IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 19, 2020, accepted October 25, 2020, date of publication November 3, 2020, date of current version November 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3035398

A Survey of Distributed and Parallel Extreme
Learning Machine for Big Data

ZHIQIONG WANG “145, (Member, IEEE), LING SUI'“2, JUNCHANG XIN"“2, LUXUAN QU"1,
AND YUDONG YAO" 3, (Fellow, IEEE)

!College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, China

2Key Laboratory of Big Data Management and Analytics (Liaoning), School of Computer Science and Engineering, Northeastern University, Shenyang 110819,
China

3Department of Eletrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA

#Neusoft Research of Intelligent Healthcare Technology, Company Ltd., Shenyang 110179, China

3 Acousitics Science and Technology Laboratory, Harbin Engineering University, Harbin 0086, China

Corresponding author: Junchang Xin (xinjunchang @mail.neu.edu.cn)
This work was supported in part by the National Natural Science Foundation of China under Grant 62072089, in part by the China

Postdoctoral Science Foundation under Grant 2019T120216 and Grant 2018M641705, and in part by the Fundamental Research Funds for
the Central Universities under Grant N2019007, Grant N180101028, Grant N180408019, and Grant N2024005-2.

ABSTRACT Extreme learning machine (ELM) is characterized by good generalization performance, fast
training speed and less human intervention. With the explosion of large amount of data generated on
the Internet, the learning algorithm in the single-machine environment cannot meet the huge memory
consumption of matrix computing, so the implement of distributed ELM algorithm has gradually become
one of the research focuses. In view of the research significance and implementation value of distributed
ELM, this paper first introduced the research background of ELM and improved ELM. Secondly, this paper
elaborated the implementation method of distributed ELM from the two directions: ensemble and matrix
operation. Finally, we summarized the development status of distributed ELM and discussed the future

research direction.

INDEX TERMS Extreme learning machine, distributed processing, ensemble, matrix operation.

I. INTRODUCTION

With the rapid development of Internet and Internet of things,
the amount of data has been increasing rapidly in recent years.
We have entered the big data era. The volume, velocity, vari-
ety and value are the main features of big data [1]. With the
continuous development of big data, the complexity of data
is getting higher and higher. In 2017, IBM has added veracity
to the 4V big data feature, to emphasize that meaningful
data must be true and accurate. After that, the features of
big data have been gradually added vitality, emphasizing the
vitality of the whole data system; visiualization, emphasizing
the explicit display of data; validity, emphasizing the validity
of data collection and application. The knowledge hidden
in big data is valuable for decision-making in all fields.
Machine learning has become one of the hot methods of
knowledge discovery and a research hotspot in the field of
big data. How to conduct data mining and machine learning

The associate editor coordinating the review of this manuscript and

approving it for publication was Kathiravan Srinivasan

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

on large amounts of data has become an important issue in
the era of big data [2]-[4]. With the increase of the number
of hidden layers, the traditional training method of neural
networks will have many problems such as slow convergence,
time consumption and so on. In order to avoid the above
problems, neural networks with random weights are proposed
in which the weights between the hidden layer and input layer
are randomly selected and the weights between the output
layer and the hidden layer are obtained analytically [S]-[7].
Extreme learning machine (ELM) is one kind of neural
networks with random weights to train single-hidden layer
feedforward networks (SLFNs). Compared with traditional
SLFNs, ELM has the following remarkable characteristics:
First, ELM is characterized by its fast learning speed. Second,
traditional SLFNs may face problems such as local minima,
inappropriate learning rate and overfitting, it needs to use
some optimization methods to avoid these problems. ELM
is simpler than traditional SLFNs, which does not involve
these problems. For example, Radial Basis Function (RBF)
neural network investigated the implicit assumptions made

201247

https://orcid.org/0000-0002-0095-0378
https://orcid.org/0000-0002-7940-1477
https://orcid.org/0000-0003-2077-8269
https://orcid.org/0000-0001-8452-2743
https://orcid.org/0000-0003-3868-0593
https://orcid.org/0000-0002-9352-0237

IEEE Access

Z.\Wang et al.: Survey of Distributed and Parallel Extreme Learning Machine for Big Data

when employing a feed-forward layered network model to
analyze complex data [8], and ELM can be extended to
RBF network case, which allows the centers and impact
widths of RBF kernels to be randomly generated and the
output weights to be simply analytically calculated instead
of iteratively tuned. Finally, compared with the back prop-
agation algorithm in SLFNs, ELM has better generalization
performance [9]. In the original ELM, the nodes in the hid-
den layer are generated randomly, which is not related to
the training data. However, recent research have shown that
setting the number of hidden layer nodes arbitrarily may
lead to underfitting or overfitting of ELM. The statistical
characteristics of data sets and the way of generating ran-
dom parameters have a significant impact on the perfor-
mance of ELM [10]-[12]. Recently, there have been many
research of ELM based on parameter optimization, such as
ELM based on Principal Component Analysis ELM(PCA-
ELM) [13], ELM based on Particle Swarm Optimization
(PSO-ELM) [14] and ELM based on Genetic Algorithm
(GA-ELM) [15]. Compared with the traditional neural
network learning methods, ELM has significant learning effi-
ciency. Therefore, ELM provides good generalization perfor-
mance [16] with its extremely fast learning speed and has
been widely used in the fields of text classification [17],
image recognition [18], sensory recognition(visual, taste, and
smell) [19]-[21], Industrial [22], [23] and bioinformatics
[24], [25].

Although in recent years, many variants of ELM have
been developed, such as Multilayer Probability ELM
(MP-ELM) [26], ELM combined with sparse representa-
tion classification (ELM-SRC) [27], Residual compensation
ELM(RC-ELM) [28], to improve the efficiency of ELM. But
the ELM algorithm is a memory-resident algorithm. That is
to say, all pre-processed data must be loaded into computer
memory in advance. With the continuous expansion of the
training data scale, the memory limitation of traditional serial
or single computer environment, and the huge computation
amount of the ELM matrix, the traditional ELM cannot play
its efficient role. Therefore, in the face of large-scale data sets,
the application of parallel algorithm and the the distributed
procession of ELM will become one of the key points in the
future research.

ELM has been developed for nearly 15 years, a lot
of research have been carried out on it domestic and
overseas, and remarkable achievements have been made.
Huang ef al. [16] mainly introduced the variants of ELM,
such as batch learning mode of ELM, fully complex ELM,
online sequential ELM and incremental ELM. And they
proposed that ELM should be studied in the future such
as digging hidden nodes and evaluating the generalization
performance of ELM. Ding et al. [29] introduced the research
status, such as algorithm, theory and application, includ-
ing the model and the concrete application of ELM. And
they pointed out the future research direction, such as, fur-
ther improve the generalization performance of ELM model
structure and algorithm, combined the online learning and

201248

genetic algorithm with ELM, how to make better use of ELM
to deal with all kinds of round and multiple classification
problems, etc. Huang et al. [30] summarized the ELM from
interpolation theory, the universal approximation ability and
generalization ability, introduced the ELM in biomedical
engineering, computer vision, system identification and so
on, finally outlook the ELM in the future. Cao et al. [31] sum-
marized the research progress of ELM in recent years and its
applications in big data processing such as graphics process-
ing, video processing and medical signal processing. They
concluded that due to the randomness of the network param-
eters and the untuned learning strategy, the computational
complexity is greatly reduced, which benefits the application
of ELM and its variants in intelligent high-dimensional big
data processing. Three ELM problems in high-dimensional
big data processing are proposed. 1) How to balance the
performance and processing time? 2) How to select the opti-
mal number of hidden neurons for a specific application?
3) Most of the research results are realized by computer
simulation in the laboratory, real-world devices for different
applications are always facing various challenges. In recent
years, there have been many studies on ELM, such as dis-
criminative ELM [32], cross-domain ELM [33], evolutionary
cost-sensitive ELM [34], and adaptive ELM [35] to solve
different problems.

The above research introduced ELM from three aspects
of the ELM’s variants, optimization methods and its appli-
cations in different fields. But there isn’t a detailed elabo-
ration and comparison on the distributed method of ELM.
In view of the theoretical research and practical signifi-
cance of distributed ELM, this paper summarized the algo-
rithm on the ELM distributed platform for big data, and
divided distributed ELM algorithms into ensemble method
and matrix decomposition method according to its implemen-
tation modes. Section 2 summarizes the research status of
ELM, OS-ELM and ELM with kernel. Section 3 describes
two distributed ELM implementation methods: ensemble and
matrix operation. Section 4 analyzes the future research trend
of distributed ELM and makes a summary.

Il. BACKGROUND
In this section, we will describe our background, including
ELM, OS-ELM and ELLM with kernel.

A. ELM

The distributed ELM researcher mainly focuses on ELM and
the online sequential ELM (OS-ELM). Therefore this section
will mainly introduces the research status of classical ELM
and OS-ELM.

1) CLASSIC ELM

ELM [9], [16], [36] was initially proposed for the single
hidden layer feedforward neural networks (SLFNs) [5], [6],
and then extended to the generalized SLFNs, where the hid-
den layer does not need the same neurons. ELM first ran-
domly assigns input weights and hidden layer bias, and then

VOLUME 8, 2020

Z. Wang et al.: Survey of Distributed and Parallel Extreme Learning Machine for Big Data

IEEE Access

determines the output weights of SLFNs. ELM has great
advantage in efficiency and generalization performance com-
pared with the classical neural network algorithm which
applied to a wide rage of problems in different fields.

For any N different samples (x;,#), where x; =
[xj1, %2, -+, xju]T € R™and t; = [tj1, tjp, -+ , tim]T € R™.
The standard SLFNs mathematical model with L hidden
nodes and activation function g(x) is modeled as

L
Z Bigwi - xj + b;) = o; (D
i=1
where w; = [wi, win, - , win]T is the weight vector con-
necting the ith hidden node with the input node; B; =
[Bi1, Biz, - - ,ﬁim]T is the weight vector connecting the ith
hidden node with the output node; b; is the threshold of ith
hidden node; 0;=[0j1, 0j2, - - - , ojm]T is the jth output vector
of SLFNSs.

Standard SLFNs with L hidden nodes and activation func-
tion g(x) can approximate N samples with zero error. It means
that ZJL:] [loj —]l = 0 and according to Equation 1,
the Equation 2 as follows:

L
Y Bgwi-xi+b)=o0;=14 (j=1,2,---,N) (2
i=1

The above equation can be succinctly expressed as:

HB=T 3)
where H is:
Hwi,wa, -+ ,wr,b1,b2, -+ ,br,x1,x2, -+, XL)
gwi-xi+by1) -+ glwp-x1+br)
gwi-x2+by1) -+ gwr-x2+br)
= : : : : @
L gwi-xy+b1) -+ gwr-xy+br) |y
[Bi1t Biz -+ Bim
P21 P22 -+ Bom
B=1
| B Bra -+ Bim | m
[ty e - i
I 12 - b
T=\| (5)
LINLIN2 »* INm |

H is called the hidden layer output matrix of the neural
network and the ith column of H is the ith hidden node
output with respect to inputs xi, x2, - -- , xy. The smallest
norm least-squares solution of the above linear system is:

B=H'T (6)

where HT is the Moore-Penrose generalized inverse of
matrix H. The the output function of ELM can be modeled
as follows:

() = h(x)B = h(x)H'T)

where h(x) is feature mapping function.

VOLUME 8, 2020

2) OS-ELM

Liang et al. [37] developed an online sequential learning algo-
rithm for single hidden layer feedforward networks (SLFNs)
with additive or radial basis function (RBF) hidden nodes in a
unified framework. This algorithm is called online sequential
ELM (OS-ELM). OS-ELM can fix or change the block size
of the data block one-by-one or chunk-by-chunk learning.

OS-ELM consists of two phases, namely the initialization
phase and the sequential learning phase. In the initialization
phase, input the activation function g(x), and the appropriate
matrix Hy is filled up for use in the learning phase. The
number of data required to fill up should be at least equal
to the number of hidden nodes. Following the initialization
phase, the learning phase commences either on a one-by-
one or chunk-by-chunk (with fixed or varying size) basis as
desired. Once the data is used, it is discarded and not used
any more. Finally, we get the output weight S.

Initialization Phase: Initialize the learnil}vg using a small
chunk of initial training data Ny = {(x;, #;)} i:() | from the given
training set.

a. Assign random input weights a; and bias b; (for additive
hidden nodes)or center @; and impact factor b; (for RBF
hidden nodes), i =1, ..., L.

b. Calculate the initial hidden layer output matrix H

glay, by, x1) --- glar, b, x1)
Hy = : : (®)

glar, by, xny) -+ - g(ar, br, xng) |y, w1

c. Estimate the initial output weight @ = POHOT To,
where Py = (H Ho) ™' and To = [11, .. . ty, 17

d. Setk =0.
Sequential Learning Phase: Present the k£ + 1th chunk of new
observations

k1
2iZo N

Nit1 = {(x, t")}i=(Z'-‘ o N)+1 ”
-

where N1 denotes the number of observations in the
(k + 1)th chunk.

a. Calculate the partial hidden layer output matrix Hy1 for
the k + 1th chunk of data Ny 1.

glar,b1,xpy1) -+ gaL,br Xp(ky1)
Hjqp1= : :
8lar,b1Xpte+n) -+ 8@L DL Xpk+1) Ly,
(10)

— T
b. Set Ty = [t(Zf:on)Jrl’ RN th;role] .

c. Calculate the output weight S*+1.

Pyt =Py —PeHL (I +Hia PRHL) T Hien Pe - (11)
BT = g0 4 P HE | (Tt — Hiy1 B©) (12)

d. Set k = k + 1. Go to Sequential Learning Phase.
ITo simplify the matrix, we set (k) = ijzon

201249

IEEE Access

Z.\Wang et al.: Survey of Distributed and Parallel Extreme Learning Machine for Big Data

B. KERNEL ELM

Huang et al. [38] combined the learning principle of support
vector machine, introduced the kernel function into ELM, and
proposed the kernel ELM. Compared with the Extreme SVMs
proposed by Liu ef al. [39] and Benoit et al. [40], the ELM
constructed with this method has fewer constraints and better
learning ability. Kernel ELM does not consider the feature
mapping function h(x), the input weight vector w, the bias
b and the number of hidden nodes L in ELM. When the
mapping is unknown, it will construct a kernel function to
represent HH ' :

K(xy,x1) -+ K(x1,xn)

HH" = Qpy = :) :
K(xn,x1) -+ K(xn, xn)
K(x, x1)
hx)HT = : (13)
K(x, xy)

So the connection weight matrix 8 between hidden layer and
output layer can be expressed as:

1
B=(z+ Qen)'T (14)

where C is regularized parameter. And where

1t fy - tm)

T=|:|=|: : : (15)
ty INT ** INm)

where the expected output vector of the m output nodes is
ti2[03"' 907]107"' 7O]T
The classification formula of kernel ELM expressed as

K(x,x1)
fO=ghH =g |5+ 'T) (16)

K(x,xy)
lll. DISTRIBUTED ELM
The ensemble method consists of a group of separately
trained classifiers, and an ensemble is usually more accurate
than any classifier in the ensemble [41]. Ensemble multiple
ELM into one model can achieve the parallelization of ELM
and speed up the computation. Although ensemble ELM
solves the computational consumption problem of multiple
learning on the same data block, the ensemble learning cannot
learn all the data. In the ELM computation, the most expen-
sive computation part is the matrix multiplication operator
of the Moore-Penrose generalized inverse matrix [42]. The
matrix multiplication operator is decomposable. Therefore,
matrix operation is proposed to solve the problem that ensem-
ble learning cannot learn all the data. Existing researchers
mainly apply ensemble and ELM matrix operation optimiza-
tion to conduct distributed processing on ELM.

201250

FIGURE 1. Implementation process of results ensemble ELM.

A. ELM ENSEMBLE

There are two main ways to parallelize ELM using the ensem-
ble methods: (1) Results ensemble. Decompose the problem
(data set) into sub-problem (sub-data set), train an ELM for
each sub-problem (sub-data set), and finally gather the trained
results. (2) Parameters ensemble. Divide ELM into multiple
sub-ELMs through different partitioning methods, train the
ELM sub-models in parallel, and finally combine all the
trained sub-models through some algorithms. Results ensem-
ble gather the trained results of multiple models, the trained
results have higher accuracy. Parameters ensemble gather the
parameters on a single model to calculate, which is more
complicated than the calculation on a single model of results
ensemble. However, the results ensemble are calculated on
multiple models,the calculation complexity is similar. At the
same time, parameters ensemble has better performance in
memory optimization.

1) RESULTS ENSEMBLE

As shown in Fig. 1, the results ensemble is the aggregation of
the results after training multiple ELM. Results ensemble are
mainly used to train models in different environments such
as GPU [43], network [44], [45], and MapReduce [46]—[48]
framework. And the results ensemble method is applied to
kernel ELM [49].

In 2011, Heeswijk et al. [43] proposed to combine multiple
ELM into the inheritance model. They paralleized model
training and model structure process among multiple GPU
and CPU cores, realized the simultaneous construction of
ELM multiple models, paralleized and improved the learning
speed of ELM. To address the problem of classification in
P2P networks, Sun et al. [44] applied OS-ELM to the P2P
network, trained each peer node and generated an ensemble
classifier. This method not only improved the computation
speed, but also solved the problem of low classification accu-
racy in traditional P2P ensemble classifier, where the local
classifier only learns part data. Wang et al. [45] applied M3-
network [50] into the ELM ensemble, and proposed a parallel
ensemble ELM (M3-ELM) based on M3-network. M3-ELM
first decomposes the classification problem into smaller sub-
problems, then trains one ELM for each sub-problem, and
finally ensemble these ELM with M3-network. Compared
with common ELM, M3-ELM increased the training speed by
1.6-4.6 times and reduces the training error by 0.37-19.51%.

VOLUME 8, 2020

Z. Wang et al.: Survey of Distributed and Parallel Extreme Learning Machine for Big Data

IEEE Access

| |
| |
} ’ Mod1+Data ‘ ’ Mod2+Data ‘ }
| |
} '"P"t Input Input }
| |
} e © © © }
| |
| |
| Output Output Output |
| |
1 ELM 1 ELM 2 ;
| |

’ Data Subset 1 ‘ Data Subset 2 ‘

Input Input Input

I
I
I
I
I
I
I
I
I
I
I
QQ
|
1 Phase2
I
I
I
I
I
|
I
I
I
I
I

Labels 1 Labels 2

=)

Output

Flnal Labels

Labels m

FIGURE 2. Framework of ELM-MapReduce.

MapReduce is a computing framework for big data parallel
processing, and the ELM ensemble based on the MapReduce
framework is widely used. ELM-MapReduce [46] adopts the
ELM learning method to build an ELM ensemble classifier
on the MapReduce, as shown in figure Fig. 2. ELM is widely
used for gesture recognition.

However, when the data set includes multiple objects,
the classical ELM may produce large errors. Liang et al. [47]
built a separate ELM network for each gesture and combined
the results after training, instead of building one ELM for all
gestures. Noise is frequent in large-scale data, and in order to
eliminate the impact of noise, Huang et al. [48] first proposed
an ensemble OS-ELM framework, which integrates three
ensemble methods: bagging, subspace partitioning, and cross
validation. Then, they designed a parallel ensemble algorithm
of OS-ELM based on the MapReduce to analyze large scale
data effectively.

In order to build an ensemble classifier of kernel ELM,
Li et al. [49] proposed a parallel one-class ELM algorithm
(P-ELM) based on bayesian method. P-ELM divides the
training data set into k& components according to class
attributes, and then uses the divided training data set to train
k kernel-based one-class ELM classifiers, finally, uses the
bayesian method to compare the output function values of
one-class P-ELM classifier based on kernel.

2) PARAMETERS ENSEMBLE

The research of parameters ensemble is mainly to train a ELM
sub-model on each node through the MapReduce framework,
and then collect all the sub-models to form the final model
through some algorithms. It is used to solve problems such

VOLUME 8, 2020

as integrating classification and regression [51], inefficiency
and lack of memory [52], [53], and improving the scalability
of data processing [54].

Chen et al. [51] proposed MR-ELM to solve both classi-
fication and regression problems. MR-ELM trains an ELM
sub-model in each Hadoop node, uses local sample blocks,
collects trained hidden nodes, and forms the final ELM
model. For the regression problem, they used least squares
method to calculate the weight of each group of hidden nodes.
For classification problems, simply merged the hidden node
groups. Different from MR-ELM, the model proposed by
Wu et al. [52] adopts the generalized inverse method to
calculate the weight of each Hadoop node, and the com-
bined weight is obtained by the Moore-Penrose generalized
inverse operator to combine all ELM sub-models. Catak [53]
constructed AdaBoosted-ELM classifier based on the com-
bination of ELM and AdaBoosting to improve the classifiers
prediction ability. Adaboosted-ELM creates data blocks from
the training data set by using MapReduce paradigm, and uses
each subset of the training data set as a single global classifier
function to find the ELM ensemble. Budiman et al. [54]
integrated CNN architecture with ELM, CNN serves as unsu-
pervised convolution feature learner and ELM as supervised
classifier to improve the scalability of big data processing.
In the calculation process of MapReduce, the Map process
acts as the classifier of CNN-ELM and conducts independent
learning on different training data partitions. Reduce process
integrates the all weights (kernel weight on CNN and output
weight on ELM) on CNN-ELM on an average basis.

B. ELM MATRIX OPERATION OPTIMIZATION

Because the matrix multiplication operator of the Moore-
Penrose generalized inverse matrix is the most expensive
part, it is very difficult to calculate on a single machine, and
the matrix operator is decomposed. Therefore, most research
focused on the decomposition of matrix multiplication oper-
ation [42], [55]-[57], and proposed the double classifier
algorithm that combines the most basic matrix decompo-
sition method with other methods [58], [59]. Subsequent
studies focused on some defects of the basic ELM matrix
decomposition, and solved the problems of the deficiency of
MapReduce framework [60]-[62], only considering super-
vised ELM [63], [64], and unbalanced data [65], [66]. At the
same time, the distributed processing of improved ELM
(OS-ELM [67]-[70] and kernel ELM [71]-[73]) is
considered.

1) CLASSIC ELM

He et al [55] first proposed the parallel ELM algo-
rithm (PELM) based on the MapReduce framework and
designed the key value pairs suitable for ELM algorithm.
In PELM, after the first MapReduce job obtained the output
matrix H, H is written to HDFS; The second MapReduce
job reads the output matrix H from the HDFS to calculate
the final ELM result. Therefore, in the two MapReduce
jobs, a large number of intermediate results are converted,

201251

IEEE Access

Z.\Wang et al.: Survey of Distributed and Parallel Extreme Learning Machine for Big Data

Algorithm 1 ELM* Training Algorithm
1: function MAP(sid id, sample s)
2: h = new ASSOCIATIVEARRAY
: (x, t) = Parse(s)

3

4 fori=1— Ldo

5 hli] = g(w; - x + b))

6: end for

7 fori=1— Ldo

8 forj=1— Ldo

9 context.write(triple('U’, i, j), h[i]h[j])

10: forj=1— mdo

11: context.write(triple('V’, i, j), h[i]¢[j])
12: end for

13: end for

14: end for

15: end function
16: function REDUCE(triple p, sum [s1, 52, -+])

17: temporary variable w = 0

18: for all sum s € [sq, s2,---]do
19: w=w+s

20: context.write(triple p, sum)
21: end for

22: end function

increasing the processing time for ELM. Xin et al. [42] found
that the matrix U and V can share the calculation of 4;; of
the matrix H, and the calculation of partial sum of u;; and v;;
is independent. Therefore, they proposed ELM* to calculate
the matrix U and V in one MapReduce process as shown
in Algorithm 1. ELM* combines two MapReduce jobs of
PELM, and only uses one MapReduce to obtain the final
ELM result. ELM* not only reduces the transmission cost of
a large number of intermediate results, but also improves the
processing efficiency. However, ELM* has a weak learning
ability, in order to make up for the deficiency of ELM*
in updating the number of hidden nodes, Xin et al. [56]
proposed an adaptive distributed ELM (A-ELM*). A-ELM*
first computes the intermediate matrix multiplication of the
updated hidden subset of nodes, then updates the matrix
multiplication by modifying old matrix multiplication and
intermediate matrix multiplication, and finally uses update
matrix multiplication to obtain a new output weight vector.
In order to make up for ELM*’s lack of updated large-scale
data sets, Xin et al. [57] proposed an elastic ELM based
on the MapReduce, named E2LM. E2LM first calculates the
intermediate matrix multiplication of the updated training
subset, and then uses the same method as A-ELM* to update
the matrix multiplication and obtain the new output weight
vector. Since the number of update hidden nodes is much
smaller than the whole update part and the updated training
data set is smaller than the whole training data set, the calcula-
tion time of A-ELM* and E>LM is much smaller than ELM*.
The matrix decomposition method of ELM* shows good
performance in improving the performance of centralized

201252

recommendation algorithm in large-scale recommenda-
tion [74] and in WiFi-based fingerprint indoor positioning
system [75].

A large number of data sets not only have a large num-
ber of records, but also bring the problem of the feature
space dimension, so it is always necessary to reduce the
dimension of feature space. Nonlinear principal component
analysis (NLPCA) is used as a dimension reduction method,
which takes into account the nonlinear relationship between
features. Tejasviram et al. [58] proposed that Auto Associa-
tive ELM (AAELM) perform NLPCA, extract the output of
AAELM hidden node, and treat it as NLPCs after the training.
And implement AAELM by matrix decomposition on the
MapReduce. Decision Trees(DT) [76] is a promising parallel
classification algorithm with the advantages of simple imple-
mentation, fewer parameters and less computation. However,
many parallel DT algorithms ignore the over-segmentation
problem, which may lead to redundancy and over-fitting.
To solve this problem, Wang et al. [59] proposed a hybrid DT
induction method — ELM-Tree. When all available segmenta-
tion gain ratios are less than the threshold, ELM is embedded
as a leaf node. Since the calculation of information gain and
gain ratio of different cutting points are independent, it can
be completed in parallel. Considering the parallel calculation
of ELM output matrix, the parallel calculation is applied to
ELM-Tree.

Although distributed processing based on the MapReduce
has been widely used, many Map and Reduce tasks are
generated. Intermediate results generated in the Map phase
will be written to disk;In the Reduce phase these interme-
diate results will be read from the disk to the Hadoop dis-
tributed file system (HDFS). This process greatly increases
the communication cost and reduces the learning speed
and efficiency. In contrast to Hadoop, Spark operations are
based on Resilient Distributed Datasets (RDD), which can
be cached in memory across nodes and reused in multi-
ple parallel operations similar to MapReduce. Therefore,
multiple occurrences of variables and intermediate variables
can be cached in memory rather than on disk, reducing
communication costs and I/O overhead. Oneto et al. [60],
[61] realized emotion recognition and polarity detection
on ELM with Spark memory technology, and solved the
problem of selecting the super-parameter of ELM with the
best generalization performance. Duan et al. [62] proposed
ELM (SELM) based on Spark framework. By partitioning
the corresponding data reasonably to maintain balance among
node workload, the hidden layer output matrix calculation
algorithm, matrix U decomposition algorithm, and matrix
V decomposition algorithm perform most of the computa-
tions locally, SELM realizes localization of most calcula-
tions, while keeping the intermediate results in distributed
memory and caching diagonal matrix as broadcast variables,
thus reducing a large amount of costs. Compared with PELM
[55], ELM* [42], and improved ELM* [56], [57], SELM
achieves the highest acceleration speed on the premise that
the accuracy is the same as that of traditional ELM.

VOLUME 8, 2020

Z. Wang et al.: Survey of Distributed and Parallel Extreme Learning Machine for Big Data

IEEE Access

2) IMPROVED ELM

Currently, distributed ELM only supports supervised learn-
ing on labeled training data sets, and does not support the
processing of partially labeled or unlabeled training
data. Considering parallelization of semi-supervised ELM
(SS-ELM), Chen [63] proposed parallel approximation
SS-ELM (PASS-ELM). PASS-ELM is based on the approxi-
mate adjacent similarity matrix (AASM) algorithm, uses the
Locality-Sensitive Hashing (LSH) algorithm to calculate
the approximate neighborhood similarity matrix, and adopts
the Laplace acceleration method for distributed processing of
ELM. Different from the emphasis on PASS-ELM, U-ELM
proposed by Wang et al. [64] adopts matrix decomposition
method to parallelize ELM and the Laplace acceleration
method adopted by PASS-ELM to form a complementary,
and not only extends distributed ELM to semi-supervised
learning, but also to unsupervised learning.

ELM and its variants have been widely used in many
big data learning applications, where it is easy to find the
raw data with imbalanced hierarchical distribution [77], [78].
Zong et al. [79] proposed a weighted ELM (W-ELM) to
deal with the imbalance problem. Different from the tradi-
tional ELM which treats all training data equally, W-ELM
adds different penalty coefficients to weight the training
errors of different inputs. Wang er al. [65] proposed the dis-
tributed processing of W-ELM (DW-ELM), which improved
the efficiency of learning a large number of unbalanced
data. DW-ELM first uses two MapReduce jobs to effec-
tively calculate matrix multiplication in parallel, and then
obtains the corresponding output weight vector through cen-
tralized calculation. The experiment shows that, no mat-
ter how the experimental parameters change, DW-ELM
can always process large-scale data effectively and quickly.
After that, Wang et al. [66] proposed an improved DW-ELM
(IDW-ELM). DW-ELM uses two MapReduce jobs to com-
plete the calculation of U and V matrix, while IDW-ELM
only uses one MapReduce job to finish the same calculation,
so the transmission time of IDW-ELM is far less than that
of DW-ELM.

A traditional ELM assumes that all training data is pre-
pared prior to the training process, however, in some tasks,
the training data is sequential. In order to extend ELM to
online sequential data, Liang et al. [37] proposed the online
sequential ELM (OS-ELM), which can learn data one by one
or block by block, and can change block size to process block-
to-block data. Ai er al. [67] proposed a distributed collab-
orative ELM based on message exchange between adjacent
nodes, named DC-ELM. DC-ELM restates the centralized
ELM training problem into a separable form between nodes
with uniform constraints, and then uses distributed opti-
mization tools to solve the equivalence problem. Although
DC-ELM does not parallelize OS-ELM, it uses the online
sequential method to conduct distributed processing on ELM.
Wang et al. [68] proposed a parallel OS-ELM (POS-ELM)
based on the MapReduce by analyzing the dependency of
OS-ELM matrix calculation. The effective of POS-ELM is

VOLUME 8, 2020

equal to that of OS-ELM and ELM, and in large-scale learn-
ing, the efficiency of POS-ELM is better. POS-ELM supports
training of a single OS-ELM model in parallel, but does
not support training multiple OS-ELM models effectively.
Therefore, in order to train multiple models accurately and
effectively, Huang et al. [69], [70] proposed batch parallel
OS-ELM (BPOS-ELM), estimated Map and Reduce execu-
tion time with historical statistical data, and generated execu-
tion plan. BPOS-ELM started a MapReduce to train multiple
OS-ELM models according to the generated execution plan.

ELM provides a unified learning program and a widely
used type of functional mapping. In these uniform algorithms,
kernel ELM uses a kernel rather than a random feature map.
However, with the exponential growth of training data in
large-scale learning applications, centralized kernel ELM has
a large matrix computing memory consumption problem,
so0 it is very important to conduct distributed processing on
kernel ELM. Bi et al. [71] realized parallelization of ker-
nel ELM on the MapReduce, and realized matrix decom-
position on the MapReduce by using orthogonal projection
method. Karthick ez al. [72] adopted Spark ITFS technology
to select features through dimensionality reduction, and
then classify each node to parallelize the kernel ELM.
Pandeeswari et al. [73] first proposed the kernel OS-ELM
based on the MapReduce, and proposed the online sequential
ELM method with kernel (OS-ELM-Ker) based on sparse
criterion, and simultaneously considered the parallelization
of OS-ELM and kernel ELM.

There are also distributed approaches that take into
account both ensemble and matrix operations. For exam-
ple, Han ef al. [80] proposed a weighted ensemble ELM
(WE-DELM) based on matrix operation, combining matrix
decomposition with ensemble operation; Wang et al. [81]
proposed two models, data parallel regularization ELM
(DPR-ELM) and model parallel regularization model (MPR-
ELM), respectively using matrix operation and ensemble.

C. OTHERS

In addition to ensemble and matrix operations, there are
other ways to implement distributed ELM. For example,
iteration acceleration [82], using acceleration package on
MATLAB [83], GPU acceleration [84], [85], using online
sequential to realize distributed [86], and so on.

Different from He et al. [55], Xin et al. [42]. Kokkinos and
Margaritis [82] et al. conducted the incremental version of
ELM. Incremental ELM does not use direct matrix-matrix
multiplicators, instead of adding neurons one by one, using
each neuron to transmit one data, for direct parallelization.
Compared with the classical training method of calculating
the generalized inverse of regression matrix to solve the out-
put weight, incremental ELM has a lower computational cost.
Rizk et al. [83] used MATLAB’s parallel tool to distribute
feature space transition to multiple works, and applied the
clustering algorithm to a single worker to achieve paralleliza-
tion. Graphics processing units (GPUs) has become parallel
processing tools due to its high computing power and low

201253

IEEE Access

Z.\Wang et al.: Survey of Distributed and Parallel Extreme Learning Machine for Big Data

TABLE 1. Distributed ELM Comparison.

Name Ensemble | Matrix Decomposition | Kernel | OS-ELM | Platform | MPI | GPU | Double Classifier | Scalability | Stability | Efficiency
OS-ELM-based P2P V1 v v %2
Multiple ELM v v *
M3-ELM v v v *
ELM-MapReduce v v _k
PELM v v *
ELM* v v v *k
A-ELM* v v v * * *
E2LM v v v v * * *
POS-ELM v v v * % *
BPOS-ELM v v v * * %
PEOS-ELM v v v ok
AAELM+MLR v v v *
WE-ELM v v v *k
DW-ELM v v v Fok
IDW-ELM v v v * % %
DC-ELM v v v v v *
ELM-Tree v v v *
DK-ELM v v v v **
OS-ELM-Ker v v v *
P-ELM v v *
SELM v v * * %
U-DELM v v v * * *
PASS-ELM v *k
MR-ELM v v v *
CNN-ELM v v v *
DELM v *
PR-ELM v v v *k
DGR-ELM v v *
SLT-based ELM v v *
GPH-ELM v v v ok

! The algorithm satisfies this condition.

2 The number of stars represents the degree of improvement of this algorithm over base-line.

cost, especially in the field of high-performance computing.
Phusomsai er al. [84] used histogram gradient for feature
extraction based on tumor shape images, and ensemble them
into ELM as a classifier. After that, they used the parallel
feasibility study and implementation to accelerate the tra-
ditional ELM on the GPU by 3 times and 7 times in the
classification stage. Chen et al. [85] were the first to combine
the memory cluster computing platform Flink and GPU to
parallelize Hierarchical ELM (H-ELM), which integrates the
excellent characteristics of memory cluster computing and
GPU. Vanli et al. [86] introduced an ELM algorithm based
on the gradient of the distribution formula.This algorithm
provides a guaranteed upper bound for SLFN performance
of each agent, and proves that each independent SLFN can
asymptotically achieve the optimal SLFN performance for
centralized batch processing.

There are some methods for parallelizing ELM. Although
distributed processing of ELM is not implemented, some
parallelization methods combined with ELM are adopted
to optimize ELM.Some random hidden nodes may play an
important role in the network output. Yang et al. [87] applied
the parallel algorithm to ELM and proposed an incremental
ELM based on the parallel chaos search (PC-ELM), which is
used to discover hidden nodes in the network output. Ahmad
and Janahiraman et al. [88] proposed a parallel ELM (PIPSO-
ELM) based on particle swarm optimization for modeling
and prediction of surface roughness and power consumption

201254

in manufacturing. PIPSO-ELM is divided into two separate
algorithm blocks, each representing surface roughness and
power consumption, and then the two basic ELM based
performance models are combined with the selected input
weight and the hidden bias of PSO. In order to improve the
performance of ELM in dealing with regression problems,
the existing research proposes to apply the double-parallel
structure to ELM. He et al. [89] applied a data-attribute-
space-oriented double parallel (DASODP) structure with
data-oriented attribute space to ELM (DASODP-ELM). The
double-parallel structure enables DASODP-ELM’s output
layer to receive not only information from neurons in the
hidden layer, but also direct information from neurons in the
input layer. Compared with ELM, DASODP-ELM with fewer
parameters can achieve better performance.

Random vector functional-link (RVEL) networks can be
regarded as a single hidden layer feedforward neural net-
work resulting in a linear combination of nonlinear exten-
sions of the original input. ELM is exactly proposed for the
single hidden layer feedforward neural network. Therefore,
the distributed learning algorithm proposed for RVEL may be
applied to ELM. Scardapane et al. [90] proposed a distributed
learning algorithm for training data distributed in a random
vector functional-link network with a decentralized informa-
tion structure. They proposed two algorithms based on decen-
tralized average consensus (DAC) and alternating direction
multiplier machine (ADMM) strategies. These algorithms

VOLUME 8, 2020

Z. Wang et al.: Survey of Distributed and Parallel Extreme Learning Machine for Big Data

IEEE Access

work in a completely distributed manner and do not need
the coordination of the central agent in the learning process.
Scardapane et al. [91] investigated the problem of music
classification when training data is distributed throughout a
network of interconnected agents, and it is available in a
sequential stream. Under the considered setting, the target is
for all the nodes, after receiving any training data block with-
out relying on the master node, to agree on a single classifier
in a decentralized fashion. For a special class neural networks
Scardapane et al. [92] proposed a RVEL algorithm based on
the alternating direction method of multiplier optimization.
The algorithm allows learning an RVFL network from multi-
ple distributed data sources while limiting communication to
a single operation that computations a distributed average.

Field Programmable Gate Arrays(FPGAs) had the poten-
tial for flexible acceleration of many workloads and had been
used to accelerate large-scale tasks, providing significant
performance improvements and substantial power savings.
It demonstrated that they have the potential for efficient
large-scale computation [93]. Yeung et al. [94] proposed an
implementation of MapReduce library that supports parallel
FPGAs and Graphics Processing Units (GPUs) to provide
up to 100 times performance improvement. Choi and So [95]
proposed the design and implementation of k-means clus-
tering algorithm for computer cluster based on FPGAs
acceleration. They implemented a MapReduce programming
model in which both map and reduce functions executed
autonomously to the CPU on multiple FPGAs and devel-
oped a hardware/software framework to manage gateway
execution on multiple FPGAs across clusters. However, this
performance improvement brought a significant cost because
of the long development cycle required to leverage FPGAs
resources. Ghasemi and Chow [96] incorporated FPGAs
acceleration into Spark. They provided easy access to FPGAs
resources for ordinary application developers and retained
the functionality and user interfaces of currently popular
distributed platform such as Spark. With the application of
FPGAs in distributed platforms, it can further accelerate
distributed ELM processing.

IV. CONCLUSION

Distributed ELM, as one of the hot research directions, has
attracted the attention of a large number of researchers.
Table 1 compares the existing distributed ELM. As can be
seen from the table, the parallelization method of ELM
is mainly to ensemble and decompose the multiplication
operator of the most expensive Moore-Penrose generalized
inverse matrix in ELM calculation. Due to the limitations
of the ensemble algorithm, most of the existing ELM dis-
tributed processing methods adopt matrix operation. More-
over, the implementation of distributed ELM on big data
platforms such as MapReudce has become the mainstream.
OS-ELM and kernel ELM, as important varieties of ELM,
have received less attention in current research. In the future,
more attention can be paid to some important varieties of
ELM. According to the investigation, the test time of classical

VOLUME 8, 2020

ELM is 4653s, while the test time of distributed ELM is 487s
on Iris dataset, and the correct rate is basically the same.
Therefore, while increasing the computing speed, distributed
ELM will not reduce the accuracy rate. Instead, it will only
increases the hardware cost and network communication.
Although distributed ELM has been successfully applied
to classification, regression and other problems, and some
research have been made on some improved ELM, there are
still many problems to be solved:

(1) Limitation of hardware. At present, the main limita-
tion of distributed ELM is the hardware. Computing large
amounts of data using distributed ELM requires excellent
hardware configuration support. In the future, we will con-
sider to apply more advanced hardware devices such as
FPGA:s to distributed ELM to improve computing efficiency.

(2) Dose not apply well to specific problems. Distributed
ELM is applied to the processing and analysis of big data,
but due to different data application scenarios and data with
different characteristics, related problems cannot be solved
well. With the development of ELM research, many variants
of ELM have been proposed to solve problems in different
scenario. In the future, we will consider the new ELM variants
for distributed processing to better apply to different prob-
lems in big data.

(3) For the new distributed environment. Existing research
on distributed ELM mainly focus on the MapReduce frame-
work. With the development of distributed computing frame-
work, the mainstream distributed platforms have gradually
evolved from MapReduce and Hadoop to Spark, Flink and
so on. Although there have been studied on distributed ELM
on Spark and Flink, these studies do not take full advantage
of these frameworks. There are many directions to conduct
distributed processing on ELM on these platforms.

REFERENCES

[1] C. Lynch, “How do your data grow?” Nature, vol. 455, no. 7209,
pp. 28-29, Sep. 2008.

[2] R. Ranjan, L. Wang, A. Y. Zomaya, D. Georgakopoulos, X.-H. Sun, and

G. Wang, “‘Recent advances in autonomic provisioning of big data applica-

tions on clouds,” IEEE Trans. Cloud Comput., vol. 3, no. 2, pp. 101-104,

Apr. 2015.

K. Kambatla, G. Kollias, V. Kumar, and A. Grama, “Trends in big data

analytics,” J. Parallel Distrib. Comput., vol. 74, no. 7, pp. 2561-2573,

2014,

L. Liu and H. Jia, “Trust evaluation via large-scale complex service-

oriented online social networks,” IEEE Trans. Syst., Man, Cybern. Syst.,

vol. 45, no. 11, pp. 1402-1412, Nov. 2015.

[5] W.E Schmidt, M. A. Kraaijveld, and R. P. W. Duin, “Feedforward neural
networks with random weights,” in Proc. 11th IAPR Int. Conf. Pattern
Recognit., 1992, pp. 1-9.

[6] Y.-H. Pao, G.-H. Park, and D. J. Sobajic, “Learning and generalization
characteristics of the random vector functional-link net,” Neurocomputing,
vol. 6, no. 2, pp. 163-180, Apr. 1994.

[71 W. Cao, X. Wang, Z. Ming, and J. Gao, “A review on neural networks
with random weights,” Neurocomputing, vol. 275, pp. 278-287, Jan. 2018,
doi: 10.1016/j.neucom.2017.08.040.

[8] D. S. Broomhead and D. Lowe, “Multivariable functional interpola-
tion and adaptive networks,” Complex Syst., vol. 2, no. 3, pp. 321-355,
1988.

[9] G.-B.Huang, Q.-Y.Zhu, and C.-K. Siew, “Extreme learning machine: The-
ory and applications,” Neurocomputing, vol. 70, nos. 1-3, pp. 489-501,
Dec. 2006.

3

—

[4

=

201255

http://dx.doi.org/10.1016/j.neucom.2017.08.040

IEEE Access

Z.\Wang et al.: Survey of Distributed and Parallel Extreme Learning Machine for Big Data

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

W. Cao, M. J. A. Patwary, P. Yang, X. Wang, and Z. Ming, ““An initial study
on the relationship between meta features of dataset and the initialization
of NNRW,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2019,
pp. 1-8.

W. Cao, J. Gao, Z. Ming, and S. Cai, “Some tricks in parameter selection
for extreme learning machine,” in Proc. Int. Conf. Artif. Intell. Appl.
Technol. (AIAAT), Silver, HI, USA, 2017, Art. no. 012002.

W. Cao, J. Gao, M. Zhong, S. Cai, and Z. Hua, “Impact of probability
distribution selection on rvfl performance,” in Proc. Int. Conf. Smart
Comput. Commun., 2017, pp. 114-124.

A. Castaiio, F. Fernandez-Navarro, and C. Hervds-Martinez, “PCA-ELM:
A robust and pruned extreme learning machine approach based on principal
component analysis,” Neural Process. Lett., vol. 37, no. 3, pp. 377-392,
Jun. 2013, doi: 10.1007/s11063-012-9253-x.

W. Cai, J. Yang, Y. Yu, Y. Song, T. Zhou, and J. Qin, “PSO-ELM: A hybrid
learning model for short-term traffic flow forecasting,” IEEE Access,
vol. 8, pp. 6505-6514, 2020, doi: 10.1109/ACCESS.2019.2963784.

G. S. Krishnan and S. K. S., “A novel GA-ELM model for patient-specific
mortality prediction over large-scale lab event data,” Appl. Soft Comput.,
vol. 80, pp. 525-533, Jul. 2019, doi: 10.1016/j.as0¢.2019.04.019.

G.-B. Huang, D. H. Wang, and Y. Lan, “Extreme learning machines:
A survey,” Int. J. Mach. Learn. Cybern., vol. 2, no. 2, pp. 107-122,
Jun. 2011.

X.-G. Zhao, G. Wang, X. Bi, P. Gong, and Y. Zhao, “XML docu-
ment classification based on ELM,” Neurocomputing, vol. 74, no. 16,
pp. 2444-2451, Sep. 2011.

W. Jun, W. Shitong, and F.-L. Chung, ““Positive and negative fuzzy rule
system, extreme learning machine and image classification,” Int. J. Mach.
Learn. Cybern., vol. 2, no. 4, pp. 261-271, Dec. 2011.

L. Zhang, X. Wang, G.-B. Huang, T. Liu, and X. Tan, ‘“Taste
recognition in E-Tongue using local discriminant preservation projec-
tion,” IEEE Trans. Cybern., vol. 49, no. 3, pp. 947-960, Mar. 2019,
doi: 10.1109/TCYB.2018.2789889.

L. Zhang and D. Zhang, “Robust visual knowledge transfer via
extreme learning machine-based domain adaptation,” [EEE Trans.
Image Process., vol. 25, no. 10, pp.4959-4973, Oct. 2016, doi:
10.1109/TTP.2016.2598679.

L. Zhang and P. Deng, “Abnormal odor detection in electronic nose
via self-expression inspired extreme learning machine,” IEEE Trans.
Syst., Man, Cybern. Syst., vol. 49, no. 10, pp. 1922-1932, Oct. 2019,
doi: 10.1109/TSMC.2017.2691909.

Y. Li, S. Zhang, Y. Yin, W. Xiao, and J. Zhang, “A novel online
sequential extreme learning machine for gas utilization ratio predic-
tion in blast furnaces,” Sensors, vol. 17, no. 8, p. 1847, Aug. 2017,
doi: 10.3390/s17081847.

Y. Li, S. Zhang, Y. Yin, J. Zhang, and W. Xiao, “A soft sensing scheme
of gas utilization ratio prediction for blast furnace via improved extreme
learning machine,” Neural Process. Lett., vol. 50, no. 2, pp. 1191-1213,
Oct. 2019, doi: 10.1007/s11063-018-9888-3.

G. Wang, Y. Zhao, and D. Wang, ““A protein secondary structure prediction
framework based on the extreme learning machine,” Neurocomputing,
vol. 72, nos. 1-3, pp. 262-268, Dec. 2008.

R.Zhang, G.-B. Huang, N. Sundararajan, and P. Saratchandran, “Multicat-
egory classification using an extreme learning machine for microarray gene
expression cancer diagnosis,” IEEE/ACM Trans. Comput. Biol. Bioinf.,
vol. 4, no. 3, pp. 485-495, Jul. 2007.

J. Zhang, W. Xiao, Y. Li, S. Zhang, and Z. Zhang, ‘“Multilayer probability
extreme learning machine for device-free localization,” Neurocomputing,
vol. 396, pp. 383-393, Jul. 2020.

J. Cao, J. Hao, X. Lai, C.-M. Vong, and M. Luo, “Ensemble extreme
learning machine and sparse representation classification,” J. Franklin
Inst., vol. 353, no. 17, pp. 4526-4541, Nov. 2016.

J. Zhang, W. Xiao, Y. Li, and S. Zhang, “Residual compensation extreme
learning machine for regression,” Neurocomputing, vol. 311, pp. 126-136,
Oct. 2018, doi: 10.1016/j.neucom.2018.05.057.

S. Ding, H. Zhao, Y. Zhang, X. Xu, and R. Nie, “Extreme learning
machine: Algorithm, theory and applications,” Artif. Intell. Rev., vol. 44,
no. 1, pp. 103-115, Jun. 2015.

G. Huang, G.-B. Huang, S. Song, and K. You, “Trends in extreme learning
machines: A review,” Neural Netw., vol. 61, pp. 32-48, Jan. 2015.

J. Cao and Z. Lin, “Extreme learning machines on high dimensional
and large data applications: A survey,” Math. Problems Eng., vol. 2015,
pp. 1-13, Dec. 2015.

201256

(32]

[33]

(34]

(35]

(36]

(37]

(38]

(391

(40]

[41]

[42]

[43]

(44]

[45]

[46]

(47]

(48]

(49]

[50]

(51]

(52]

(53]

(54]

[55]

[56]

T. Guo, L. Zhang, and X. Tan, “Neuron pruning-based discriminative
extreme learning machine for pattern classification,” Cognit. Comput.,
vol. 9, no. 4, pp. 581-595, Aug. 2017, doi: 10.1007/s12559-017-9474-4.
Y. Liu, L. Zhang, P. Deng, and Z. He, “Common subspace learning via
cross-domain extreme learning machine,” Cognit. Comput., vol. 9, no. 4,
pp. 555-563, Aug. 2017, doi: 10.1007/s12559-017-9473-5.

L. Zhang and D. Zhang, “Evolutionary cost-sensitive extreme learn-
ing machine,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 12,
pp. 3045-3060, Dec. 2017, doi: 10.1109/TNNLS.2016.2607757.

L. Zhang, Z. He, and Y. Liu, “Deep object recognition across domains
based on adaptive extreme learning machine,” Neurocomputing, vol. 239,
pp. 194-203, May 2017, doi: 10.1016/j.neucom.2017.02.016.

G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine:
A new learning scheme of feedforward neural networks,” in IEEE Int. Joint
Conf. Neural Netw., 2005, pp. 985-990.

N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan,
“A fast and accurate online sequential learning algorithm for feedforward
networks,” IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1411-1423,
Nov. 2006.

G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “‘Extreme learning machine
for regression and multiclass classification,” IEEE Trans. Syst., Man,
Cybern. B. Cybern., vol. 42, no. 2, pp. 513-529, Apr. 2012.

Q. Liu, Q. He, and Z. Shi, “Extreme support vector machine classifier,” in
Proc. 12th Pacific-Asia Conf., Osaka, Japan, May 2008, pp. 222-233.

B. Frénay and M. Verleysen, “Using SVMs with randomised feature
spaces: An extreme learning approach,” in Proc. 18th Eur. Symp. Artif.
Neural Netw., Bruges, Belgium, Apr. 2010, pp. 1-8.

D. Opitz and R. Maclin, “Popular ensemble methods: An empirical study,”
J. Artif. Intell. Res., vol. 11, pp. 169-198, Aug. 1999.

J. Xin, Z. Wang, C. Chen, L. Ding, G. Wang, and Y. Zhao, “Elm: Dis-
tributed extreme learning machine with mapreduce,” World Wide Web,
vol. 17, no. 5, pp. 1189-1204, 2014.

M. van Heeswijk, Y. Miche, E. Oja, and A. Lendasse, ‘“GPU-accelerated
and parallelized ELM ensembles for large-scale regression,” Neurocom-
puting, vol. 74, no. 16, pp. 2430-2437, Sep. 2011.

Y. Sun, Y. Yuan, and G. Wang, ““An OS-ELM based distributed ensemble
classification framework in P2P networks,” Neurocomputing, vol. 74,
no. 16, pp. 2438-2443, Sep. 2011.

X.-L. Wang, Y.-Y. Chen, H. Zhao, and B.-L. Lu, ‘“Parallelized extreme
learning machine ensemble based on min—max modular network,” Neuro-
computing, vol. 128, pp. 31-41, Mar. 2014.

J. Chen, G. Zheng, and H. Chen, “ELM-MapReduce: MapReduce accel-
erated extreme learning machine for big spatial data analysis,” in Proc.
10th IEEE Int. Conf. Control Autom. (ICCA), Hangzhou, China, Jun. 2013,
pp. 400-405.

D. Liang, L. Shuai, H. Chen, and W. Zhu, “‘Improvement of ELM algorithm
for multi-object identification in gesture interaction,” Tech. Rep., 2016.
S. Huang, B. Wang, J. Qiu, J. Yao, G. Wang, and G. Yu, ‘‘Parallel ensemble
of online sequential extreme learning machine based on MapReduce,”
Neurocomputing, vol. 174, pp. 352-367, Jan. 2016.

Y. Li, S. Zhang, Y. Yin, W. Xiao, and J. Zhang, ‘‘Parallel one-class extreme
learning machine for imbalance learning based on Bayesian approach,”
J. Ambient Intell. Humanized Comput., Sep. 2018, pp. 1-8.

B.-L. Lu and M. Ito, “Task decomposition and module combination based
on class relations: A modular neural network for pattern classification,”
IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 1244-1256, Dec. 1999.

J. Chen, H. Chen, X. Wan, and G. Zheng, “MR-ELM: A MapReduce-based
framework for large-scale ELM training in big data era,” Neural Comput.
Appl., vol. 27, no. 1, pp. 101-110, Jan. 2016.

B. Wu, T. H. Yan, X. S. Xu, B. He, and W. H. Li, “A MapReduce-based
ELM for regression in big data,” in Proc. 17th Int. Conf., Yangzhou, China,
Oct. 2016, pp. 164-173.

F. O. Catak, “Classification with boosting of extreme learning machine
over arbitrarily partitioned data,” Soft Comput., vol. 21, no. 9,
pp. 2269-2281, May 2017.

A. Budiman, M. L. Fanany, and C. Basaruddin, “Distributed averag-
ing CNN-ELM for big data,” CoRR, vol. abs/1610.02373, pp. 1-15,
Dec. 2016.

Q. He, T. Shang, F. Zhuang, and Z. Shi, “Parallel extreme learning
machine for regression based on MapReduce,” Neurocomputing, vol. 102,
pp. 52-58, Feb. 2013.

J. Xin, Z. Wang, L. Qu, G. Yu, and Y. Kang, “A-ELM: Adaptive distributed
extreme learning machine with MapReduce,” Neurocomputing, vol. 174,
pp. 368-374, Jan. 2016.

VOLUME 8, 2020

http://dx.doi.org/10.1007/s11063-012-9253-x
http://dx.doi.org/10.1109/ACCESS.2019.2963784
http://dx.doi.org/10.1016/j.asoc.2019.04.019
http://dx.doi.org/10.1109/TCYB.2018.2789889
http://dx.doi.org/10.1109/TIP.2016.2598679
http://dx.doi.org/10.1109/TSMC.2017.2691909
http://dx.doi.org/10.3390/s17081847
http://dx.doi.org/10.1007/s11063-018-9888-3
http://dx.doi.org/10.1016/j.neucom.2018.05.057
http://dx.doi.org/10.1007/s12559-017-9474-4
http://dx.doi.org/10.1007/s12559-017-9473-5
http://dx.doi.org/10.1109/TNNLS.2016.2607757
http://dx.doi.org/10.1016/j.neucom.2017.02.016

Z. Wang et al.: Survey of Distributed and Parallel Extreme Learning Machine for Big Data

IEEE Access

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

J. Xin, Z. Wang, L. Qu, and G. Wang, “Elastic extreme learning machine
for big data classification,” Neurocomputing, vol. 149, pp.464-471,
Feb. 2015.

V. Tejasviram, H. Solanki, V. Ravi, and S. Kamaruddin, “Auto associative
extreme learning machine based non-linear principal component regres-
sion for big data applications,” in Proc. 10th Int. Conf. Digit. Inf. Manage.
(ICDIM), Oct. 2015, pp. 223-228.

R. Wang, Y.-L. He, C.-Y. Chow, F.-F. Ou, and J. Zhang, “Learning ELM-
tree from big data based on uncertainty reduction,” Fuzzy Sets Syst.,
vol. 258, pp. 79-100, Jan. 2015.

L. Oneto, F. Bisio, E. Cambria, and D. Anguita, ““Statistical learning theory
and ELM for big social data analysis,” IEEE Comput. Intell. Mag., vol. 11,
no. 3, pp. 45-55, Aug. 2016.

L. Oneto, F. Bisio, E. Cambria, and D. Anguita, “SLT-based ELM for
big social data analysis,” Cognit. Comput., vol. 9, no. 2, pp. 259-274,
Apr. 2017.

M. Duan, K. Li, X. Liao, and K. Li, “A parallel multiclassification algo-
rithm for big data using an extreme learning machine,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 29, no. 6, pp. 2337-2351, Jun. 2018.

C. Chen, K. Li, A. Ouyang, and K. Li, “A parallel approximate SS-
ELM algorithm based on MapReduce for large-scale datasets,” J. Parallel
Distrib. Comput., vol. 108, pp. 85-94, Oct. 2017.

Z. Wang, L. Qu, J. Xin, H. Yang, and X. Gao, ““A unified distributed ELM
framework with supervised, semi-supervised and unsupervised big data
learning,” Memetic Comput., vol. 11, no. 3, pp. 305-315, Sep. 2019.

Z. Wang, J. Xin, S. Tian, and Y. Ge, “Distributed weighted extreme
learning machine for big imbalanced data learning,” in Proc. ELM, 2016,
pp. 319-332.

Z. Wang, J. Xin, H. Yang, S. Tian, G. Yu, C. Xu, and Y. Yao, ‘“‘Distributed
and weighted extreme learning machine for imbalanced big data learning,”
Tsinghua Sci. Technol., vol. 22, no. 2, pp. 160-173, Apr. 2017.

A. Wu and W. Chen, “ELM-based distributed cooperative learning over
networks,” CoRR, vol. abs/1504.00981, pp. 1-7, Dec. 2015.

B. Wang, S. Huang, J. Qiu, Y. Liu, and G. Wang, ‘‘Parallel online sequen-
tial extreme learning machine based on MapReduce,” Neurocomputing,
vol. 149, pp. 224-232, 2015.

H. Shan, B. Wang, Y. Chen, G. Wang, and Y. Ge, “Efficient batch parallel
online sequential extreme learning machine algorithm based on MapRe-
duce,” in Proc. ELM, 2016, pp. 1-9.

S. Huang, B. Wang, Y. Chen, G. Wang, and G. Yu, “An efficient parallel
method for batched OS-ELM training using MapReduce,” Memetic Com-
put., vol. 9, no. 3, pp. 183-197, Sep. 2017.

X. Bi, X. Zhao, G. Wang, P. Zhang, and C. Wang, “Distributed extreme
learning machine with kernels based on MapReduce,” Neurocomputing,
vol. 149, pp. 456-463, Feb. 2015.

N. Karthick and D. Kalarani, “Efficient big data classification through
distributed kernel-based extreme learning machine approach,” Indian
J. Innov. Develop., vol. 5, no. 4, pp. 1-13, 2016.

N. Pandeeswari, D. Vignesh, R. Pushpalakshmi, and Varadharajan,
“Online sequential extreme learning algorithm with kernels for bigdata
classification,” in Proc. 4th Int. Conf. Adv. Comput. Commun. Syst.
(ICACCS), Jan. 2017, pp. 1-8.

X. Zhao, Z. Ma, and Z. Zhang, “A novel recommendation system in
location-based social networks using distributed ELM,” Memetic Comput.,
vol. 10, no. 3, pp. 321-331, Sep. 2018.

Z. Qiu, H. Zou, H. Jiang, L. Xie, and Y. Hong, “Consensus-based parallel
extreme learning machine for indoor localization,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2016, pp. 1-6.

J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1,
pp. 81-106, 1986.

W. Xiao, J. Zhang, Y. Li, S. Zhang, and W. Yang, “Class-
specific cost regulation extreme learning machine for imbalanced
classification,” Neurocomputing, vol. 261, pp. 70-82, Oct. 2017, doi:
10.1016/j.neucom.2016.09.120.

S. Ding, B. Mirza, Z. Lin, J. Cao, X. Lai, T. V. Nguyen, and
J. Sepulveda, “Kernel based online learning for imbalance multiclass
classification,” Neurocomputing, vol. 277, pp. 139-148, Feb. 2018, doi:
10.1016/j.neucom.2017.02.102.

W. Zong, G.-B. Huang, and Y. Chen, ‘“Weighted extreme learning
machine for imbalance learning,” Neurocomputing, vol. 101, pp. 229-242,
Feb. 2013.

D.-H. Han, X. Zhang, and G.-R. Wang, ““Classifying uncertain and evolv-
ing data streams with distributed extreme learning machine,” J. Comput.
Sci. Technol., vol. 30, no. 4, pp. 874-887, Jul. 2015.

VOLUME 8, 2020

(81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

(89]

[90]

(911

(92]

(93]

(94]

[95]

[96]

%;"/:

Y. Wang, Y. Dou, X. Liu, and Y. Lei, “PR-ELM: Parallel regularized
extreme learning machine based on cluster,” Neurocomputing, vol. 173,
pp. 1073-1081, Jan. 2016.

Y. Kokkinos and K. G. Margaritis, “Big data regression with parallel
enhanced and convex incremental extreme learning machines,” Comput.
Intell., vol. 34, no. 3, pp. 875-894, Aug. 2018.

Y. Rizk and M. Awad, ““On the distributed implementation of unsupervised
extreme learning machines for big data,” in Proc. Conf. Big Data, San
Francisco, CA, USA, Aug. 2015, pp. 167-174.

W. Phusomsai, C. So-In, C. Phaudphut, C. Thammasakorn, and W. Pun-
jaruk, “Brain tumor cell recognition schemes using image processing
with parallel ELM classifications on GPU,” in Proc. 13th Int. Joint Conf.
Comput. Sci. Softw. Eng. (JCSSE), Jul. 2016, pp. 1-6.

C. Chen, K. Li, A. Ouyang, Z. Tang, and K. Li, “GPU-accelerated parallel
hierarchical extreme learning machine on flink for big data,” IEEE Trans.
Syst., Man, Cybern. Syst., vol. 47, no. 10, pp. 2740-2753, Oct. 2017.

N. D. Vanli, M. O. Sayin, I. Delibalta, and S. S. Kozat, “Sequential
nonlinear learning for distributed multiagent systems via extreme learn-
ing machines,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 3,
pp. 546-558, Mar. 2017.

Y. Yang, Y. Wang, and X. Yuan, “Parallel chaos search based incre-
mental extreme learning machine,” Neural Process. Lett., vol. 37, no. 3,
pp. 277-301, Jun. 2013.

N. Ahmad and T. V. Janahiraman, ‘“Modelling and prediction of sur-
face roughness and power consumption using parallel extreme learning
machine based particle swarm optimization,” in Proc. ELM, vol. 2, 2015,
pp. 1-9.

Y.-L. He, Z.-Q. Geng, and Q.-X. Zhu, “A data-attribute-space-oriented
double parallel (DASODP) structure for enhancing extreme learning
machine: Applications to regression datasets,” Eng. Appl. Artif. Intell.,
vol. 41, pp. 65-74, May 2015.

S. Scardapane, D. Wang, M. Panella, and A. Uncini, “Distributed learn-
ing for random vector functional-link networks,” Inf. Sci., vol. 301,
pp. 271-284, Apr. 2015, doi: 10.1016/1.ins.2015.01.007.

S. Scardapane, R. Fierimonte, D. Wang, M. Panella, and A. Uncini, “Dis-
tributed music classification using random vector functional-link nets,”
in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2015, pp. 1-8, doi:
10.1109/1JCNN.2015.7280333.

S. Scardapane, M. Panella, D. Comminiello, and A. Uncini, “Learning
from distributed data sources using random vector functional-link net-
works,” in Proc. Conf. Big Data, San Francisco, CA, USA, Aug. 2015,
pp. 468-477, doi: 10.1016/j.procs.2015.07.324.

A. Putnam, “A reconfigurable fabric for accelerating large-scale datacenter
services,” Commun. ACM, vol. 59, no. 11, pp. 114-122, Oct. 2016.

J.. H. C. Yeung, C. C. Tsang, K. H. Tsoi, B. S. H. Kwan,
C. C. C. Cheung, A. P. C. Chan, and P. H. W. Leong, ‘“Map-reduce
as a programming model for custom computing machines,” in Proc. 16th
Int. Symp. Field-Program. Custom Comput. Mach., Stanford, Palo Alto,
CA, USA, Apr. 2008, pp. 149-159, doi: 10.1109/FCCM.2008.19.

Y. Choi and H. So, “Map-reduce processing of k-means algorithm with
fpga-accelerated computer cluster,” Tech. Rep., 2014.

E. Ghasemi and P. Chow, “Accelerating apache spark big data analysis
with fpgas,” Tech. Rep., 2016.

ZHIQIONG WANG (Member, IEEE) received the
M.Sc. and Ph.D. degrees in computer science and
technology from Northeastern University, China,
in 2008 and 2014, respectively. She visited the
National University of Singapore and The Chi-
nese University of Hong Kong, in 2010 and 2013,
respectively, as the Academic Visitor. She is cur-
rently an Associate Professor with the College of
Medicine and Biological Information Engineer-
ing, Northeastern University. She has published

more than 60 articles. Her main research interests are the computer-aided
diagnosis, medicine information, big health data analysis, cloud computing,
and machine learning.

201257

http://dx.doi.org/10.1016/j.neucom.2016.09.120
http://dx.doi.org/10.1016/j.neucom.2017.02.102
http://dx.doi.org/10.1016/j.ins.2015.01.007
http://dx.doi.org/10.1109/IJCNN.2015.7280333
http://dx.doi.org/10.1016/j.procs.2015.07.324
http://dx.doi.org/10.1109/FCCM.2008.19

IEEE Access

Z.\Wang et al.: Survey of Distributed and Parallel Extreme Learning Machine for Big Data

LING SUI received the bachelor’s degree in com-
puter science and technology from Liaoning Shi-
hua University, in 2018. She is currently pursuing
the M.D. degree with the College of Computer
Science and Engineering, Northeastern University.
Her main research interests are big data devel-
opment, machine learning, and gene regulatory
network.

JUNCHANG XIN received the B.Sc., M.Sc., and
Ph.D. degrees in computer science and technol-
ogy from Northeastern University, China, in 2002,
2005, and 2008, respectively. He visited the
National University of Singapore as Postdoctoral
Visitor (April 2010-April 2011). He is currently
a Professor with the School of Computer Science
and Engineering, Northeastern University, China.
He has published more than 60 research papers.
His research interests include big data, uncertain
data, and bioinformatics.

LUXUAN QU received the bachelor’s degree
in automatics from Northeast Dianli University,
in 2010, and the master’s degree in biomed-
ical engineering from Northeastern University,
in 2014. She is currently pursuing the Ph.D. degree
with the College of Medicine and Biological Infor-
mation Engineering. Her main research interests
are gene regulatory networks, machine learning,
and cloud computing.

201258

YUDONG YAO (Fellow, IEEE) received the
B.Eng. and M.Eng. degrees from the Nanjing
University of Posts and Telecommunications,
Nanjing, China, in 1982 and 1985, respectively,
and the Ph.D. degree from Southeast University,
Nanjing, in 1988, all in electrical engineering.
From 1989 and 1990, he was at Carleton Uni-
versity, Ottawa, Canada, as a Research Associate,
working on mobile radio communications. From

- - © 1990 to 1994, he was with Spar Aerospace Ltd.,
Montreal, Canada, where he was involved in research on satellite commu-
nications. From 1994 to 2000, he was with Qualcomm Inc., San Diego,
CA, USA, where he participated in research and development in wire-
less code-division multiple-access (CDMA) systems. He has been with the
Stevens Institute of Technology, Hoboken, NJ, USA, since 2000, and is
currently a professor and the Department Director of Electrical and Com-
puter Engineering. He is also a Professor with the College of Medicine and
Biological Information Engineering, Northeastern University, and the Direc-
tor of the Stevens’ Wireless Information Systems Engineering Laboratory
(WISELAB). He holds one Chinese patent and twelve U.S. patents. His
research interests include wireless communications and networks, spread
spectrum and CDMA, antenna arrays and beamforming, cognitive and
software-defined radio (CSDR), and digital signal processing for wireless
systems. He was an Associate Editor of the IEEE COMMUNICATIONS LETTERS
and IEEE TRrANSAcTIONS ON VEHICULAR TECHNOLOGY, and an Editor of IEEE
TRANSACTIONS ON WIRELESS COMMUNICATIONS.

VOLUME 8, 2020

