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ABSTRACT In the prognosis of radar transmitter degradation fault, there are some problems, such as the total
sample size and fault sample size of sensor monitoring data are small, and the monitoring data can not reach
the fault threshold. To solve these problems, a prediction model combining the multivariate long short-term
memory networks with multivariate Gaussian distribution is proposed, in which the long short-term memory
networks predict the subsequent time step of multi-sensor monitoring data, and the multivariate Gaussian
distribution model constructed by few fault samples is used to realize the prediction of degraded faults. The
key parameters of the model are determined by the data processing experiments of double monitoring points,
and the validity of the model is verified by the data processing experiments of multiple monitoring points.
The experimental results show that the degradation fault can be predicted effectively within 10% of the total
time series of monitoring data. Compared with the traditional radar warning after failure, the model can
effectively predict the degradation fault of the transmitter when the fault sample size is low and the fault
threshold is not reached.

INDEX TERMS Multivariate long short-term memory network, multivariate Gaussian distribution, prog-
nostic method, degradation fault of radar transmitter.

I. INTRODUCTION
Marine radar equipment is usually in a long-term working
state. The transmitter is the core part of the radar. Although
the transmitter has met the service life requirements of the
device when it leaves the factory, it is prone to prema-
ture degradation under adverse conditions such as complex
marine environments and frequent use. The maintenance
after degradation of the transmitter has failed to meet the
actual demand. Therefore, the prognosis of the degradation
of the radar transmitter becomes very important. With the
increasing complexity of marine radar systems, it becomes
more and more difficult to predict the degradation fault of
radar transmitters. Relying on professionals to monitor the
characteristics of each monitoring point is not only inefficient
but also difficult to predict the degradation fault. In this case,
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the concept of prognostic and health management (PHM)
emerged [1]. It refers to using sensors to collect various data
information of the system, with the help of various infer-
ence algorithms and intelligent models to monitor, predict
and manage the state of the system, estimate the health of
the system itself, and make effective predictions before the
system fails.

The method of degradation fault prognosis for radar trans-
mitter needs to meet the following requirements:

(1) The degradation fault prognosis for radar transmitter
can be completed by using the small fault samples. For the
radar transmitter, it has met certain service life requirements
when it leaves the factory, and may not have degradation
faults for a long period of monitoring time, that is, the number
of fault samples is small.

(2) The degradation fault prognosis for radar transmitter
can be realized without setting fault threshold artificially.
Sometimes, monitoring indicators of the radar transmitter are
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within the normal operating range, but the radar transmitter
is close to its useful life. Therefore, it does not make much
sense to set a fault threshold on the data of the monitoring
points.

(3) The degradation fault prognosis for radar transmitter
can be achieved by using the small historical data. Due to
the influence of ship navigation, the number of historical data
samples is often insufficient, and the sensor can not provide
equal interval continuous time series.

The prognosis research was originated from medicine
[2] and is now widely used in the fields of machinery
[3]–[6], electric energy [7]–[9], finance [10], [11], transporta-
tion [12]–[14], etc. Common fault prognosis methods include
traditional physical fault model prognosis methods [15], [16]
and themore popular data-driven prognosis methods in recent
years [17]–[24]. For the radar transmitter, the physical fault
model prognosis method is difficult to deal with the com-
plexity and randomness of the system [25], so it will be
subject to certain restrictions. In the data-driven prognosis
method, although [17] and [18] have higher fault prognosis
performance, they need to use thousands of historical data
as the training sets. In [19] and [20], it is necessary to set
the fault threshold to judge the predicted data. The historical
data in [21] needs to provide time series with equal time
intervals. In the experiment, the number of fault samples
adopted by [22] and [23] is almost equal to that normal
samples. Reference [24] verifies that the supervised learning
method is not suitable when the number of fault samples is
small. Unfortunately, none of the above studies can meet the
requirements for the prognosis of radar transmitter degrada-
tion fault.

Research results on fault prognosis of radar emerge
constantly in recent years. For instance, in [20], the fault
prediction model based on analytic hierarchy process with
BP neural network is used to predict the fault of the specific
model digital chip in a certain radar analog-to-digital con-
version module. Reference [26] analyzed the nonparametric
regression kernel function prediction method to obtain the
function relation between the predicted data series and his-
torical data series, and calculate remaining useful life before
radar failure. Reference [27] proposed an extraction method
of key lifetime parameters for the transmitter/receiver module
based on association rule. To research the health management
of radar transmitting power supply, [28] proposed a new
method to find suitable monitoring points, which focused
on how to choose the optimal monitoring point. In [29],
a diagnosis approach based on deep learning is proposed to
predict the meteorological radar fault by a dynamic threshold.
The above research results have played an important role
in promoting the development of fault prognosis of radar.
However, these techniques do not satisfy the requirements
of radar transmitter degradation fault prognosis mentioned
before.

Therefore, a new data-driven prognosismethod is proposed
to predict the transmitter degradation fault. The main contri-
butions of this article can be summarized as follows:

(1) The degradation prognosis method of radar transmitter
combining multivariate long short-term memory networks
and multivariate Gaussian distribution is proposed.

(2) Solve the problem of radar transmitter degradation fault
prognosis when the total sample size and fault sample size
of sensor monitoring data are small, and the monitoring data
below the fault threshold.

The paper is organized as follows: Section 2 analyzes the
proposed prognostic algorithm theoretically. The experiment
in Section 3 verifies the feasibility and portability of the
algorithm and discusses the selection of key parameters.
Section 4 gives the conclusions.

II. PROGNOSTIC METHOD ANALYSIS
In this article, a prediction model combining the multivariate
long short-termmemory networks withmultivariate Gaussian
distribution is proposed for evolving the tasks of prognosis
of radar transmitter degradation fault. The motivations and
solutions of this article can be concluded as follows:

(1) The data collected by each monitoring point of the
radar transmitter contains sensor noise, so it needs to denoise.
Here a classical denoisingmethod is selected, namelywavelet
denoising.

(2) There are multiple factors that cause degradation of
the radar transmitter. Therefore, multiple monitoring points
are set up in the radar transmitter, which can monitor the
working data of the transmitter over time. The time sampling
data of each monitoring point will form a time-series. In the
data-driven prognosis method, the long short-term mem-
ory (LSTM) neural network has the characteristics of memo-
rizing long-term information. The LSTM neural network has
achieved excellent results in the prognosis of time-series data.
Therefore, the proposed algorithm in this article uses LSTM
to learn and predict the time-series data of each monitoring
point.

(3) The correlation between the multivariate time-series
data monitored by each monitoring point is not clear, the data
fluctuates within the normal range, and the number of degra-
dation fault samples is small, so this article use the multi-
variate Gaussian distribution model to establish correlation
for the time-series. The modelling process only needs a few
fault samples as cross-validation sets to learn multivariate
Gaussian distribution parameters, then the multivariate Gaus-
sian distribution model can be used to determine whether the
predicted value of LSTM is a degradation fault.

The algorithm mainly considers three parts (Figure 1).
They are wavelet threshold denoising, long short-term mem-
ory network and multivariate Gaussian distribution,which are
described in detail below.

A. WAVELET THRESHOLD DENOISING
Since most of the time-series data monitored by the sensor
contain noise, it must be denoised and preprocessed. Here
the classic wavelet threshold denoising method is chosen.
The basic idea of wavelet denoising [30] is that the orig-
inal sequence after wavelet transformation will generate a
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FIGURE 1. Model structure and algorithm flow chart.

wavelet coefficient w, the wavelet coefficient of real data
is larger and the wavelet coefficient of noise is smaller. Set
a suitable threshold λ, the wavelet coefficients larger than
λ are considered to be generated by real data, keep them,
while those coefficients smaller than the threshold are con-
sidered to be generated by noise, set to zero to achieve the
purpose of denoising. The selection of threshold function is
the core of threshold denoising. Classic threshold functions
include hard threshold function (Figure 2a) and soft threshold
function (Figure 2b). The expressions are Equation (1) and
Equation (2) respectively. The hard threshold function will
produce additional oscillation and jump points after denois-
ing, which does not have the smoothness of the original
data. The soft threshold [31] has a good overall continuity
of wavelet coefficients, and no additional oscillation will be
generated.

wλ =

{
w |w| ≥ λ

0 |w| < λ
(1)

wλ =

{
sgn (w) (|w| − λ) |w| ≥ λ
0 |w| < λ

(2)

B. LONG SHORT-TERM MEMORY NETWORK
LSTM is a special Recurrent Neural Network (RNN), which
can learn long-term dependent information, originally pro-
posed by Hochreiter and Schmidhuber [32]. It has been
widely used in various time-series prognosis problems and
has achieved great success. To know what LSTM is, it is
necessary to start with RNN. The traditional deep neural net-
work contains a cyclic structure, as shown in Figure 3a. This
cycle seems very mysterious, but RNN can think of this cycle
as multiple copies of the same neural network, each neural
network module will pass the message to the next, as shown

FIGURE 2. Threshold function.

in Figure 3b. RNN can connect the previous information to
the current task, but unfortunately, when the distance between
the previous information and the current task point increase,
RNN will lose the ability to connect the long-distance infor-
mation to the current task point. The main reason is that RNN
uses back-propagation training in long-term sequences, and
the growth or contraction of back-propagation gradients accu-
mulates at each time step. This accumulation will cause the
gradient to explode or disappear in many time steps [33] and
cause long-term dependence of RNN. The repeating module
in LSTM can avoid the problem of long-term dependence by
the design shown in Figure 4.
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FIGURE 3. Network loop structure.

FIGURE 4. Loop structure of LSTM.

The working process of each LSTM cell can be described
by the following equation:

ft = σ
(
Wf · [ht−1, xt ]+ bf

)
(3)

it = σ (Wi · [ht−1, xt ]+ bi) (4)

C̃t = tanh (WC · [ht−1, xt ]+ bC ) (5)

Ct = ft × Ct−1 + it × C̃t (6)

ot = σ (Wo · [ht−1, xt ]+ bo) (7)

ht = ot × tanh (Ct) (8)

Among them,Wf ,Wi,WC ,Wo are the weights correspond-
ing to the forget gate ft , input gate it , modulation gate C̃t
and output gate ot . bf , bi, bC , bo are the bias parameters
corresponding to each function gate.

When using LSTM to predict the data, it can be divided into
a single-step prognosis with updates and a multi-step prog-
nosis without updates. Single-step prognosis with updates
means that you can access the real value of the previous time
step to update the network before predicting the next time
step, while the multi-step prognosis without updates can only
use the predicted value of the previous time step to predict the
next time step. Usually, the prediction result of the single-step

prognosis with updates is better than the multi-step prognosis
without updates. The quality of the LSTM prediction result
can be measured by the root mean square error (RMSE),
as shown in Equation (9), where h (xi) is the forecasted value
and yi is the observed value. The smaller the RMSE value,
the better the LSTM prediction result. The above structural
characteristics of LSTM make it have outstanding perfor-
mance in time-series data prediction, and the radar transmitter
degradation fault prognosis is to predict the data (time-series)
of each monitoring point of the transmitter, so LSTM can
meet our needs.

RMSE =

√√√√ 1
m

m∑
i=1

[h (xi)− yi]2 (9)

C. MULTIVARIATE GAUSSIAN DISTRIBUTION
Multivariate Gaussian distribution is a high-dimensional gen-
eralization of univariate normal distribution. It can automat-
ically capture the correlation between multiple features and
establish a model, so the multivariate Gaussian distribution is
suitable for multi-feature anomaly prediction [34].
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Formultivariate feature variable set x1=
{
x11 , x

2
1 , . . . , x

m
1

}
,

x2 =
{
x12 , x

2
2 , . . . , x

m
2

}
, . . . , xn =

{
x1n , x

2
n , . . . , x

m
n
}
,

each feature variable follows Gaussian distribution, it can
be written as Formula (10), and its probability density is
Equation (11). The expectation and variance of each fea-
ture variable set are shown in Equation (12) and (13).
At this time, to determine whether the new sample x test =[
x test1 , x test2 , . . . , x testn

]
is abnormal, you need to calculate

P
(
x test

)
and compare it with the threshold parameter ε.

However, in practice, there is often the high value of P
(
x test

)
,

and the new sample is indeed an abnormal sample, which can-
not effectively predict the abnormality of multiple features.
This is caused by the traditional Gaussian distribution model
ignoring the correlation between multiple characteristic vari-
ables. The multivariate Gaussian distribution can solve the
above problems by establishing a correlation model between
multivariate feature variables.

x1 ∼N
(
µ1, σ

2
1

)
, x2∼ N

(
µ2, σ

2
2

)
, . . . , xn∼ N

(
µn, σ

2
n

)
(10)

P (x) =
n∏
j=1

P
(
xj;µj, σ 2

j

)
=

n∏
j=1

1
√
2πσj

exp

[
−

(
xj − µj

)2
2σ 2

j

]
(11)

µj =
1
m

m∑
i=1

x ij , j = 1, 2, . . . , n (12)

σ 2
j =

1
m

m∑
i=1

(
x ij − µj

)2
(13)

The multivariate Gaussian distribution model can be
expressed as Equation (14), the expected vector is shown
in Equation (15), and Equation (16) is a covariance matrix,
which contains the correlation information between each fea-
ture variable. When using multivariate Gaussian distribution
to predict fault data, the method use training data to obtain
a multivariate Gaussian model, and then use Equation (14)
to calculate the probability density of new samples, finally,
compare the obtained probability value with the adaptive
threshold ε to predict whether it is a fault data.

P
(
x;µ, σ 2

)
=

1

(2π)
n
2 |6|

1
2

exp
[
−
1
2

(
x i − µ̂

)T
6−1

(
x i − µ̂

)]
(14)

µ̂

= [µ1, µ2, . . . , µn] , µ̂ ∈ Rn (15)

6

=
1
m

m∑
i=1

(
x i − µ̂

) (
x i − µ̂

)T
, 6 ∈ Rn×n (16)

The evaluation standard of a multivariate Gaussian distri-
bution model can be measured by F1 value, its calculation
is shown in Equation (17)-(19), the closer the F1 value to 1,
the better the model prediction effect. where P is the pre-
cision metric, R is the recall metric. ntp is the number of

true positives: the ground truth label says it’s an anomaly
and our algorithm correctly predicted it as an anomaly. nfp
is the number of false positives: the ground truth label says
it’s not an anomaly, but our algorithm incorrectly predicted
it as an anomaly. nfn is the number of false negatives: the
ground truth label says it’s an anomaly, but our algorithm
incorrectly predicted it as not being anomalous. The selection
of the threshold parameter ε can be determined by setting the
cross-validation set. In order to obtain the maximum F1 value
on the cross-validation set, different thresholds should be put
into test. At this time, the corresponding threshold is ε. In the
process of training the model, the training data can be all
normal samples, and only a few fault samples (or even only
one fault sample) are needed on the cross-validation set to
determine the threshold. The entire modeling process takes
into account the correlation between the characteristic vari-
ables and does not require a large number of fault samples,
which can also meet our requirements for radar transmitter
degradation fault prognosis.

F1 =
2PR
P+ R

, F1 ∈ [0, 1] (17)

P =
ntp

ntp + nfp
(18)

R =
ntp

ntp + nfn
(19)

III. EXPERIMENT AND ANALYSIS
To verify the effectiveness of our proposed method, two
experiments are set up in this section. Experiment 1: it is the
experiment to perform degradation fault prognosis on the data
of radar transmitter monitoring points. For the convenience of
visualization, the data of two monitoring points are selected
in the first experiment. Experiment 2: it is the degradation
fault prognosis experiment on the data of multiple monitoring
points of the radar transmitter. It should be noted that Exper-
iment 2 increases the number of monitoring points based on
Experiment 1 and verifies the feasibility of the method under
different degradation fault conditions. The purpose of the first
experiment is to prove the rationality of our proposed method
in the form of visualization. The second experiment is to ver-
ify the feasibility of themethod’s technology implementation.
The experiments are implemented on the MATLAB 2019b
platform.

A. RATIONALITY EXPERIMENT OF RADAR TRANSMITTER
DEGRADATION FAULT PROGNOSIS
This experiment select the time-series historical data mon-
itored by the two monitoring points before the degradation
fault of the radar transmitter. Each monitoring point has
192 historical data points, as shown in Figure 5. The horizon-
tal axis represents the time step of the sampling point, and
the vertical axis represents the data value of the monitoring
sensor. Because the sensor has data noise, the two time-series
are first denoised by wavelet. Specific parameter settings
include: the threshold function is the soft threshold function,
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FIGURE 5. Radar transmitter degradation fault data.

FIGURE 6. Radar transmitter degradation fault data after denoising.

the threshold is the heuristic threshold, the wavelet decom-
position level is 1, the wavelet base is Daubechies (db4). The
result obtained after denoising is shown in Figure 6.

Second, the experiment use LSTM to train the first 90%
samples (first 173 samples) of the denoised time-series, while
the last 10% samples (last 19 samples) to predict and compare
with the real observed data. Different LSTM parameter set-
tings will get different prediction results. The key parameters
are determined by the experimental data. The detailed param-
eter settings and prediction results, see Table 1.

It can be seen from the table that the RMSE of a single-step
LSMT with updates is much lower than the RMSE of a
multi-step LSMT without updates. On this basis, it com-
pared the impact of different iteration times on the prediction
results. When the number of iterations is 300, the RMSE
values of the time-series monitored by both sensors are low,
the RMSE of sensor 1 is 0.1585 and the RMSE of sensor
2 is 0.0283. The number of iterations 300 is determined
first. LSTM can obtain a better prediction effect when the
number of iterations is 300 and the initial learning rate in

TABLE 1. Effect of different parameters of LSTM on RMSE.

the table is 0.005. In the same way, the number of network
layers is determined to be 200. From this, the selection of key
parameters of LSTM is completed. Subsequent experiments
have selected the above key parameters. At this time, the key
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FIGURE 7. LSTM prognosis result.

parameters can be used to make a prognosis for the last
10% data of the two sensors. The predicted result is shown
in Figure 7.

Finally, the experiment use the 90% of the data at each
monitoring point to build a multivariate Gaussian distribu-
tion model and use the data predicted by LSTM for test-
ing. The cross-validation set is needed to determine the
threshold parameter ε and the F1 value in the model. The
cross-validation set is another two sets of time-series data
monitored by the same monitoring point under the same
degradation fault condition in another period. Although
the degradation fault data samples are not included in the
time-series of the cross-validation set, the degradation fault
will occur at the next time step of the last time point of
the data. Therefore, the data of the last few time steps in
the time-series of the cross-validation set can be regarded
as the failure sample. The number of fault samples in the
cross-validation set is different, the prognostic results are also
different. See Table 2 for details.

It can be seen from the table that when the number of
failure samples is 2 and 5, the F1 value of the model is
higher, which is 0.667.When the number of fault samples is 2,

FIGURE 8. Visualization of experimental sample points.

the first degradation fault prognosis point is the 7th time step
of the prediction sample (13 time steps in advance to predict
the degradation fault). When the number of fault samples
is 5, the first degradation fault prognosis point is the third
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TABLE 2. Influence of the different fault samples number in the cross-validation set on the prognostic results.

FIGURE 9. The degradation failure prognosis warning line.

time step of the prediction sample (17 time steps in advance
to predict the degradation fault). The more fault samples
in the cross-validation set, the better the forward-looking
of the degradation fault prediction. Of course, if there are
only two fault samples, the prognosis of the degradation
fault can also be met. Therefore, in the subsequent experi-
ments, the number of fault samples in the cross-validation set
is two.

Through the above analysis, the experiment use an LSTM
with 300 iterations, an initial learning rate of 0.005, and a
network layer of 200 to predict the last 10% data of the two
monitoring points. Then, the multivariate Gaussian distribu-
tion model is used to predict the degradation faults. The visu-
alized sample diagram of the experimental results is shown
in Figure 8. It can be seen from the figure that the samples
predicted by LSTM are outliers relative to most normal sam-
ples, so they are regarded as fault samples. Figure 9 shows
the warning line for the degradation fault prognosis.
The experimental results show that the radar transmitter
degradation fault prognosis method proposed in this article
is reasonable and applicable.

B. FEASIBILITY EXPERIMENT OF RADAR TRANSMITTER
DEGRADATION FAULT PROGNOSIS
To visualize the experimental samples and experimental
results in Experiment 1, the sensor data from only two
monitoring points is selected for the experiment. But usu-
ally, there are multiple monitoring points around the radar

transmitter to monitor its performance. In Experiment 2,
the number of monitoring points will increase to verify the
feasibility of the method proposed in this article, and verify
the portability of the method under different degradation
fault. The degradation fault of this experiment is the same
as Experiment 1 (degradation fault 1). The data of three
monitoring points, four monitoring points, five monitoring
points and eight monitoring points of the radar transmitter are
selected for the experiment. The experimental data is shown
in Figure 10. Each monitoring point has 192 historical data
points. The first 90% of the data is used for training and
the last 10% is used for testing. The experimental parameter
settings are the same as the key parameters determined in
Experiment 1. The specific experimental results are shown
in Table 3.

It can be seen from the table that with the increase of the
monitoring points number, the more advanced the time step
for the fault samples predicted in the test set, and also the
smaller the F1 value of the model. The main reason for the
above results is that the multivariate Gaussian distribution
considers the correlation betweenmultiple monitoring points,
which increases the number of predicted to be fault samples,
resulting in the decrease of the precision P and the F1 value.
If the experiment want to ensure the performance of the mul-
tivariate Gaussian distribution model, it can select 3 or 4 key
sensors monitoring point data for modeling. If the experiment
want to obtain an early degradation failure warning, it can
select more sensors monitoring point data for modeling.
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FIGURE 10. Monitoring data of 8 sensors under the condition of degradation fault 1.

TABLE 3. Experimental results of degradation fault prognosis of multiple monitoring points under the condition of degradation fault 1.

FIGURE 11. Monitoring data of 8 sensors under the condition of degradation fault 2.

To further verify the portability of the proposed method on
the prognosis of different degradation fault, this task conduct
experiments using degradation fault(degradation fault 2) data

different from experiment 1, the experimental data is shown
in Figure 11. Each monitoring point has 253 historical data
points. The first 90%( first 228 samples) of the data is used
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TABLE 4. Experimental results of degradation fault prognosis of multiple monitoring points under the condition of degradation fault 2.

TABLE 5. Comparison between the proposed method and the existing method.

for training and the last 10%(last 25 samples) is used for
testing. The experimental method and experimental param-
eter settings are the same as those in Experiment 1, and the
experimental results are shown in Table 4. Compared with the
experimental results in Table 3, it is possible to obtain similar
results to the degradation fault 1 experiment, which can fully
verify the feasibility and portability of the method proposed
in this article.

Table 5 compares the proposed degradation fault prognos-
tic method with previous method. In [20], the fault prediction
model based on analytic hierarchy process and BP neural
network is used to predict the fault of the model digital chip
in radar analog-to-digital conversion module. The error of the
prediction model is less than 5%. Non-parametric regression
model is studied in reference [26] to predict remaining useful
life of radar, the error of the model is 2.05%. LSTM model
and dynamic threshold are used to detect the faults of mete-
orological radar in reference [29]. It can be seen from the
table that compared with the reference [20], [26] and [29],
the method proposed in this article has a smaller sample size
and does not need to set the fault threshold artificially.

IV. CONCLUSION
This article proposed a radar transmitter fault prognosis
method that combines multivariate long short-term memory
network and multivariate Gaussian distribution. This method
can be used for radar transmitter deterioration fault prediction
when the total sample size and fault sample size of sensor
monitoring data are small, and the monitoring data can not
reach the fault threshold. This article discusses the prognostic
model and workflow of radar transmitter degradation fault.
We determine the key parameters of the model through exper-
iments and set up multiple monitoring points and different
degradation fault experiments to verify the feasibility and
portability of the model. The prognostic method proposed
in this article considers the correlation between the data of

multiple monitoring points and reduces the use of training
samples and fault samples when the data of each monitor-
ing point does not reach the failure threshold. The model
can effectively realize the prediction of different degradation
failures of radar transmitters. The degradation fault can be
predicted within 10% time step of the total time step of the
monitoring data before the degradation fault occurs, while at
the same time giving the warning time sampling point of the
degradation fault. Experimental results show that this method
is effective and feasible.
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