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ABSTRACT In order to ensure that Inertial Navigation System/Global Positioning System integrated
navigation system (INS/GPS) can still provide high precision positioning results when GPS outages, a novel
hybrid algorithm based on Gated Recurrent Unit (GRU) and interacting multiple model adaptive robust
cubature Kalman filter (IMM-ARCKF) is proposed. Firstly, the IMM-ARCKF algorithm is proposed to
solve the uncertainty of system model and measurement noise statics in the application of INS/GPS on the
road. Then, GRU neural network is introduced into INS/GPS system which includes two modes of training
and prediction. When GPS signal can be received, the GRU neural network works in the training mode.
When GPS outages, the GRU neural network predicts the GPS position increment. Finally, the effectiveness
of the algorithm is evaluated by the experiment and analysis. From the data of the experiment, the proposed
algorithm can improve the positioning accuracy during GPS outages.

INDEX TERMS Integrated navigation, cubature Kalman filter, GPS outages, gated recurrent unit.

I. INTRODUCTION
The INS/GPS system has been used in more and more fields
for its numerous advantages, especially in the military and
civilian fields [1]. In terms of performance, GPS works well
in long-term positioning. However, the GPS signal is eas-
ily blocked and the receiver positioning frequency is low.
As an independent system, INS does not rely on external
information when positioning, but its measurement error will
accumulate over time during which more and more posi-
tioning errors will be produced in the integration calculation
process. Therefore, the overall performance of INS/GPS inte-
grated navigation system is far better than that of independent
systems [2], [3].

At present, the data fusion algorithms commonly used
in INS/GPS systems are Kalman Filter (KF) and Extended
Kalman Filter (EKF) [4]. EKF is an improvement on the
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traditional KF. EKF linearizes the state equation and the
observation equation through first-order Taylor decomposi-
tion [5]. Both KF and EKF transform the problem into a
linear Gaussian model, so the analytical form in the Bayesian
recursive formula can be directly solved, which is convenient
for calculation. As for the case of nonlinearity, EKF has the
effect of linear error in addition to a large amount of calcu-
lation, so the Unscented Kalman filter (UKF) is proposed.
UKF uses a series of determined samples to approximate the
probability density distribution of a nonlinear function [6].
However, for the high-dimensional state model, the above fil-
tering algorithms are prone to a non-positive definite covari-
ance matrix [7]. Proposed by Arasaratnam et al., Cubature
Kalman filtering (CKF) is based on the third-order spherical
radial volume criterion and uses a set of volume points to
approximate the state mean and covariance of a nonlinear
system with additional Gaussian noise. CKF is the clos-
est approximation algorithm to Bayesian filtering in the-
ory and is a powerful tool to solve nonlinear system state
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estimation [8], [9]. CKF has the same weight for each integral
point, which is positive. Therefore, the numerical stability of
CKF is stronger than that of UKF [10]. However, affected
by the uncertainty of system model and the uncertainty of
measurement noise statics, the robustness is reduced and
even the filter is failing. In recent years, many scholars have
proposed many improved CKF algorithms to solve the above
problems. Zhao et al. proposed an adaptive robust square root
CKF algorithm based on the strong tracking filter principle
and derived a suboptimal unbiased constant noise statistical
estimator based on the maximum posterior principle [11].
To prevent the decrease of the positioning accuracy caused
by the abnormal value in the measurement, Liu et al. used
Huber M estimation technology to enhance the structure of
the standard CKF [12]. Cui et al. proposed a robust Cubature
Kalman filter (RCKF), which reused diffuse sigma points
and approximate residuals in the prediction phase of CKF in
the case of colored measurement noise and missing observed
values [13]. Interactive multiple model is an effective method
in maneuvering target tracking. The model can be combined
with many algorithms to meet different application require-
ments [14], [15]. In literature [16], the fuzzy adaptive Kalman
filtering (FAKF) algorithm and the adaptive interactive mul-
tiple model (AIMM) were combined to solve the problem
that the prior information was inconsistent with the actual
environment. Firstly, FAKF algorithm was used to calculate
the rough statistical characteristics of noise. Secondly AIMM
was used to determine the number of sub-filters according to
the rough statistical characteristics. Finally, the localization
results were solved. In literature [17], in order to improve
the performance of SINS/DVL integrated navigation system,
IMM-RKF algorithm was proposed. According to two differ-
ent integrated navigation models, two different noise covari-
ance is calculated. Then IMM algorithm was used to estimate
the more real noise covariance matrix. The IMM-ARCKF
algorithm can effectively solve the problem of measurement
noise statistical characteristic inaccuracy in underwater envi-
ronment.

Recently, artificial intelligence (AI) and big data have been
applied in more extensive fields. Many scholars have applied
AI methods to integrated navigation system, which can
reduce the positioning error duringGPS downtime [18]. In lit-
erature [19], multilayer feed-forward neural networks with a
back propagation learning algorithm was used to fuse INS
and DGPS data. Literature [20] proposed an ANN+GPS/INS
system to solve the problem of large positioning error and
fast drift caused by GPS signal loss in low-level GPS/INS
systems. The system adopted multilayer perceptron structure
neural network to construct the OINS − 1P module. The
positioning accuracy was improved and the system drift was
prevented effectively. In literature [21], a data fusion algo-
rithm based on radial basis function neural network (RBFNN)
was proposed which adopted PINS − δP structure. PINS
stood for INS position which was the input of the network.
δP represented corresponding position error which was the
output. Considering the relationship between INS error and

past value, input delay neural network (IDNN) was used
in literature [22]. The algorithm modeled the error of INS
position and velocity according to the current and past infor-
mation of position and velocity. The network output was
INS error. Literature [23] combined strong tracking Kalman
filter (STKF) and wavelet neural network (WNN) algorithm.
STKF was used to replace the traditional KF algorithm and
WNNwas used for training and prediction. The system useed
the δPINS (P) − δPINS (C) structure. The past value of STKF
was the input, and the current value was the expected output.
When the GPS outages, trained WNN was used to replace
STKF. In literature [24], a fusion algorithm based on back
propagation neural network (BPNN) was proposed. The sys-
tem adopted OINST − 1PGPS structure, and the model of
the relationship between the speed of INS system, output
of INS measurement unit and GPS fault duration and GPS
position increment was established. In Literature [25], a dual
optimization scheme was designed by combing CKF, MLP
and RBF. Firstly, CKF was added to MLP as an optimizer,
which can adaptively estimate the weight of MLP. Then,
RBF and CKF were used for error estimation. In refer-
ence [26], to improve the navigation accuracy, the regression
fuzzy wavelet neural network (RFWNN) was added to the
INS/GPS system to compensate the speed and position errors
of INS/GPS. Most of the neural networks mentioned above,
such as RBF and MLP, belong to static networks. The main
disadvantage of these networks is that they only use informa-
tion from the last step and cannot store more information in
the past. Since GRU is used for events related to time series,
we use GRU for INS/GPS system.

The interacting multiple model robust adaptive cubature
Kalman filter based on GRU (GRU/IMM-ARCKF) is pro-
posed. When GPS signal acquisition is normal, the fusion
algorithm uses the IMM-ARCKF algorithm and the GRU
is trained at the same time. When GPS signals cannot be
obtained normally, GRU is used to predict GPS position
increment. The pseudo GPS position is obtained by integrat-
ing the position increment.

Other parts are as follows: Section II derives the traditional
CKF algorithm and the proposes IMM-ARCKF algorithm;
Section III discusses the GRU-aided integrated navigation
algorithm; In section IV, the simulation results and experi-
mental results are analyzed. Finally, the conclusion is given.

II. IMM-ARCKF
When the system model error and noise statistical error exist
in high dynamic scene, the traditional CKF algorithm is easy
to make the positioning error larger. To overcome the uncer-
tainty of measurement noise statistics, Huber M-estimation
is adopted to allow the measurement noise covariance to be
automatically adjusted. To overcome the error of the system
model, an adaptive factor is used to adjust the state covariance
matrix. When the GPS/INS system is applied in actual sce-
narios, the above two uncertainties will exist simultaneously.
Therefore, interacting multiple model is used to combine
RCKF and ACKF. According to the information of each

VOLUME 8, 2020 202837



D. Li et al.: Novel Hybrid Algorithm of Improved CKF and GRU for GPS/INS

sub-filter, such as the covariance of the innovation matrix,
the mode probability of each sub-filter is calculated. Finally,
the state estimation of ACKF and RCKF are weighted by
probability to obtain the final state estimation. IMM-ARCKF
not only overcomes partial limitations of traditional CKF, but
also combines the advantages of ACKF andRCKF to improve
the adaptability and robustness of the system.

A. TRADITIONAL CKF
In actual applications, INS is generally not used alone.
Its measurement error will accumulate with time, eventu-
ally leading to divergence of positioning results. Therefore,
IMM-ARCKF is proposed to optimize the combination of
GPS and INS system. The linear error equation of INS is [27]:

φ̇n = −ωnin × φ + δω
n
in − C

n
b δω

b
ib (1)

δv̇n = Cn
b δf

b
+ Cn

b f
b
× φ − (2ωnie + ω

n
en)× δv

n
+ δgn (2)

δL̇ =
1

RM + h
δvN (3)

δλ̇ =
1

(RM + h) cosL
δvE

+
VE tanL

(RN + h) cosL
−

δhVE
(RN + h)2 cosL

(4)

δḣ = δvu (5)

where δL and δλ represent the error of longitude and latitude,
and δh represents the error of altitude. The superscript ’n’
represents the navigation frame (N-frame), and the subscript
’e’ represents the earth frame (e-frame).ωnie is the rotation rate
of the earth, and δωnie is its error. φ stands for misalignment
angle vector. Cn

b is the direction cosine matrix.
The traditional CKF is as follows. Nonlinear dynamic

equation:

xk = f (xk−1)+ wk−1 (6)

zk = h(xk )+ vk (7)

where xk represents the state vector of m dimension in the k
epoch;zk stands for n dimensional measurement; wk−1 is the
system noise. Its mean is 0. Its covariance is Qk−1;vk stands
for measurement noise whose mean is 0. And its covariance
is Rk ;f (·) and h (·) represent nonlinear equation of state and
system measurement equation respectively.
Time Update:
(1) Decomposition

Pk|k−1 = Sk−1|k−1 STk−1|k−1 (8)

(2) Generating cubature points

χhi,k|k = Sk−1|k−1 ξi + x̂k−1|k−1 (9)

ξ =

{
√
mei, i = 1, 2, . . . ,m
√
men−i, i = m+ 1,m+ 2, . . . , 2m

(10)

where m is the number of basic cubature points.
(3)Propagation cubature points

X∗i,k−1|k−1 = f
(
Xhi,k−1|k−1

)
(11)

(4)Predicted states

x̂k|k−1 = (2m)−1
2m∑
i=1

X∗i,k−1|k−1 (12)

(5)Predicted state error covariance

Pk|k−1 = (2m)−1
2m∑
j=1

X∗i,k−1|k−1X
∗T
i,k−1|k−1

−x̂k|k−1 x̂Tk|k−1 + Qk−1 (13)

Measurement update
(1) Decomposition

Pk|k−1 = Sk|k−1 STk|k−1 (14)

(2) Generating cubature points

Xi,k|k−1 = sk|k−1 ξi + x̂k|k−1 (15)

(3) Propagation cubature points

Z∗i,k−1|k−1 = h
(
Xi,k|k−1

)
(16)

(4) Predicted measurement

ẑk|k−1 = (2m)−1
2m∑
i=1

Z∗i,k|k−1 (17)

(5) Innovation covariance

Pzzk|k−1 = (2m)
−1

2m∑
i=1

Z∗i,k|k−1 Z
∗T
i,k|k−1−ẑk|k−1 ẑ

T
k|k−1 + Rk

(18)

(6) Cross-covariance matrix

Pxzk|k−1 = (2m)
−1

2m∑
i=1

X∗i,k|k−1 hZ
∗T
i,k|k−1 − x̂k|k−1 ẑ

T
k|k−1 (19)

(7) Kalman gain

Gk = Pxzk|k−1
(
Pzzk|k−1

)−1
(20)

(8) Updating the state

x̂k|k = x̂k|k −1 + Gk
(
zk − ẑk|k −1

)
(21)

(9) Updating the state covariance matrix

Pk|k = Pk|k−1 − GkP
zz
k|k−1G

T
k (22)

B. ROBUST CKF
In dynamic systems, large observation errors are inevitable.
The on-line adaptive adjustment ability of the system is very
important. Robust M estimation can be used for adaptive esti-
mation of unknown prior states and measurements [28]. The
expression in the measurement update process is updated as:

P̄zzk|k−1 = (2m)−1
2π∑
i=1

Z∗i,k|k−1Z
∗T
i,k|k−1 − ẑk|k−1ẑ

T
k|k−1 + R̄k

(23)
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where R̄k is the adjusted Rk . R̄k can be calculated from equal
weight matrix H̄ using contrast M estimation method.

R̄k = H̄−1 (24)

To ensure that the diagonal elements of H̄ are positive,
we use Huber method to calculate H̄ .

h̄ii =

{
1/δii

∣∣vi/δvi ∣∣ = ∣∣v′i∣∣ ≤ c
c/δii

∣∣v′i∣∣ ∣∣v′i∣∣ > c
(25)

h̄ij =


1/δij

∣∣v′i∣∣ ≤ c and ∣∣∣v′j∣∣∣ ≤ c
c

δijmax
{∣∣v′i∣∣ , ∣∣∣r ′j ∣∣∣}

∣∣v′i∣∣ > c or
∣∣∣v′j∣∣∣ > c (26)

where h̄ii is the diagonal element of H̄ , and h̄ij is the
off-diagonal element. δii is the diagonal element of Rk , and
δij is the off-diagonal element of Rk .

δvi =
(
Pzzk|k−1

)
ii

(27)

where c is a constant, between 1.3 and 2.0. Robust CKF
algorithm alleviates the impact of statistical uncertainty of
measurement noise on system performance. The real-time
adjustment of measurement noise statistics is realized.

C. ADAPTIVE CKF
When the error of the dynamic model in a integrated navi-
gation system is large compared with the real model, it may
affect all state estimation results. Adaptive adjustment factors
were used to modify the state error covariance [29]:

P′k|k−1 = ω
−1
k Pk|k−1

= ω−1k

(2m)−1 2m∑
j=1

X∗i,k−1|k−1X
∗T
i,k−1|k−1

−x̂k|k−1x̂Tk|k−1 + Qk−1
]

(28)

where ωk is the adaptive factor which is derived as follows.
Calculate the predicted residual vector:

ek = zk − ẑk|k−1 (29)

The theoretical predicted covariance matrix of residual
vector ek is:

Pzzk|k−1 = E
((
zk − ẑk | k − 1

) (
zk − ẑk|k−1

)T)
= DkPk|k−1DTk + Rk (30)

where Dk =
∂h(xk )
∂xk

. Then the adaptive factor are substituted
in:

Pzz′k|k−1 = ω
−1
k DkPk|k−1DTk + Rk (31)

Assuming that the estimated covariance matrix of the pre-
diction residual vector is Pzz′′k|k−1 . The value of the adaptive
factor should meet the following equation:

Paz′k|k−1 = Pyz′′k|k−1 (32)

FIGURE 1. Flow chart of IMM-ARCKF algorithm.

Continue derivation:

Pzz′k|k−1 = ω
−1
k DkPk|k−1DTk + Rk (33)

Multiply both sides by ωk :

ωkP
zz′′
k|k−1 = DkPk|k−1DTk + ωkRk (34)

ωk

(
Pzz−1′′
‖k−1 − Rk

)
= DkPk|k−1DTk (35)

ωk =
tr
(
DkPk|k−1DTk

)
tr
(
Pzz′′k|k−1 − Rk

)
=

tr
(
Pzzk|k−1 − Rk

)
tr
(
Pzz′′k|k−1 − Rk

) (36)

Since 0 < ωk ≤ 1 [30], the value of ωk is as follows:

ωk =



1 oterwise
tr
(
DkPk|k−1DTk

)
tr
(
Pzz′′k|k−1 − Rk

) = tr
(
Pzz′′k|k−1−Rk

)
tr
(
Pmk|k−1−Rk

) tr
(
Pzz′′k|k−1

)
> tr

(
Pzzk|k−1

)
(37)

Rk exists in both numerator and denominator of the above
formula. Then the approximate optimal adaptive factor cal-
culated as follows:

ωk =


1 oterwise

tr
(
Pzz′′k|k−1

)
r
(
Pz′′k|k−1

) tr
(
Pzz′′k|k−1

)
> tr

(
Pzz′′k|k−1

) (38)

D. IMM-ARCKF
From the above analysis, it can be concluded that RCKF
mainly alleviates the impact of measurement noise statis-
tical uncertainty while ACKF mainly alleviates the impact
of system model error uncertainty. Therefore, IMM fusion
algorithm is used to combine ACKF and RCKF. The flow
chart is as follows:

In the proposed IMM-ARCKF algorithm, ACKF filter and
RCKF filter run in parallel. And the two filters have different
models. Then the model probability is calculated based on the
measurement error covariance matrix of ACKF and RCKF.
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Finally, the state results of ACKF filter and RCKF filter are
fused.

1) INITIALIZATION
Markov transition matrix and probability of initial mode are:

A =
[
a11 a12
a21 a22

]
, θ0 =

[
θ1,0
θ2,0

]
(39)

where aij is the transfer probability. θ0 is themode probability,
which describes the reliability probability of each sub-filter at
the current moment. And meet θ1,0 + θ2,0 = 1.

2) UPDATE MODEL PROBABILITY
The model probability is an important index to fuse the state
estimation results of subfilters.

θj,k =
3j,kdj,k−1
2∑
j=1
3j,kdj,k−1

(40)

where 3j,k is the likelihood function. d is the normalization
factor, calculated as follows:

d0 = AT θ0 =
[
d1,0 d2,0

]
(41)

3j,k =
1√

(2π)n
∣∣∣Pzz,jẑk/k−1

∣∣∣ exp
{
−
1
2
eTj,k

(
Pzz,iẑk/k−1

)−1
ej,k

}

(42)

Pzz,jẑk/k−1
is calculated as follows:

Pzz,1ẑk|k−1
= (2m)−1

2m∑
i=1

(
Z∗1i,k|k−1 − ẑ

1
k|k−1

)
×

(
Z∗1i,k|k−1 − ẑ

1
k|k−1

)T
+ Rk (43)

Pzz,2ẑk|k−1
= (2m)−1

2m∑
i=1

(
Z∗2i,k|k−1 − ẑ

2
k|k−1

)
×

(
Z∗2i,k|k−1 − ẑ

2
k|k−1

)T
+ R̄k (44)

where Pzz,1ẑk|k−1
is the innovation covariance matrix in ACKF

filter. Pzz,2ẑk|k−1
is the innovation covariance matrix of RCKF

filter.
From the above derivation, it can be seen that the smaller

the innovation matrix is, the more the subfilter corresponds
to the actual system, and the larger 3j,k will be. Therefore,
the value of θ0 corresponding to the subfilter is larger. When
the error of process model is larger than the statistical error of
measurement noise, the model probability of ACKF is larger.
Conversely, when the error of measurement noise statistics
is greater than the error of the process model, the modal
probability of RCKF is larger.

3) REDISTRIBUTION
x̂j,k and Pj,k are redistributed and then used as the initial value
of the sub-filter at the next moment.

x̂0i,k =
2∑
j=1

x̂j,khij,k (45)

P0i,k =
2∑
j=1

{
Pj,k +

[
x̂j,k − x̂0i,k

] [
x̂j,k − x̂0i,k

]T}
hij,k (46)

where i = 1,2; hij,k is the mixed probability.

hij,k =
aijθj,k
di,k

, h1j,k + h2j,k = 1 (47)

4) THE FUSION RESULTS
Through the calculated model probability and the estimated
state results of the two sub-filters, the final state estimation
fusion is performed:

x̂k =
2∑
j=1

x̂j,kθj,k (48)

Pk =
2∑
j=1

{
Pj,k +

[
x̂j,k − x̂k

] [
x̂j,k − x̂k

]T}
θj,k (49)

5) FLOW OF IMM-ARCKF ALGORITHM
a Initialization

The initialization of A, θ0 can be done by formula (39).
Then the ACKF filter and RCKF filter are initialized to obtain
the x̂0i,k and P

0
i,k of each filter

b ACKF and RCKF run in parallel
ACKF and RCKF reduce the impact of uncertainty of sys-

temmodel and uncertainty of measurement noise statistics on
filtering performance respectively. Their respective models
are different. ACKF and RCKF run in parallel, and then the
state of each subfilter and corresponding error covariance
matrix are obtained.

c Multifilter fusion
According to Equations (48)-(49), the final estimation

result of IMM-ARCKF algorithm is calculated.
d Repeat steps b and c until the positioning is complete.

III. GRU-DIDED THE INS/GPS
A. GATED RECURRENT UNIT
If we deal with problems related to the timeline of events,
such as pedestrian trajectory prediction, vehicle trajectory
prediction, natural language processing, text processing, etc.,
traditional neural networks are unable to perform it. It is
therefore proposed that recurrent neural network ( RNN) [31].
GRU control process is similar to RNN. Both of them process
data flowing through cells during forward propagation. The
difference is that the structure and operation of cells in GRU
are different from that in RNN [32]. GRU is a variant of the
Long-TermMemory (LSTM) that merges the input gates and
forgetting gates, and merges the memory state and the hidden
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FIGURE 2. The GRU module.

FIGURE 3. The training phase.

FIGURE 4. The predicting phase.

state. GRU has much fewer parameters than LSTM, and the
training speed is faster [33]. The hidden layer unit in the GRU
neural network introduces a gating unit, and its structure is as
follows [34]:

The calculation process is as follows:

zt = σ (Wz · [ht−1, xt ]) (50)

rt = σ (Wr · [ht−1, xt ]) (51)

h̃t = tanh
(
W ·

[
r∗t ht−1, xt

])
(52)

ht = (1− zt)∗ ht−1 + z∗t h̃t (53)

In the figure zt and rt represent update and reset gates
respectively. The greater the value of the update gate,
the more information was brought in from the previous
moment. The smaller the value of the reset door, the less
information from the previous moment was written.

B. GRU-ADIED INS/GPS
In this article, GRU is applied to INS/GPS integrated naviga-
tion system and OINS −1P structure is proposed. As shown

FIGURE 5. Simulated flight trajectory.

in Figure (3) and (4). When the GPS signal is properly
acquired, the GRU is trained. In this stage, INS and GPS
information are fused through IMM-ARCKF to obtain posi-
tioning results. In addition, the yaw angle ψINS and velocity
VINS of INS and the angular velocity ω and specific force
f of IMU are taken as input, and the output is the position
increment of GPS. When GPS signals cannot be obtained,
GRU is used for prediction. TheψINS , VINS , ω and f are input
into the trained GRU to obtain the predicted GPS increment.
The pseudo GPS position is obtained after integrating this
value, and then it is sent to IMM-ARCKF.

It is worth noting that the neural network not only uses
the information of the previous one-step, but also takes
{x (t − 3) x (t − 2) x (t − 1) x (t)} as the input.

IV. PERFORMANCE EVALUATION
A. PERFORMANCE VERIFICATION OF IMM-ARCKF
In this section, IMM-ARCKF is compared with the classical
CKF, ACKF and RCKF through numerical simulation exper-
iments and on-board experiments to verify the effectiveness
of the IMM-ARCKF. The root mean square error (RMSE) is
used as a metric to compare the performance of these algo-
rithms and verify the effectiveness of the proposed algorithm.
We performed 50 independent Monte Carlo simulations for
performance comparisons.

E-N-U geographic coordinate system is adopted for
INS/GPS integrated navigation system. INS/GPS integrated
navigation process model is composed of INS mechanical
calibration equation and inertial sensor error equation. The
system state vector is defined as:

x(t) = [ϕE ϕN ϕU δvE δvN δvU δL δλ δh

εx εy εz ∇x ∇y ∇z
]
(54)

where, (ϕE ϕN ϕU ) represent the attitude Angle error;
(δvE δvN δvU ) stand for velocity error; (δL δλ δh) stand
for position error;

(
εx εy εz

)
stand for gyro constant drift;(

∇x ∇y ∇z
)
stand for accelerometer constant drift.

The observation vector is:

z =
[
vEgps − v

E
ins vNgps − v

N
ins vUgps − v

U
ins

Lgps − Live λgps − λinshgps − hTins (55)

The discretized state equation is:

Xk = φk,k−1Xk−1 +Wk−1 (56)
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TABLE 1. The simulation initialization parameters.

The observation equation is:

zk = Hkxk + vk (57)

where Hk = [06×3I6×6 06×6] and vk is the measurement
noise matrix.

1) SIMULATION AND ANALYSIS
Assume that the fixed-wing aircraft performs maneuver-
able flight, which consists of various actions. In Figure (5),

FIGURE 6. Attitude RMSEs by CKF, ACKF,RCKF and IMM-ARCKF for the
simulation case.

FIGURE 7. Velocity RMSEs by CKF, ACKF,RCKF and IMM-ARCKF for the
simulation case.

the flight path of the aircraft is designed. Table 1 is the simu-
lation parameter. The filtering cycle is 1s and the simulation
time is 1000s.

The following is the comparative simulation results of
a Monte Carlo (MC) run. Figure (6) depicts the attitude
RMSE of CKF, ACKF, RCKF and IMM-ARCKF in a Monte
Carlo simulation. From the figure, the attitude RMSE of
ACKF, RCKF and the IMM-ARCKF are all smaller than
the classical CKF within 100 to 1000 seconds. The atti-
tude RMSE of IMM-ARCKF is the smallest. Figure (7)
and figure (8) are the velocity RMSE and position RMSE
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FIGURE 8. Position RMSEs by CKF, ACKF,RCKF and IMM-ARCKF for the
simulation case.

TABLE 2. The mean root mean square errors of CKF, RCKF, ACKF and
IMM-ARCKF in attitude, velocity and position.

obtained by CKF,, ACKF, RCKF and IMM-ARCKF in a
Monte Carlo simulation. The velocity error and position error
trends of the above four methods are similar to the attitude
error, among which the velocity and position error of the
IMM-ARCKF is much smaller than that of the other methods.
Table 2 lists the RMSEs of attitude, velocity and position
of CKF, ACKF, RCKF and IMM-ARCKF in a Monte Carlo
simulation. The positioning accuracy of the IMM-ARCKF
is at least 40.1% higher than that of the classical
CKF.

Simulation results show that IMM-ARCKF in this article
can well combine the advantages of ACKF and RCKF, thus
significantly improving the navigation accuracy of INS/GPS
integration.

Figure (9) - Figure (11) shows the average RMSE
of 50 Monte Carlo calculations. It can be seen that

FIGURE 9. Mean of attitude RMSE for 50 Monte Carlo simulations.

FIGURE 10. Mean of velocity RMSE for 50 Monte Carlo simulations.

FIGURE 11. Mean of position RMSE for 50 Monte Carlo simulations.

IMM-ARCKF has high precision, and shows better stability
and robustness compared with the standard CKF algorithm
and RCKF algorithm.

2) THE FIRST EXPERIMENT AND ANALYSIS
As shown in figure (12), the vehicle is equipped with
an INS/GPS integrated navigation system. The experimen-
tal instruments include the iN5620 integrated navigation
receiver and I50 small intelligent RTK receiver.

The vehicle trajectory is shown in figure (13). The
vehicle navigation test was conducted in Jinzhong city,
Shanxi Province. The initial position was at North latitude
37◦44’44.4’’, East longitude 112◦42’07.3’’. The horizontal
position error of GPS receiver is 4m. The height error is 7m,
and the speed error is 0.05 m/s. The test time is 1000s and the
filtering period is 1s. The initial velocities of east, north, and
up are 10m/s, 10m/s, and 0m/s, respectively. The gyroscopic
constant drift is 0.1◦/h. The accelerometer zero bias is 10−3g.
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FIGURE 12. Test vehicle with equipment.

FIGURE 13. The vehicle trajectory of the first test.

The initial position error of the vehicle is (12m, 12m, 15m).
The initial speed error is (0.3m/s, 0.4m/s, 0.3m/s), and the
initial attitude error is

(
1′, 1.5′, 1′

)
.

Figure (14) and figure (15) respectively depict the lon-
gitude and latitude errors of the classical CKF, ACKF,
RCKF and the IMM-ARCKF in the on-board experi-
ment. Within 100s to 1000s, the longitude error of clas-
sical CKF is between (−24.9m,25.0m) and latitude error
is between (−25.0m,20.0m). ACKF and RCKF improve
the positioning accuracy to some extent. The longi-
tude error of the proposed IMM-ARCKF algorithm is
within (−5.3m, 5.1m), and the latitude error is between
(−5.5m, 5.2m). The longitude and latitude error of IMM-
ARCKF algorithm is much smaller than that of classi-
cal CKF,ACKF and RCKF. Therefore, IMM-ARCKF has
stronger adaptability and robustness, and higher navigation
accuracy.

Table 3 shows the mean root mean square error of
longitude and latitude of CKF, RCKF, ACKF and IMM-
ARCKF. It can be seen that the positioning accuracy of
IMM-ARCKF is obviously better than that of traditional CKF
algorithm.

FIGURE 14. Longitude error.

FIGURE 15. Latitude error.

TABLE 3. The mean root mean square errors of CKF, RCKF, ACKF and
IMM-ARCKF in Longitude and latitude.

FIGURE 16. The vehicle trajectory of the second test.

B. GRU/-IMM-ARCKF COMPARED WITH OTHER
ALGORITHM
The training of neural network needs a lot of data, so the dis-
tance of this experiment is long. The experimental trajectory
is shown in Figure (16). The black part is the process of arti-
ficial outages. When the GPS receiver is working normally,
the system is in loose coupling mode and GRU is trained.
When GPS is interrupted artificially, GRU makes prediction
and outputs the INCREMENT of GPS. The whole process
took 3,000 seconds.
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FIGURE 17. Performance comparison of different parameter.

FIGURE 18. Positioning results in 60s outages.

1) PARAMETER TRAINING OF GRU
The model was designed to consist of two GRU layers and
a full connection layer activated by the SOFTMAX function.
The learning rate was set at 0.001. Using the RMSE as the
criterion for selecting parameters. In practice, we usually
evaluate the generalization ability of learning methods by
testing errors. When training the GRU, we need to determine
the parameters such as the number of hidden units and the
time step size. If it is too much, it will consume a lot of
time and real time performance degradation. Based on the
RMSE, the performance of several time step sizes and the
number of hidden units is evaluated. To select the appropriate
parameters. Figure (17) shows the performance differences of
different parameters.

It can be intuitively seen that when the step size is 4 and the
hidden cell is 64, the RMSE in each direction is lower, so this
combination is selected.

2) THE SECOND EXPERIMENT AND ANALYSIS
To evaluate the overall performance of the GRU/IMM-
ARCKF, an actual road experiment is carried out after
the parameters are selected. During the experiment, three
segments were set up for 60 seconds, 100 seconds and
200 seconds respectively. And compared with the algorithm
IMM-ARCKF, RBF/IMM-ARCKF and the proposed
algorithm.

Figure (18) is positioning results figure in 60s out-
ages. The black line in the figure is the reference trajec-
tory. The green one represents the traditional IMM-ARCKF

TABLE 4. The error comparison of several algorithms when GPS outages.

FIGURE 19. Positioning results in 100s outages.

algorithm. The red one represents the RBF/IMM-ARCKF,
and the blue one represents the proposed GRU/IMM-
ARCKF. In Figure (18), the positioning error of each
algorithm increases with the increase of time during GPS
interruption. But the error increase of each algorithm is
obviously different. The position error of IMM-ARCKF
increases the fastest while that of GRU/IMM-ARCKF is
the slowest. Compared with IMM-ARCKF and RBF/IMM-
ARCKF, the GRU/IMM-ARCKF has higher positioning
accuracy. Table 4 shows that the maximum position-
ing error of the GRU/IMM-ARCKF is 17.83 meters,
which is 39.51meters smaller than the maximum error of
IMM-ARCKF algorithm.

Figure (19) is a positioning results in 100s out-
ages.The mean positioning error of GRU/ IMM-ARCKF
is 13.72 meters, and that of RBF/ IMM-ARCKF is
24.46 meters. The comparison shows that the performance
of GRU network is obviously better than RBF network.

Figure (20) is a positioning results in 100s outages.
Because of the long outage time, the error of each algo-
rithm increases continuously. The mean positioning error of
the IMM-ARCKF algorithm is as high as 201.86 meters,
the mean positioning error of the RBF/IMM-ARCKF is
130.74 meters, while the mean positioning error of the
GRU/IMM-ARCKF is only 20.16 meters. It fully embodies
the advantage of GRU neural network to assist integrated
navigation system after GPS signal loss.
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FIGURE 20. Positioning results in 2100s outages.

TABLE 5. Time consumption of different algorithms.

MATLAB 2014 software was used in the simulation
experiment. Many simulation experiments were carried out
on a portable computer (16G, Intel Core i7-10750H CPU
@2.60GHZ), and the running time of the corresponding pro-
gram was statistically analyzed. Table 5 shows the compari-
son of calculation time between the two algorithms.

V. CONCLUSION
In this article, IMM-ARCKF algorithm based on GRU is
proposed. IMM-ARCKF algorithm mainly solves the uncer-
tainty of system model and noise statistics in the actual
system, and improves the robustness and adaptability of the
system. GRU neural network can greatly reduce the position
error of vehicles in complex urban environment. The perfor-
mance of GRU/IMM-ARCKF in the case of GPS outages is
analyzed.When GPS cannot be properly acquired, the system
is in the training stage. The predicted position increment
can be obtained by inputting the measurements of specific
force, velocity, yaw Angle, and angular velocity into the
trained model. After integrating the increment, the predicted
GPS position is obtained. Compared with IMM-ARCKF,
RBF/ IMM-ARCKF and GRU/IMM-ARCKF, the position-
ing accuracy of GRU/ IMM-ARCKF is higher in complex
environment. The effectiveness and superiority of the algo-
rithm are proved.
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