of the Achilles
tendon.
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