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ABSTRACT Existing prescriptive compression strategies used in hearing aid fitting are designed based on
gain averages from a group of users which may not be necessarily optimal for a specific user. Nearly half
of hearing aid users prefer settings that differ from the commonly prescribed settings. This paper presents
a human-in-the-loop deep reinforcement learning approach that personalizes hearing aid compression to
achieve improved hearing perception. The developed approach is designed to learn a specific user’s hearing
preferences in order to optimize compression based on the user’s feedbacks. Both simulation and subject
testing results are reported. These results demonstrate the proof-of-concept of achieving personalized
compression via human-in-the-loop deep reinforcement learning.

INDEX TERMS Personalized audio compression, deep reinforcement learning, human-in-the-loop person-
alization, personalized hearing aid, hearing aid compression.

I. INTRODUCTION
In hearing impaired individuals, the relative intensity differ-
ence between barely audible and uncomfortably loud sound
becomes smaller. Thus, in order to achieve optimal audibility,
sound must be calibrated to occupy a smaller range of sound
pressure levels (SPLs). This dynamic range adjustment is
achieved through the process of compression [1]. Compres-
sion in a reduced dynamic range is the key function of mod-
ern hearing aids. This process involves squeezing or fitting
sound into the residual audibility range of a hearing aid user.
In hearing aid fitting, so-called compression curves are set up
by adjusting gains across a number of frequency bands based
on a user’s audiometric profile. The two most widely used
hearing aid prescriptions are NAL-NL2 [2] and DSL-v5 [3].
These prescriptions correspond to gain tables across a number
of frequency bands for three sound levels, soft, moderate, and
loud.

It has been reported that up to half of individuals using
fitted hearing aids preferred amplification or compression
settings different than the prescription provided [4]–[9].
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Considering that suprathreshold hearing perception varies
from person to person and that acoustic environments
encountered vary from person to person, several papers in
the literature have examined self-adjustment or self-tuning
of hearing aid fitting relative to the one-size-fits-all pre-
scriptive fitting [10]–[18]. In [18], it was reported that hear-
ing aid users favored gain settings that were different from
the NAL prescription settings both in quiet and in noise.
Self-adjustments carried out on a custom hardware/software
such as those recently reported in [19], [20] have also demon-
strated improvements in hearing perception that can be gained
over prescriptive fitting. In addition, the benefits of hearing
aid personalization were examined in [11], [12]. In [11],
the parameter space consisted of four possible combinations
of microphone mode (omnidirectional and directional) and
noise reduction state (active and off). First, preferences of a
user were learnt in order to create a supervised trained model.
Then, the model was used to derive an optimal setting among
the four choices.

There have been only a few studies reporting algorithms
to learn personalize audio compression gains (or compres-
sion ratios). In [21]–[23], a machine learning approach for
self-adjustment or self-tuning of compression was presented.
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In these papers, a Gaussian regression model was used to
achieve personalized compression by estimating its param-
eters from training data. User preferences were obtained via
hearing assessments by listening to music clips in [21], [22].
Although the results reported show the benefits of personal-
ization, differences in preferences between music clips and
conversation in noisy environments (e.g., in babble noise)
were not addressed. Understanding speech in the presence of
bothersome background noise is expressed as a major chal-
lenge by hearing aid users [24]. Furthermore, in [21]–[23],
only twenty preference iterations were done for modeling
the hearing preference of a user. In actual audio environ-
ments, this many iterations would be inadequate for modeling
various non-linearities associated with hearing perception.
Although these findings show the overall usefulness of per-
sonalization, preferred hearing cannot be achieved without a
proper design of the personalization framework. In a recent
study [25], an agent is trained using simulated contextual
preferences within a controlled environment. There, the user
model is created by hypothesizing correlation among users’
preferences based on a number of their observable char-
acteristics. However, the validity of the assumption made
in [25], i.e. categorizing users’ preferences, is not supported
by clinical evidence. Hence, human feedback in the training
loop is deemed vital in order to provide a personalization that
can deliver preferred hearing to a specific user.

To address previous design limitations, a human-in-
the-loop (HITL) interactive machine learning compression
approach based on deep reinforcement learning (DRL) [26]
is developed in this paper. In our approach, the user is placed
in the learning loop. A DRL network is designed to receive
preference feedback from the user. As a result, it becomes
possible to deal with various non-linearities of human hearing
perception. In general, placing human in the loop of training a
machine learning model enables reducing the error made by
a trained model. The use of the conventional reinforcement
learning is not sufficient to perform personalization for hear-
ing aid compression. For compression, it is vital to include
data from human feedback to optimize and improve themodel
over time. That is why in this work, a user’s feedback is
placed in the learning loop for personalization of compres-
sion, considering that the user’s feedback is sparse in practice.
A combination of a convolutional neural network (CNN) [27]
and a bidirectional long short-term memory recurrent neural
network [28] or CNN-BiLSTM is used to model a user’s
preferences in those audio environments that are of interest
to the user.

As discussed in [29], user feedback is affected by biases.
Thus, rather than absolute feedback, pairwise or relative hear-
ing assessments are deemed more suitable [30]. Hence, in our
approach, a user is subjected to a series of compressed audios
to express his/her preferences towards training the model via
the reward/punishment mechanism of reinforcement learn-
ing; an approach that has been successfully applied to gam-
ing [31] and robotics [32]. The developed DRL approach
provides personalized compression that can be utilized in

the field for hearing aid compression studies. It should be
noted that the focus of this paper is on the development of
a human-in-the-loop deep reinforcement learning approach
for personalizing audio compression and to show its proof-of-
concept by carrying out simulated experiments and a limited
clinical subject testing. However, deployment would require
carrying out extensive clinical testing.

To describe our approach in detail, the remainder of this
paper is organized as follows. Section II covers the developed
approach to personalize hearing aid compression or fitting
via human-in-the-loop DRL as well as a protocol to perform
human preference assessment. The experimental results and
discussion are then presented in section III followed by the
conclusion in section IV.

II. PERSONALIZED COMPRESSION APPROACH
To set the stage for the developed personalized compression,
the conventional reinforcement learning (RL) is first briefly
described. In a reinforcement learning framework, an agent
and an environment interact over a series of steps. At each
time step t , the agent receives an observation or state stεS
from the environment and sends an action atεA back to the
environment with S and A denoting the state and action
sets, respectively. In a conventional RL framework, based
on a given action, the environment generates the next state
together with a reward rtεR with R denoting the reward set,
and the goal is to maximize reward over time. Fig. 1(a) shows
a block diagram of a conventional RL framework.

FIGURE 1. (a) Block diagram of a conventional reinforcement learning
framework. (b) Deep reinforcement learning with user’s feedback in
which reward is obtained based on user preferences.

The success of RL heavily depends on setting up an effec-
tive reward function. Many real-world problems are complex,
and it is often difficult to formulate an effective reward func-
tion. Inverse reinforcement learning (IRL) [33] can be used
to design a reward function, which can then get deployed to
train the agent using (deep) reinforcement learning. In order
to build an effective reward function, human feedback can be
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used to evaluate the behavior of the agent [34], [35]. In our
case, in order to model and learn hearing preferences via
deep reinforcement learning, the listener’s preferences are
used.

Obtaining rewards in a direct manner, based on user
feedback, is labor intensive and makes the training process
impractical because thousands of iterations and user feed-
backs would be needed. In order to decrease the number
of user feedbacks and thus enable a practical deployment
of the personalized compression, first a reward function is
considered to model hearing preferences of a user in an asyn-
chronous manner. This is achieved by carrying out compar-
ison between instances of two different compressed audios.
Then, an agent is trained to maximize reward. Fig. 1(b) shows
a block diagram of this approach. Unlike the conventional RL
in which reward is computed by the environment, here reward
is computed based on user preferences.

A. PERSONALIZED FITTING PROTOCOL
Compression in hearing aid fittings is normally performed
via software tools that are provided by hearing aid manu-
facturers. These software tools are used to automatically set
gains across a number of frequency bands using established
prescriptions based on group averages or with manufacturers
adding their own variations.

A user’s audiogram and the prescription gains are used to
set the target gains for that user. Across each frequency band,
a different compression curve is used to generate multiband
dynamic range compression (DRC). In this paper, the DSL-
v5 by Hand prescription in [36] is considered to serve as the
reference compression. In other words, the gains in the DSL-
v5 tables are used to compute the reference DRC param-
eters consisting of compression ratio (change in gain) and
compression threshold (sound level at which compression is
applied). The process of personalization involves modifica-
tion of the gains specified by DSL-v5 or any other generic
prescription based on user preferences.

In this study, the following steps are taken to achieve
personalized compression for a specific user. The first step
is assessing hearing sensitivity by measuring the audiogram
of a user. In the second step, the compression gains of the user
are set by using fitting software. In this work, the DSL-v5 pre-
scriptive fitting software is used. The third step is initializing
the human centered-DRL framework with the compression
ratios obtained in the second step as the starting point. In the
fourth step, the compression ratios are adjusted by going
through the training process of the human centered-DRL
framework (an illustration of the gain change ranges for the
agent action in the DRL framework is depicted in Fig. 2).
The final or fifth step involves comparing the performance of
the personalized compression with the prescriptive or refer-
ence compression.

In the personalized framework, an agent that is interact-
ing sequentially with the environment over a number of
time steps is considered similar to the one in [34]. At each
time step, the agent receives a new state (observation) from

FIGURE 2. Illustration of gain ranges across different frequency bands.

the environment and performs an action. Over an episode,
the agent performs interaction for a number of time steps.
In typical RL settings, a reward at each time step is fed into
the agent as well.

However, here rather than a predefined reward, a reward
that is modeled based on a user’s preferences is considered.
In other words, by putting human feedback in the learning
loop, it is attempted to optimize the agent learning and thus
the user hearing perception. The personalization protocol
and block diagram of the developed DRL-based personalized
hearing aid compression framework is shown in Table 1 and
Fig. 3, respectively. Each block in Fig. 3 is described in the
subsections that follow.

B. ENVIRONMENT
In the personalized framework, the environment consists of
three components: audio segment creation, compression ratio
update, and agent state transition function. At each policy
time step, a noisy speech audio signal is down-sampled from
48 kHz to 16 kHz to lower the computational burden. Noisy
speech audio signals are generated by distorting the widely
used public domain IEEE speech dataset [37] with babble
restaurant noise (provided on YouTube) and SNR of about
0 dB. The IEEE dataset consists of 3600 speech audio files
by 20 speakers (10 females and 10 males) in which each
file is about 2 seconds long. The speakers are from two
American English regions of the Pacific Northwest (PN)
and the Northern Cities (NC) reading the IEEE ‘‘Harvard’’
sentences. A total of 3600 noisy speech audio signals are
thus generated and at each time step, a randomly selected
audio signal is used for preference training. Once a new action
at+1 is received from the agent, CR (compression ratio) in
the frequency bands are updated based on the action at+1.
Depending on the number of scales (β) specified for adjusting
CR in each of the frequency bands (CRadj), a set of actions is
created by permutations and the action space A is given by

A =
∏nBands

i
βi (1)

where each βi denotes the number of actions corresponding
to ith frequency band. In other words, the action space A is
the product space of the action space in all the frequency
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TABLE 1. Personalized fitting protocol.

bands. Consequently, adjusting CR in each frequency band
is achieved as follows:

CRnew (f ) = CRDSL−v5 (f ) .CRadj (f ) (2)

where CRadj (f ), CRDSL−v5 (f ), and CRnew (f ), respectively,
stand for the compression ratio adjustment, the compression
ratio computed from the DSL-v5 prescription, and the new
compression ratio in the f th frequency band. Permutations are
defined by a dictionary in which each action is mapped to a
set of compression ratio adjustments across all the frequency
bands. In our experimentations, to keep the subject training
time under two hours, β is set to 2 in each frequency band for
an action space of 32. It should be noted that the introduced
methodology is general purpose in the sense that it is applica-
ble to higher β values. When using higher β values (β >2),
more feedbacks from a subject are needed resulting in higher
subject training time.
In agent state transition function, a new audio signal is

compressed by the updated CRs from the previous itera-
tion using the dynamic range compression whose details
are described in our previous publication [36]. Due to a
better match to the human hearing perception, Mel-scale
frequencies are often used instead of linear scale frequencies
to represent noisy speech signals in classification tasks [38].
Similarly, compressed noisy speech signals are sampled at
16kHz and framed to 20ms by using a Hanning window
with 50% overlap. This translates into a frame size of
0.020× 16000 = 320 samples. The short time Fourier trans-
form (STFT) of frames are then computed. The conversion of
frequency f in a STFT-frame to M th Mel-scale frequency is

done as follows [39]:

M (f )=2595log10

(
1+

f
700

)
(3)

Log Mel-spectrogram features are extracted from each
STFT frame using a bank of 80 Mel filters. The log
Mel-spectrogram features of 240 consecutive frames from
an audio segment are stacked to create a 2D feature matrix
(80×240). This 2D feature matrix is reshaped to a 3D feature
space creating three adjacent images (80 × 80×3), which is
considered to be one observation for agent training. For train-
ing the reward estimator, the 2D format of the observation
(80 × 240) is considered to be the input/observation to the
network.

Note that in contrast to the conventional RL, here the end-
of-episode sign from the environment is not shared with the
agent to make the agent training one uninterrupted episode.
Moreover, reward values are received from the reward pre-
dictor rather than from the environment.

Next, unprocessed audio signals and updated CRs are
added to a buffer called audio segment queue as depicted
in Fig. 3(a). The audio segment queue σ shown in this
figure denotes a set or collection of audio signals U and
compression ratios CR computed from a number of k actions,
that is

σ = ((u0, cr0) , (u1, cr1) , . . . , (uk−1, crk−1)) ε (U ,CR)k

(4)

C. HUMAN PREFERENCE INTERFACE
In order to use human input in the learning loop, a hearing
preference interface is created to collect the user’s hearing
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FIGURE 3. Developed personalized compression DRL framework: (a) training mode and (b) operation mode.

feedbacks from a group of comparisons of audio signal
pairs that are compressed with two different sets of com-
pression ratios. The goal of this user interaction is to learn
the non-linearities associated with the user’s preferences or
reward function.

In hearing preference interface shown in Fig. 3, two pairs
from the queue σ are selected at each time step. Then,
a corresponding pair of compressed audio signals (c1, c2)
is computed which is used for the comparison. The user
is given 4 options to indicate his/her preference: (1) µ =
[1, 0] if c1 is preferable, (2) µ = [0, 1] if c2 is preferable,
(3) µ = [0.5, 0.5] if both compressed audio signals are
equally preferred, and (4) neither compressed audio signals
are desired. Hearing preferences are collected over a series of
compressed audio signal pairs and are stored in a datasetD of
triplets (c1, c2, µ), where µ denotes the feedback label, and

c1 and c2 are the two compressed audio signals created by
applying two different sets of CRs to the same noisy speech
signal. Note that for option (4), the comparison is excluded
from the dataset D.
In reward predictor state transition function, a batch of

data from D is used to train the reward predictor model
to improve the agent policy. Similar to the agent’s state
transition function, each compressed audio signal is framed
into 20ms frames with 50% overlap. Log Mel-spectrogram
features of each frame in an audio segment are computed and
considered to be one observation.
Data Augmentation - The performance of the human hear-

ing preference estimator depends on both the number of
feedbacks acquired from the user and the model structure.
A data augmentation is thus performed to address the limited
size of training data that is available to the reward estimator
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FIGURE 4. Network structure of the reward predictor.

in practice. For this reason, first the data size is doubled by
performing data flipping. This data augmentation consists of
creating realistic samples by substituting features of audio
signal 1 (c1) with features of audio signal 2 (c2). Their corre-
sponding preference label is switched accordingly. The goal
of the data augmentation here is to enhance the generalization
capability of the preference (reward) predictor.

In addition to increasing the size of the training data,
it is made sure that the training data does not suffer from
unbalanced labels. Unbalanced labels can cause the model
not to learn the learning preferences due to: (1) the network
model not getting optimized for the unbalanced label in the
original dataset, and (2) the accuracy of a validation or test
set drops as it is challenging to have a complete represen-
tation with few observations. To resolve imbalanced labels,
an undersampling is done by reducing the number of samples
in the class with more labels to match the number of samples
in the class with fewer labels.

D. PREFERENCE/REWARD PREDICTOR
In the reward predictor block shown in the Fig. 3, the param-
eters reflecting the reward are obtained via a combination
of a convolutional neural network and a bidirectional long
short-term memory (CNN-BiLSTM) in a supervised manner.
The convolutional neural network model has proven effective
in many applications. LSTM (long short-term memory) is a
recurrent neural network architecture that has been adopted
for time series forecasting. Convolutional layers on top of
LSTM layers are added to capture local temporal changes.

Bidirectional LSTM (BLSTM) processes inputs in two ways,
once from past to future and once from future to past. Hence,
it preserves information from both past and future. That is
why a CNN-BLSTM model is used here to learn hearing
preferences of a specific user.

Log Mel-spectrogram features of compressed audio pairs
constitute the two inputs of the network and user feedbacks
constitute the output of the network. The reward or hearing
preference predictor provides a reward prediction r̂ and pro-
duces the probability associated with preferring a compressed
audio signal c1 over another compressed audio signal c2. For
the prediction r̂ , the following cross-entropy loss function
between the predicted reward and the actual user feedback
is minimized:

loss
(
r̂
)
= −

∑
(c1,c2,µ)εD

(
µ (1) log P̂

[
c1 > c2

]
+ µ (2) log P̂

[
c1 < c2

])
(5)

Learning preferences and predicting reward from compari-
son pairs poses an implementation difficulty as a comparison
pair does not provide a numeric feedback. To estimate the
agent reward, one needs to estimate it from an intermediate
model or network. The network structure of the developed
hearing preference predictor is depicted in Fig. 4. Fig. 4(b)
shows the overall structure of the network used for training
the reward predictor based on the dataset of pair comparisons.
Batch normalization [40] is applied to the convolutional lay-
ers using a decay rate of 0.90 together with a dropout with
alpha = 0.5. The main purpose of the dropout is to prevent
the network from overfitting. The dropout decorrelates the
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weights of the hidden layers by randomly setting some hidden
units to zeros at each training update step.

During the training phase, the model is trained on a batch
size of 64, and optimized using the Adam algorithm [41]. Fur-
thermore, during the training phase, early stopping and adap-
tive learning rate are applied to further avoid overfitting. Once
the reward predictor is trained, the intermediate model or
shared network as depicted in Fig. 4 (c) is used for agent train-
ing. Due to the fact that DRL is sensitive to the reward scale,
a sigmoid layer is added at the end of the shared reward pre-
dictor model to bring the predicted reward between 0 and 1,
see Fig. 4 (c).

E. RL AGENT
The training for a RL policy π is carried out based on the
Bellman equation [42] in which at each time step t , the RL
policy provides an action at for a given state st as expressed
below

π : S → A

at = π (st) (6)

Action at influences the future state of the agent. The
success of RL in learning the policy is reflected in the reward
and the goal of RL is to maximize the overall reward. The
parameters of the policy can get updated based on deep
Q-learning [42], which is shown to be an effective RL training
for personalization purposes [43], to maximize the overall
estimated reward r̂ . Here, Q-value in Q-learning is optimized
by a convolutional neural network. Q-value at a time step j is
computed as follows:

yj←− r
(
sj, aj

)
+ γmaxa′Qφ

(
s′j, a
′
j

)
(7)

where r (s, a) denotes the reward of a state and an action, and
γ is a discount factor. A Q-value is basically a prediction of
the future reward which allows selecting a next action for
a given state. To convert the output values of the CNN into
action probabilities, the so-called one-hot representation is
utilized. As noted below, the action with the highest proba-
bility is then selected

aj = argmaxaQφ
(
sj, aj

)
(8)

The loss function in this CNN-based Q-learning is the
mean-square-error (MSE) and the optimization is done by
using the Adam algorithm, resulting in the CNN weights to
get updated as follows:

φ←− argminφ
∥∥∥Qφ (sj, aj)− yj∥∥∥2 (9)

It is important to note that in contrast to supervised learning
in which targets are fixed before training, here targets of the
CNN-based agent depend on the network’s weights that get
updated gradually.

Before starting to train the RL agent and in order to reduce
the chance of training a bad policy based on an untrained
reward predictor, the reward predictor is trained with the

dataset D of user preferences (mentioned earlier in subsec-
tion D). This means that the training of the reward predictor
is performed asynchronously with respect to the DRL agent.
For example, 200 comparison pairs can be conducted by
the user at the beginning of the DRL training. Then, query-
ing of the user feedback can be done every M time steps
(see Table 1).

For the CNN Qφ
(
sj, aj

)
model, a similar configuration

used in the Atari experiment in [35] is utilized here. In this
work, 80× 80×3 stacked log Mel-spectrogram images of an
unprocessed audio segment are used as the input to the policy.
The policy model consists of 3 convolutional layers having
32, 64, and 128 filters, respectively, with rectified linear
unit (ReLU) activation and alpha = 0.01. Then, the flattened
output of the last convolution layer is concatenated with the
compression ratio adjustments (CRadj) of the previous time
step.

This is followed by two fully-connected layers of size
256 with ReLU activation, and a fully-connected layer with
a size equal to the action space size. A fraction of the dataset
is used as validation data to avoid overfitting. The agent is
trained for 300 episodes, each containing 20 agent time steps.
The trained reward model is fixed during the agent training.
The value and description of parameters associated with the
agent training are summarized in Table 2.

TABLE 2. Parameters associated with agent training.

In this approach, non-numerical feedback rather than abso-
lute feedback is obtained from a user. The goal is to learn a
policy that is most consistent with the user’s preferences. As a
result, personalization emulates the intention of the user and
finds a policy that is ideally consistent with it.

The above learning can be viewed as an active learn-
ing approach for achieving personalized compression. This
approach has the advantage of being able to get trained
in an online manner, thus allowing its utilization in the
field or in real-world audio environments. The described
approach constitutes the first attempt at personalizing com-
pression via DRL by placing a user in the process of
learning hearing preferences as reward. The key attribute
of the developed personalization compression is that it is
capable of modeling the non-linearities of a user’s hear-
ing preferences and dealing with noisy preference feed-
backs, and thus improving over time by fine-tuning the
model based on more preferences and new encountered audio
environments.
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FIGURE 5. Mosaic representation of action space corresponding to simulated (a) users 1, 2, and 3, (b) simulated user 4, and (c) simulated user 5,
with β = 2 (CRadj = 1 or 4) and compression in five frequency bands. Light color indicates CRadj = 1 and dark color indicates CRadj = 4.

III. EXPERIMENTAL RESULTS
Two sets of experiments were conducted to examine the per-
formance of the developed personalized DRL compression.
The first set included simulations of the HITL deep reinforce-
ment learning. In the second set of experiments, five adult
human participants with bilateral, mild to moderate hearing
loss were tested. All human subject testing was performed
under an approved IRB (Institutional Review Board) protocol
at the University of Texas at Dallas. In the two subsections
that follow, these two sets of experiments are described. The
purpose of the simulation experiments was to show the capa-
bility of the developed personalized approach to learn hearing
preferences towards generating compression ratios that best
matched a specific setting or user. In addition, the results
of the personalized compression for five participants with
hearing loss are reported.

A. SIMULATION EXPERIMENTS
In the first set of experiments, hearing preference scenarios
were simulated, and the outcomes were examined to see
the learning capability of the developed personalized DRL
compression. The simulated experiments refer to simulat-
ing users with different hearing preferences to evaluate the
effect of β value, user’s feedback, and error in the training
of the reward predictor and agent. In order to analyze the
training performance of the DRL compression, simulations
allow more control over preferences. Hence before testing
the framework on subjects, five different hearing preference
scenarios were simulated by using sets of if-then conditions.
As described earlier, when the size of the action space is
grown by increasing the number of frequency bands or

the number of scalesβ, the personalization consequently
demands more iterations, which poses difficulties for its real-
world deployment. For simulated hearing aid users 1, 2, and
3, adjustments in all five frequency bands were considered
and for simulated hearing aid users 4 and 5 only in two and
three frequency bands (first, third, and fifth bands), were
considered, respectively. To visualize the permutation and
possible compression ratio (CR) adjustments for simulated
users, a mosaic representation also known as Marimekko
diagram is displayed in Fig.5. Each column represents
one possible compression ratio adjustment in the action
space A.

For all simulated hearing aid users, the same audiogram
or the same prescription gains from [36] were used. Then,
the DSL-v5 prescriptive gains expressed in nine frequency
bands were mapped to five bands to reduce the computational
complexity. The developed DRLmethodology is general pur-
pose in the sense that it can be applied to any number of bands.
The number of bands that are commonly used are five, seven,
and nine. Naturally, more training time with a subject in the
loop would be needed as the number of bands is increased
since the action space becomes larger.

Five frequency bands used were: [0-500] Hz, [500-
1000] Hz, [1.0-2.0] kHz, [2.0-4.0] kHz, and [4.0-6.0] kHz.
The compression ratios (gain changes) were computed from
the gains. The attack time (time it takes to respond to
higher sound levels) and the release time (time it takes
to respond to lower sound levels) were set to the typical
values of 0.01s and 1.0s, respectively. Basically, the attack
and release time regulate the reaction pace of compression.
Moderate and loud compression thresholds were also set to
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FIGURE 6. Preference space collected from simulated (a) user 1, (b) user 2, (c) user 3, (d) user 4, and (e) from simulated user 5.

60dB and 80dB to be consistent with the prescriptive hearing
aid compression fittings.

At each training time step, based on the agent’s input or
state, the agent outputs one of the CR adjustments as an
action in A to the environment. Each action corresponds to
compression setting adjustments in the five frequency bands.
Action space A of simulated users is shown in Fig. 5 via
a mosaic representation for two possible CR adjustments,
β = 2 (CRadj = 1 or 4). The column in this figure shows
all possible combinations of CR adjustments across the five
frequency bands. As a result, the action space of the first three
simulated users became as depicted in Fig. 5(a), exhibiting
32 possible compression ratio adjustments across all five
frequency bands (A =

∏5
i 2 = 32). Fig. 5(b) depicts the

action space of a simpler case by changing the compression
ratios in only the first and the fifth frequency bands, exhibit-
ing 4 possible CR adjustments. Likewise, the action space
for the case of adjustments in only three frequency bands
(first, third, and fifth) is depicted in Fig. 5(c). In Fig. 5, light
color indicates CRadj = 1 (no adjustment) and dark color
indicates CRadj = 4 (users often prefer higher compression
ratio in a noisy environment). As an example, in Fig. 5(a),
the second column in Fig. 5(a) mosaic plot exhibits the CR
adjustment settings as [4,1,1,1,1], and for the 20th column,
the CR adjustment settings as [4,4,1,1,4]. In other words,
based on the agent’s input, the agent can give one of the
32 actions in A, each one corresponding to a compression
setting adjustments in five frequency bands. As can be seen
from Fig. 5, the action space of the agent is influenced

by two factors: number of frequency bands and number of
adjustments in each frequency band.

Overall, 200 hearing preferences over audio pairs were
considered for each simulated user. As illustrated in Fig. 6,
when the action space became larger, more user feedbacks
were required tomodel user’s hearing preferences. Preference
space is displayed in Fig. 6 not only show the complexity of
hearing feedbacks in larger action spaces, but also differences
in preferences between the users 1, 2, and 3. To make the
simulation close to reality, the following conditions for the
simulated users were considered (users 1 to 3 are shown
in Figs. 6a to 6c, respectively): (1) receiving noisy feed-
back from user, (2) receiving inconsistent and highly noisy
feedback from user, (3) receiving neutral preferences across
various compression settings from user. The simulated user
2 is an example of the situation when an actual user does
not give proper feedback preferences when listening to audio
pairs of two sets of compression ratios. This led to failure
in learning preferences during the reward predictor training
which consequently led to failure in the agent learning or
learning the best settings for that user. The simulated user
3 is an example of the situation when an actual user is
very strict about some settings and has neutral preferences
over the other settings. This led to having more neutral
preferences and therefore the training dataset became highly
unbalanced.

The learning loss value of hearing preferences with respect
to training epochs in different scenarios is displayed in Fig 7.
By comparing Fig. 7(a) with Fig. 7(d), it can be seen that the
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FIGURE 7. Cross-entropy loss value in training reward predictor for simulated (a) user 1, (b) user 2, (c) user 3, (d) user 4, and for
(e) user 5.

FIGURE 8. Mean of normalized reward per episode and its trend (in solid red line) in the agent training for simulated (a) user 1,
(b) user 2, (c) user 3, (d) user 4, and for (e) simulated user 5.

learning process in the reward predictor training becamemore
challenging as the action space became larger. As can be seen
from Fig. 7, simulated users 2 and 3 have worse validation
loss in training the reward predictor. Failure in preference
learning for simulated user 2 is due to inconsistent feedbacks
from the user. For simulated user 3, due to having highly
imbalanced data (more neutral preferences), failure occurs in
the training of the reward predictor.

The mean of the normalized reward and the mean of the
Q-values (target outputs) across the agent training episodes
for each simulated user are displayed in Figs. 8 and 9, respec-
tively. From these figures, it can be seen that both the mean
reward and the mean Q-value exhibited an increasing trend,
indicating that the personalized compression was gradually
learning the policy that was ideally consistent with the users’
hearing preferences. As mentioned earlier, the success of
RL is heavily dependent on the performance of the reward
predictor. That is why, although an increasing trend for user
2 is exhibited in Fig. 8(b) and Fig. 9(b), the personalization
was not effective due to the poor training of the reward
predictor.

B. SUBJECT TESTING EXPERIMENTS
In addition to the above simulations, actual human sub-
ject testing was performed according to the IRB protocol

described earlier with one modification. Due to the Covid-19
pandemic, the original IRB was modified to allow participant
testing to be conducted online instead of in a soundbooth.
For the subject testing experiments, ‘‘virtual’’ visits were
conducted using a video conference utility. Secure links were
emailed to the participants to access online experimental
sessions.

For subject testing, a crowdsourcing approach similar to
the P.808 standard [44] was considered. It was ensured that
the subjects listened to different audio pairs many times in a
random order for a trustworthy comparison between theDSL-
v5 settings and the personalized DRL settings. Eligibility
conditions of the participants in our approved IRB included:
(i) range of hearing loss of participants being mild to moder-
ate, (ii) participants being native English speakers or present-
ing a native-level fluency of English, (iii) participants having
symmetric hearing loss, and (iv) age range of participants
being in the range 18-80 years old.

Initially, the participants obtained their audiograms using
the web-based hearing test at https://hearingtest.online/.
As per Table 1, for training the developed deep reinforcement
learning personalized compression, 210 (7 sessions of 30,
with breaks in between) pairs of sound files consisting of
the spoken sentences, discussed earlier, in noisy (babble)
background were played at SNR of 0 dB.
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FIGURE 9. Mean Q-value per episode in the agent training for simulated (a) user 1, (b) user 2, (c) user 3, (d) user 4, and for
(e) simulated user 5.

FIGURE 10. Outcome of subject testing experiments in percentages: comparison of hearing preference between
personalized compression and DSL-v5 compression.

The participants were asked to indicate which sound file
or clip they preferred or whether both sound clips sounded
the same to them. It is worth mentioning here that increasing
the number of sound files naturally improves the training and
210 audio sound files may not be adequate to cover all pos-
sible combinations of compression settings. For example, for
β = 2, the number of possible actions is 25 = 32, demanding(
32
2

)
= 496 pairs of sound files. However, to avoid human

fatigue, the test sessions were limited to 2 hours. This time
frame constrained the number of audio sound files to 210 over
7 sessions. The data augmentationmentioned earlier was then
applied to the collected dataset D of triplets (c1, c2, µ). The
reward predictor was trained based on the augmented data to
learn a participant’s hearing preferences.

After training the policy, a comparison test was conducted
between the personalized compression and the DSL-v5 ref-
erence prescriptive compression by playing 60 randomly
selected sentences across different talkers in a noisy (babble)
background at the same SNR level of 0dB. To remove any bias
associated with the timeline of the training and testing phases,
a gap of at least one-week was placed between these phases.
Note that the training is carried out offline and once the offline
training is completed, the actual operation/testing of the

trained DRL compression only takes 71ms for a 2.5 seconds
noisy speech sentence using a 2.9 GHz dual-core i5 pro-
cessor computer. Thus, for all practical purposes, the devel-
oped personalized DRL compression runs in real-time during
operation or testing. The ‘‘preference metric’’ used here is
an integrated metric to enable personalization as it incor-
porates speech quality, speech intelligibility or word error
rate, and audio comfort at the same time in a collective
manner. In other words, when users judge audio pairs, they
consider all these metrics together. For example, one user
may prefer or prioritize speech intelligibility over speech
quality and one usermay prioritize speech quality over speech
intelligibility.

Table 3 provides the compression ratios of DSL-v5 ver-
sus the compression ratios of the developed personalized
approach for five participants with mild to moderate bilateral
hearing loss who took part in this study. The outcomes of
the participant testing experiments in terms of preference
percentages are shown as a bar chart in Fig. 10. In this figure,
the ‘‘personalized settings preferred’’ implies that in the audio
pair assessment indicated in step 15 of Table 1, the subject
preferred the audio that was compressed by personalized
DRL compression settings. Likewise, the ‘‘DSL-v5 settings
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TABLE 3. Subject testing experiments: DSL-v5 vs. personalized compression ratios.

preferred’’ refers to when the subject preferred the audio
compressed by the baseline or reference prescriptive DSL-
v5. Similar preference denotes that the subject had equal
preference over the audio compressed with the personalized
DRL compression settings, and the audio compressed by the
reference prescriptive DSL-v5 compression settings.

As can be seen from this figure, on average, person-
alized settings were clearly preferred by the participants
over the DSL-v5 settings across different talkers and sen-
tences heard. In other words, the number of times the
personalized settings were preferred by the participants
were nearly 7 times greater than the number of times
the DSL-v5 settings were preferred. These results indicate
that the developed personalized or individualized compres-
sion indeed is more effective than a one-size-fits-all DSL-
v5 prescriptive compression approach. Audio samples of
the subject testing experiments can be heard at this link:
www.utdallas.edu/~kehtar/DRLcompression.html.

IV. CONCLUSION AND FUTURE WORK
In this paper, an active human-in-the-loop DRL-based per-
sonalized hearing aid fitting approach is developed to
improve the currently practiced one-size-fits-all hearing aid
fitting. The current fitting practice involves setting com-
pression gains based on gain averages of a group of users
which are not necessarily optimal for a specific user. The
developed approach personalizes compression settings via
a deep reinforcement learning framework. This is the first
time human-in-the-loop DRL has been used to achieve
improved hearing aid compression. Both simulation and
experimental results show the effectiveness of the devel-
oped personalization approach in achieving preferred hearing
outcomes.

The overall goal of this paper was to leverage simula-
tion with limited clinical subject testing, to show the proof-
of-concept of our novel personalized compression using
HITL DRL approach. In future studies, the deployment and
efficacy of our approach can be further assessed by carrying
out extensive clinical testing. This would require examining
a large number of subjects in controlled audio environments
and in the field. It would also be useful to examine several
noise types, SNRs, numbers of frequency bands, and alter-
native metrics other than the preference metric used in this
work. One key advantage of the introduced personalization
approach is that it is general purpose in the sense that all of
these parameters are already built into its training/testing and

additional parameters can be added to explore an even larger
variable space.
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