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ABSTRACT Compressed Sensing (CS) has been proposed as a low-complexity ECG data compression
scheme for wearable wireless bio-sensor devices. However, CS decoding is characterized by high com-
putational complexity. As a result, it represents a burden to the computational and energy resources of
the network gateway node, where decoding is performed. In this article, we propose a Fast Compressive
Electrocardiography (FCE) technique to address this problem. CS decoding in FCE is based on Weighted
Regularized Least-Squares (WRLS), rather than the standard approach based on `1 norm minimization. The
WRLS formulation takes into account prior knowledge of ECG signal properties to estimate an optimally
compact and accurate representation of ECG signals. Numerical results show that decoding by FCE is
on average 33 times faster than the fastest tested CS-based ECG decoding technique. In addition, high-
quality ECG signal reconstruction by FCE is achieved at 32% higher compression ratio. Therefore, FCE can
contribute to improving the overall energy and computational resource efficiency of CS-based remote ECG
monitoring systems.

INDEX TERMS Compressed sensing (CS), electrocardiogram (ECG), random demodulator, remote health
monitoring, wireless body-sensor network (WBSN).

I. INTRODUCTION
Remote health monitoring systems have recently gained sig-
nificant importance, due to their role in treatment, prevention
and early detection of diseases. Specifically, remote monitor-
ing of the heart Electrocardiogram (ECG) is of prime interest,
since it requires continuous and long-term monitoring [1],
[2]. Fig. 1 illustrates an overview of an exemplary remote
ECG monitoring system. In the context of a Wireless Body-
Sensor Network (WBSN), a wearable ECG sensor node
acquires, compresses, and wirelessly transmits the patient’s
ECG data. A gateway node receives, reconstructs and pro-
cesses the ECG signals to extract useful medical data, such
as heart rate, rhythm and various indicative intervals [3], [4].
It then forwards these data to a cloud-based database that
can be accessed by medical specialists. Recent works have
shown that ECG data processing and information extraction
at the gateway node is more energy-efficient than blindly
forwarding raw ECG data to the cloud. In addition, it reduces
the traffic load on the network [1], [5], [6]. The gateway node

The associate editor coordinating the review of this manuscript and

approving it for publication was Jason Gu .

FIGURE 1. An overview of an exemplary remote ECG monitoring system.

maintains the option of forwarding selected abnormal ECG
segments to be examined by the medical specialist.

Due to the restrictions on its size, weight and cost, the sen-
sor node has a limited battery capacity. The majority of the
energy consumed at the sensor node is referred to wireless
transmission, followed by digital signal processing [7], [8].
Consequently, Compressed Sensing (CS) [9] has been pro-
posed as a low-complexity ECG data compression scheme
to improve the energy efficiency of the sensor node [10].
CS encoding is simply achieved by linearly projecting each
frame of acquired ECG samples to a random sensing matrix,
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yielding a smaller sized compressed frame. Standard CS
decoding is based on solving an `1 norm minimization prob-
lem via convex optimization methods, or via greedy algo-
rithm implementations [11], [12]. The seminal work in [13]
compared CS-based ECG (CS-ECG) compression to stan-
dard ECG compression based on DiscreteWavelet Transform
(DWT). The results confirmed the effectiveness of CS-ECG
in terms of energy efficiency, in return for reduced recon-
structed signal quality and higher decoding complexity. Sim-
ilar results were reported in [14]–[16].

Most of the recent works on CS-ECG systems focused on
improving the reconstructed signal quality through adapting
the CS encoder to the sensed ECG signal. This was mainly
achieved by optimizing the structure of the sensing matrix to
benefit from structural, temporal and statistical properties of
ECG signals. These works are well reviewed in the recent
survey of adapted CS techniques in [17]. However, only a
few works focused on performing this adaptation at the CS
decoder side. In [18], the block-sparse structure and inter-
block correlations of ECG signals were exploited for improv-
ing the reconstructed signal quality by using the Block-Sparse
Bayesian Learning (BSBL) algorithm [19].

In [20], a class of artificial neural networks called
Restricted Boltzmann Machines (RBM) were employed to
create a statistical model of the ECG signal sparsity pattern.
This model is plugged into the CS decoder to improve com-
pression ratio and reconstruction performance. However, this
approach has a large impact on increasing decoding com-
plexity. A Weighted `1 Minimization (WLM) technique was
proposed in [21]. Prior knowledge of the wavelet coefficients
decay factors of ECG signals was incorporated into the `1
minimization problem used for CS decoding. This enabled
the decoder to identify significant DWT coefficients more
accurately. Orthogonal Matching Pursuit (OMP) [22] is a
widely used fast CS decoding algorithm. Weighted OMP
(WOMP) in [23] adapted the WLM technique to OMP in
order to benefit from the speed advantage of OMP.

The aforementioned adapted CS-ECG decoding tech-
niques achieved considerable gains in terms of minimizing
the reconstructed ECG signal error. However, the computa-
tional complexity of these techniques is at least as high as
standard CS decoding. In most cases, the patient’s smart-
phone plays the role of the WBSN gateway node, since
most patients are not expected to acquire specialized devices.
Thus, CS-ECG decoding at the gateway node could repre-
sent a considerable computational burden. This leads to fast
battery drainage, especially for the cases where long-term
monitoring is necessary. In addition, it may not be possible
reconstruct the signals in the real time, especially if large
ECG frame length was used [5], [6], [24].

In this article, we propose a Fast Compressive Electro-
cardiography (FCE) technique, which mainly addresses the
problem of high decoding complexity of the state-of-the-art
CS-ECG systems. In addition, it contributes to improving
the reconstructed ECG signal quality. FCE is an adapted CS
decoding technique based on Weighted Regularized Least

Squares (WRLS). WRLS is known to be significantly less
complex than `1 norm minimization [25]. In FCE, the WRLS
problem targets estimating a small set of Discrete Cosine
Transform (DCT) coefficients, which accurately represent the
sensed ECG signal. Prior knowledge of the decay profile
of these coefficients is exploited to assign their respective
weights. In addition, the values of tunable parameters in the
WRLS problem are optimized to maximize the reconstructed
signal quality. Nevertheless, FCE does not require any modi-
fication to the CS encoder.

CS decoding by FCE is achieved with significantly lower
computational complexity than all current CS-ECG decoding
techniques. This will be shown both analytically and exper-
imentally throughout this article. As a result, the impact of
the ECG monitoring application on the patient’s smartphone
battery life can be minimized. In addition, real-time ECG
signal reconstruction can be practically feasible, even for
large signal frame sizes. Furthermore, we will show that FCE
achieves high-quality reconstruction at relatively higher com-
pression ratios, and hencemore energy savings are achievable
at the sensor node.

The remaining part of this article is organized as follows:
in Section II, we provide an essential background on CS.
We introduce the FCE technique in Section III. We then
present our numerical experiments and discuss their results
in Section IV. Finally, we draw our conclusions in Section V.

II. BACKGROUND
A. CS FRAMEWORK
In a digital CS paradigm as adopted in [13], the analog ECG
signal picked up by the ECG sensor is input to an ADC
operating at fs samples/second. The ADC outputs a frame of
N samples every sensing interval T = N/fs seconds. Suppose
the ECG frame is represented by a column vector x ∈ RN .
CS encoding is a simple linear transformation, which can be
modeled by the following matrix equation:

y = 8x+ q (1)

where8 ∈ RM×N is the sensing matrix, y ∈ RM is called the
measurements vector, and q ∈ RM represents a bounded error
term (‖q‖2 ≤ ε) that may be present due to quantization and
additive noise. Compression performance is quantified by the
Compression Ratio (CR), which is defined as:

CR ,
N −M
N

× 100% (2)

From the basic theory of signal analysis [26], any signal
x ∈ RN can expressed as a weighted sum of the columns of
an orthonormal (unitary) basis matrix9 ∈ RN×N as follows:

x = 9u (3)

where u ∈ RN is referred to as the representation of x in
the domain of the basis 9. A signal x is called s−sparse in
the domain of 9 if the number of non-zero coefficients (or
those of considerable magnitude) in u is at most s, such that
s � N . DWT bases have been reported to provide highly
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sparse representations of ECG signals compared to other
bases. Specifically, Daubechies wavelets (Db-4 and Db-10)
[13], [27], Symlets (Sym-6) [21] and Coiflets (Coif-5) [28].

By combining (1) and (3), we can directly link the com-
pressed measurements vector y to the sparse vector u, as fol-
lows:

y = 89u+ q = Hu+ q (4)

where H = 89 ∈ RM×N is called the compression matrix.
The reconstructed sparse vector û can be found by solving
the following convex optimization problem, which is known
as Basis Pursuit Denoising (BPDN) [29]:

û = arg min
u
‖u‖1 subject to ‖y−Hu‖2 ≤ ε (5)

where ‖u‖1 =
∑N−1

i=0 |ui| is the `1 norm of the vector u.
Minimizing the `1 norm serves as a proxy for promoting the
sparsity of the solution [29]. A plenty of methods can be used
for solving the BPDN problem efficiently, such as interior-
point methods [30] and Spectral Projected-Gradient (SPG)
method [31]. In addition, the solution can be approximated
by fast greedy iterative algorithms, such as OMP [22] and
Compressed Sampling Matching Pursuit (CoSaMP) [32]. CS
decoding algorithms are well reviewed in [11], [12].

Since (4) is an under-determined system of linear equa-
tions, it admits an infinite number of feasible solutions. In
order for (5) to yield an accurate estimate of the sparse
unknown vector, the compression matrix H should satisfy
a Restricted Isometry Property (RIP) [33]. The RIP is sat-
isfied with very high probability for sensing matrices with
iid random entries of Gaussian or Bernoulli (±1) distribu-
tions. This is valid over any orthonormal basis, provided
that M ≥ c0 s log (N/s), where c0 is a numerical constant
[34]. Acquiring insufficient number of measurements leads
to considerable reconstruction error [35], [36].

The RIP provides strong recovery guarantees. However,
verifying the RIP for arbitrary compression matrices is highly
complicated. Alternatively, more computationally tractable
guarantees are provided by the mutual coherence of the com-
pression matrix, given by [37]:

µ(H) = max
1≤i 6=j≤N

|hTi hj|
‖hi‖2‖hj‖2

(6)

where hi and hj are the i-th and the j-th columns ofH respec-
tively. The equation y = Hu has a unique s-sparse solution if
µ < 1/(2s−1), where

√
(N −M )/(N − 1)M ≤ µ ≤ 1 [38].

Extended guarantees for the noisy case in (4) were provided
in [39]. In general, a smaller value of µ corresponds to higher
probability of accurate reconstruction of u by solving (5).

B. LOW-COMPLEXITY CS ENCODING
CS encoding is achieved in the digital domain by applying
the sensing matrix to the data vector, which requires O(MN )
operations. For large N , such process could be computa-
tionally demanding for the sensor node. In effort to reduce
the encoding complexity, the Random Sparse Binary Matrix

FIGURE 2. Block diagram of the random demodulator (RD) architecture
[42].

(RSBM) was proposed in [13], such that each column of the
sensing matrix contains exactly d � N randomly located
1’s. It was shown that the mutual coherence of RSBMs with
DWT (db10) basis can be as low as the mutual coherence of
the Gaussian random sensing matrix (which is usually used
as a reference) for d ≥ 12 [13].
One of the fundamental strengths of CS is that its encod-

ing stage can be performed entirely in the analog domain.
The measurements vector can be directly acquired by an
ADC operating at a low sampling rate (which could go
below Nyquist rate). The Random Demodulator (RD) shown
in Fig. 2 is one of the simplest and most energy-efficient ana-
log CS acquisition architectures [40]–[42]. The input analog
signal x(t) is multiplied by a continuous-time pseudo-random
chipping sequence p(t) = ±1 by using an analog mixer. The
chipping rate of p(t) is set to the original signal sampling
rate: fs chips per second. Assuming that N is divisible by M ,
an integrator accumulates the product signal, and the output
is sampled every L = N/M > 1 chips, with resetting the
integrator. Thus, the ADC sampling rate is reduced to fs/L
samples per second.

CS encoding by the RD can also be modeled by (1)
[42]. Suppose every N chips of p(t) are divided into M
consecutive segments. Each segment is a row-vector of
L antipodal entries. The i-th segment is given by: pi =
{p(i,0), p(i,1), . . . , p(i,L−1)}, where i = 0, 1, . . . ,M − 1. The
RD sensing matrix is hence modeled as a block-diagonal
matrix of these segments, which is expressed as [42]:

8 = f −1s · blkdiag(p0,p1, . . . ,pM−1) (7)

The RD was originally proposed for band-limited multi-tone
signals, which are sparse over the DFT basis. However, it was
found to be highly coherent with DWT bases (i.e. µ is large),
which made it a bad choice for CS-ECG systems [13].

In effort to address this problem, other analog CS-ECG
encoding architectures were proposed such as the Ran-
dom Demodulator Pre-Integrator (RMPI) [43], [44], Spread-
spectrumRandomDemodulator Pre-Integrator (SRMPI) [45]
and Compressed Sensing Analog Front-End (CS-AFE) [46].
All these architectures are more or less based on using sev-
eral RD channels in parallel. Thus, the implementation size,
energy consumption and cost incurred with such architectures
is at least several times higher than the RD.
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FIGURE 3. Normalized coefficient magnitudes versus coefficient index for
DWT (Sym-6 wavelet with 3 levels of decomposition) and DCT basis
representations. ECG frame length is N = 1024 taken from record
no. 123 of the MIT-BIH arrhythmia database.

III. PROPOSED TECHNIQUE
A. MOTIVATION
Consider an ECG signal frame ofN samples selected arbitrar-
ily from the MIT-BIH arrhythmia database [47], [48]. Fig. 3
compares the magnitudes of its DWT representation coeffi-
cients to their DCT counterparts. We observe that although
the DCT representation is less sparse than the DWT represen-
tation (i.e. has more non-zeros), significant DCT coefficients
are concentrated within the lower 30% of indices. This is
referred to the energy compaction property of DCT [26],
[49]. Based on this property, the DCT representation of a
finite sequence is often more concentrated at low indices
compared to other transforms. In addition, ECG signals can
be well approximated by the first k < N coefficients of
the DCT representation, where approximation error rapidly
decays with k . This is referred to the exponential coefficient
magnitude decay profile, which can be observed in Fig. 3.

Based on the above discussion, it is possible to reconstruct
the ECG signal with arbitrarily small error by targeting esti-
mating a sufficient number of low-index DCT coefficients. In
addition, since the coefficients within the low-index region
are non-sparse, computationally demanding `1 minimization
approach is no more necessary. It can be replaced by simpler
and more flexible `2 norm minimization. However, the suc-
cess of this approach is bound to proper exploitation of the
prior knowledge of the coefficient decay profile, as to be
shown next.

B. METHOD
Let the basis matrix9 be set as the orthonormal inverse DCT-
2 matrix, whose elements are given by [26], [49]:

ψi,j =
β(j)
√
N

cos
(
(2j+ 1)iπ

2N

)
, i, j = 0, 1, . . . ,N − 1 (8)

where β(j) = 1 for j = 0, and equals
√
2 otherwise. Thus, for

a given value of k < N , the ECG signal can be expressed as:

x =
[
9k 9̃k

] [uk
ũk

]
= 9kuk + 9̃k ũk (9)

where 9k ∈ RN×k is the collection of the first k columns
of 9, and 9̃k ∈ RN×(N−k) is the collection of the remaining

columns of the matrix. Similarly, uk ∈ Rk consists of the first
k entries of u, while ũk ∈ RN−k consists of the remaining
entries.

Based on (9), the measurements vector can be written as
y = 8(9kuk + 9̃k ũk ) + q. Suppose we choose k such that
‖89̃k ũk‖2 � ‖89kuk‖2. Hence, we may treat the term
v = 89̃k ũk ∈ RM×1 as a small additive error/noise vector
as follows:

y = 89kuk + v+ q = Hkuk + (v+ q) (10)

where Hk = 89k ∈ RM×k consists of the first k columns of
H. By targeting estimating the non-sparse vector uk , we have
eliminated the need for estimating the support (non-zeros
locations) of the entire vector u. Thus, uk can be simply esti-
mated by posing the following Least Squares (LS) problem:

ûk = arg min
uk
‖y−Hkuk‖22 (11)

The solution of above problem is given by [25]:

ûk = (HT
k Hk )−1HT

k y, k ≤ M (12)

The solution in (12) is only valid when the system of
equations in (10) is fully determined or over-determined,
i.e. for k ≤ M . There is no closed-form expression of the
solution for the under-determined case: k > M . However,
for high compression ratios (i.e. M � N ), there is a high
probability that k > M . Thus, it is of high importance to find
an optimal solution for all values of k , especially for k > M .
To alleviate this problem, we employ Weighted Regularized
Least-Squares (WRLS) [25], which adds a second objective
to (11). The trade-off between the two objectives is controlled
by the regularization parameter λ > 0, as follows:

ûk = arg min
uk
‖y−Hkuk‖22 + λ‖Wkuk‖22 (13)

In the above formulation, we target minimizing the energy
of a weighted version of uk as a second objective, where
Wk = diag(w0,w1, . . . ,wk−1) is a k × k diagonal weighting
matrix. The weighting matrix will enable us to incorporate
the coefficients decay information into the WRLS problem,
in order to further improve decoding performance. The prob-
lem in (13) has a closed-form solution given by [25]:

ûk = (HT
k Hk + λW2

k )
−1HT

k y, 1 ≤ k ≤ N (14)

This solution is valid for all feasible values of k and M , due
to the presence of the diagonal matrix W2

k within the matrix
inversion.
Proper design of the weighting matrix require a mathe-

matical model of the coefficients magnitude decay profile.
The root-mean-square (RMS) values of the DCT coefficients
of ECG signals are plotted versus their index in Fig. 4.
These values were computed over the collection of full-length
records no. 100, 112, 123, 200 and 222 of the MIT-BIH
database. We modeled these data by the following function:

f (i) = exp [−a1 sin(b1q(i)+ c1)− a2 sin(b2q(i)+ c2)] (15)
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FIGURE 4. RMS values of DCT coefficients versus coefficient index
computed MIT-BIH database records no. 100, 112, 123, 200 and 222 at
N = 512. All frames were normalized to have a unit norm prior to
calculation.

where q(i) = (i + 1)/N for all i = 0, 1, . . . ,N − 1. The
coefficients are given by: a1 = 13.7, b1 = 1.35, c1 = 0.06,
a2 = 0.65, b2 = 20.45 and c2 = 1.42. This model was
produced by fitting the sum of two sine functions to the log
of the data points, with higher weights assigned to low-index
coefficients due to their significance. The curve produced by
the above model is also shown in Fig. 4.

Minimizing the energy of the term Wkuk in (13) implies
that the weighting coefficients should equalize the decaying
magnitude profile of uk . This can be achieved by setting the i-
th entry of the weightingmatrix diagonalwi as the normalized
reciprocal of f (i), which is expressed as:

wi =
f (i)−1√

f (0)−2 + f (1)−2 + . . .+ f (k − 1)−2
(16)

where the purpose of denominator in the above expression is
to normalize the weighting coefficients vector to have a unit-
norm. Based on the above setup, the last remaining step is
to determine the optimum values of k and λ that minimize
the reconstruction error, which is to be done numerically in
Section IV-C.

C. COMPUTATIONAL COMPLEXITY ANALYSIS
The computational complexity of FCE decoding can be cal-
culated by analyzing (14). To simplify the analysis, we may
recast (14) as determining the LS solution ofGuk = b, where
G = HT

k Hk+λW2
k is a symmetric and positive definite k×k

matrix (sinceWk is a diagonalmatrix), and b = HT
k y is a k×1

vector. The solution of this equation can be efficiently and
stably found by using Cholesky decomposition method [25].
Themain computational tasks associatedwith this process are
listed as follows: leftmargin=*
• Computing Hk = 89k requires O(dkN ) and O(kN )
operations for RSBM and RD sensing matrices, respec-
tively.

• Computing G = HT
k Hk + λW2

k requires O(k2 M )
operations, mainly due to the first term of the right-hand
side.

• Computing b = HT
k y requires O(kN ) operations.

• GivenG and b, computing uk by using Cholesky decom-
position requires O(k3) operations [25].

Asymptotically, O(k2 M ) dominates if k < M , while O(k3)
dominates if k > M .
On the other hand, the asymptotic complexity of solving

the BPDN problem by using the SPG-L1 and BSBL algo-
rithms is O(M2N ) [31], [50]. WLM approach presents a
slight modification to BPDN and has the same complexity
[21]. On the other hand, the OMP and WOMP algorithms
complexity is O(sMN ) [11], [22]. Since k < N , we expect
that FCE reconstruction should theoretically run faster than
SPG-L1 and BSBL, and to be comparable in speed to OMP
andWOMP. However, a major strength of FCE in this context
is that while all CS reconstruction algorithms require multiple
iterations to converge [11], [12], solving (14) is achieved in a
single iteration, which makes it significantly faster. This will
be verified by the numerical results presented in Section IV-E.

D. COMPARISON TO WEIGHTED `1 MINIMIZATION
TECHNIQUE
At this point, it is necessary to to compare our proposed
FCE technique to WLM [21], which bears some similarity in
approach to FCE. The main observation that drove the WLM
technique was the rapid decay of the DWT detail coefficients
with increased resolution level. This can be observed by
referring back to the DWT representation shown in Fig. 3.
Consequently, an N × N diagonal weighting matrix W =

diag(w0,w1, . . . ,wN−1) was plugged into the `1 minimiza-
tion part of the BPDN objective function. This aims to incor-
porate the prior information about the coefficients decay over
each resolution level. The WLM problem is given by the
following form [21]:

û = arg min
u

1
2‖y−Hu‖22 + λ‖Wu‖1 (17)

The above formulation is an alternative form of the BPDN
problem in (5), called the lasso problem [29].

By comparing the above problem to (13), we note that
both FCE and WLM employ a diagonal weighting matrix to
exploit prior knowledge of coefficients decay characteristics.
However, we highlight the factors that distinguish FCE from
WLM as follows:

1) Solution characteristics: WLM targets reconstructing
a sparse DWT representation vector of length N , while
FCE targets reconstructing a dense vector comprising
the first k coefficients of the DCT representation.

2) Weighting matrix and regularization function: the
WLM weighting matrix is designed to assign higher
weights to significant coefficients, which leads `1 mini-
mization to converge at a solution with minimum num-
ber of non-zeros. On the other hand, FCE weighting
matrix is designed to assign low weights to significant
coefficients. This leads the weighted optimum solution
to have low energy. Hence, it can be approached via `2
norm minimization.

3) Degrees of freedom: the performance of WLM is tuned
solely by the parameter λ, while FCE is tuned by both
λ and k . In addition, since k determines the size of the
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WRLS problem, selecting a smaller k contributes to
increasing decoding speed.

4) Path to solution: any CS decoding algorithm used to
solve the WLM problem requires multiple iterations
to converge [11], [12], while FCE has a closed-form
solution.

The above factors have lead FCE to achieve improvements
over WLM in terms of reconstruction quality and speed. The
same arguments apply to the WOMP technique [23], which
is an adaptation of WLM to the OMP algorithm. We verify
the advantages of FCE over WLM and WOMP and other
decoding techniques through numerical experiments in the
next section.

IV. RESULTS AND DISCUSSION
A. EXPERIMENTAL SETUP
ECG data used in all numerical experiments shown in this
article were extracted from theMIT-BIH arrhythmia database
[47], [48]. The database includes a library of 30 minutes long
ECG records of patients. The ECGswere sampled at a 360 Hz
with 16-bit resolution, i.e. the length of each record is approx-
imately 65 × 104 samples. The records are labeled 100 to
124 and 200 to 234. We arbitrarily selected records number
100, 112, 123, 200 and 222 for our experiments. The first
75% of each record data were used for selecting the optimum
FCE parameters: k and λ in Section IV-C. The remaining
25% were used for producing decoding performance results
in Section IV-D. This ensures unbiased evaluation of the
decoding performance. On the other hand, the entire available
data were used for measuring average execution time of CS
decoding in Section IV-E.

Prior to CS encoding, the ECG signals were filtered by
4-pole Butterworth high-pass and low-pass filters. The fil-
ters’ cutoff frequencies are 0.5 Hz and 40 Hz, respectively,
as specified for ambulatory ECG monitoring [51], [52]. Due
to their impact on minimizing the CS encoder complexity,
we selected RSBM with d = 12 and RD sensing matri-
ces for CS encoding in our experiments. The acquired CS
measurements were quantized using 11 bits to better emulate
realistic systems. For DWT basis, we used Symlet-6 wavelet
with 6 levels of decomposition, following the setting used for
WLM andWOMP in [21], [23]. Available ECG records were
divided into frames of length N each. Presented results are
the average of randomized trials performed on all available
frames independently. Each trial uses a different random
instance of the sensing matrix.

Numerical results for CS-ECG decoders included in our
experiments were produced by the following publicly avail-
able MATLAB-based solvers: SPGL1 solver for BPDN [53],
BSBL_BO solver for BSBL [54], l1-ls solver for the lasso
formulation used inWLM [55], andOMP solver fromSparse-
lab toolbox [56] for WOMP, with applying relevant modifi-
cations according to [23]. Finally, all numerical experiments
were performed by usingMATLAB 2018a running on a desk-
top computer equipped with an octa-core Intel i7-10700 pro-

TABLE 1. Reconstructed ECG signal quality grades and the corresponding
PRD and ARSNR values as perceived by a medical specialist [58].

cessor operating at 2.9 GHz, and 16 GB of DDR4 RAM
operating at 3.2 GHz.

B. RECONSTRUCTED SIGNAL QUALITY METRICS
The reconstruction quality in ECG compression literature is
quantified by either the Percentage Root-mean-square Differ-
ence (PRD) or the Average Reconstruction Signal-to-Noise
Ratio (ARSNR). The PRD is defined as [13], [57]:

PRD ,

√√√√Ex

(
‖x− x̂‖22
‖x‖22

)
× 100% (18)

The associated ARSNR in dB is defined as:

ARSNR , 10 log10 Ex

(
‖x‖22
‖x− x̂‖22

)
(19)

Based on the perception of a medical specialist, the relation-
ship between the PRD/ARSNR and the visual quality of the
reconstructed ECG signal is shown in Table 1 [58].

C. OPTIMUM FCE PARAMETERS SELECTION
In this section, we perform numerical experiments to deter-
mine optimal values of the parameters k and λ in (14) that
maximize the ARSNR. Fig. 5 depicts the ARSNR versus
k/N for λ = {0.01, 0.1, 1, 10} at CR of 60% and 80%. We
first notice that the ARSNR increases gradually with k , and
then saturates at the peak achievable ARSNR. We also notice
that very small values of λ (λ = 0.01, 0.1) lead to high
performance variability, especially around k = M . This is
referred to the fact that for k = M and λ ≈ 0, the solution in
(14) will converge to ûk ≈ H−1k y, i.e. this solution assumes
y ≈ Hkuk , which is inaccurate by referring to (10). On the
other hand, a large value of λ = 10 leads to higher stability,
since the regularizing term helps leading to the optimum
solution, whilst peak ARSNR is reached at a larger value
of k . We favor choosing a small k to minimize the problem
size (and hence the computational task). Hence, our choice
of the optimum value of k would be the smallest value that
achieves the peak ARSNR. Therefore, we can deduce that an
intermediate value λ = 1 is optimal.
Table 2 lists the optimum k values: k∗ (normalized toN and

M ) that maximize the ARSNR for a set of CRs. We observe
that for CR = 75% and above, k∗ > M . This emphasizes
the contribution of the regularizing energy minimization term
in (13), which enabled improving recovery performance at
high CR. Finally, we highlight that the values of k∗ may vary
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FIGURE 5. ARSNR versus k/N for CR = 60% and 80%. The results were
produced by solving (14) for each value of k at N = 512 by using RSBM
sensing matrix.

TABLE 2. A list of numerically calculated optimum values of the
parameter k that maximize the ARSNR at λ = 1.

for different system settings, such as the sampling rate, pre-
filtering cutoff frequencies and the measurements noise level.
Hence, they should be fine-tuned by the system designer
according to system specifications.

D. RECONSTRUCTED SIGNAL QUALITY
Fig. 6 depicts ARSNR against CR for FCE and a set of
related CS-ECG decoding techniques. The results are shown
for RSBM and RD sensing matrices. We first notice that the
ARSNR associated with FCE is significantly higher than all
other alternatives for both RSBM and RD sensing matrices.
This is valid up to CR of 80%, after whichWLM andWOMP
achieve comparable performance for RSBM sensing matrix.
However, at this CR range, the resulting ARSNR is too low
to be practically useful. FCE performance is particularly
superior for RD sensing matrix, where all tested CS-ECG
decoding techniques achieved poor performance. This agrees
with the discussion in Section II-B. We also notice that FCE
achieves an ARSNR above 40 dB at CR ≤ 70%. As a result,
FCE is particularly useful in operationmodes that target high-
quality reconstruction in return for lower CR.

Table 3 compares the maximum CR achievable by each
technique for ‘‘Very Good’’ (VG) and ‘‘Good’’ (G) recon-
structed signal quality grades, based on Table 1. The data
show that FCE can achieve VG grade at CR up to 74% for
RSBM sensingmatrix, compared to 56% forWOMP, 54% for
WLM, and 50% for BSBL. Consequently, for RSBM sensing
matrix, FCE achieves VG grade with at least 32% higher CR
than other techniques. On the other hand, none of the these
techniques could achieve VG grade for RD sensing matrix,

FIGURE 6. ARSNR versus CR at N = 512.

FIGURE 7. Box plots of the reconstruction PRD for MIT-BIH record
no. 200 at CR = 75% and N = 512.

TABLE 3. Maximum achievable CR for VG and G quality grades.

while FCE maintains its performance. Therefore, FCE has a
good potential to perform efficiently over the RD acquisition
architecture at the sensing node. This grants a significant
reduction in the energy consumption and cost of the CS
encoder [41].
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FIGURE 8. Visual comparison of a normal and an abnormal ECG frames and their reconstructed versionss at CR = 75%. Frame length is N = 1080, which is
equivalent to 3 seconds of ECG readings. Amplitude is normalized to the maximum peak of the original signal.

In Fig. 7, we assess and compare the variability of the
decoding performance by presenting a box plot of the PRD
values achieved by all tested methods. The results shown
are computed at CR = 75% and N = 512 for the entire
record number 200 of theMIT-BIH database. This constitutes
approximately 1270 ECG frames. For each box, the central
line, lower and upper edge resemble the median, 25th and
75th percentile, receptively. The whiskers extend to the lower
and upper extrema. Outliers are marked by the (+) symbol.
Results for RSBM sensing matrix show that FCE has very
low performance variability. FCE performance is followed by
WLM, BSBL and WOMP, respectively. However, the latter
three have higher median and a larger spread. On the other
hand, for RD sensing matrix, WOMP performance is most
impacted, while the impact on the performance of BSBL
and WLM is less severe. However, FCE preserves its consis-
tency. Finally, in all cases, BPDN performance is quite poor,
as expected.

To visually demonstrate and compare the quality of the
reconstructed ECG signal, Fig. 8 illustrates two ECG frames
of 3 seconds each, which were taken from the MIT-BIH
database. A normal ECG frame is shown in Fig. 8a and an
abnormal frame is shown in Fig. 8b. The figure compares
the original signals to those reconstructed by FCE, WOMP
(with RSBM sensing matrix) and WLM (with RD sensing
matrix) at CR= 75%.According to Fig. 6 and Fig. 7, the latter
techniques achieved the second-best performance after FCE.
We observe several distortions in the signals reconstructed
by WOMP, while the QRS complex is highly affected in
the signals reconstructed by WLM. On the other hand, for

TABLE 4. Execution speed gains of FCE against other tested CS-ECG
decoding techniques.

FCE, QRS complexes and other indicative intervals are well-
defined and clear, and there is no noticeable distortion or other
signal artifacts. Thus, it is clear that the reconstruction quality
of FCE is superior.

E. DECODING SPEED
Fig. 9 depicts the average execution time for CS decoding ver-
sus N = {256, 512, 1024, 2048} at CR = 75%. We observe
that the FCE execution time is significantly shorter than all
other tested CS-ECG techniques. According to the speed
gains listed in Table 4, FCE is on average 33 times faster
than WOMP, and several hundred times faster than the other
methods. We may hence deduce that FCE reconstruction has
an obvious speed advantage over other methods, especially
for large values of N . In addition, storage space requirement
of FCE is accordingly reduced, since the compression matrix
size was shrunk from M × N to become M × k . All tem-
porary storage space needed for intermediate calculations is
consequently shrunk.
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FIGURE 9. Average execution time for CS decoding versus log2 N at CR =

75%.

V. CONCLUSION
In this article, we presented a Fast Compressive Electro-
cardiography (FCE) technique. FCE is a low-complexity
CS decoding technique that has been tailored for optimal
reconstruction of compressed ECG signals. Numerical results
demonstrated considerable improvements compared to other
techniques presented in related literature, in terms of decod-
ing speed and quality. FCE can contribute to minimizing the
computational and energy cost of CS decoding, especially
when decoding is done at the resource-constrained WBSN
gateway node. Thus, enabling real-time decoding in long-
term ECG monitoring scenarios. In addition, FCE is compat-
ible with the random demodulator acquisition architecture,
which enables energy-efficient and low-cost implementation
of the CS encoder on the wearable ECG sensor module.
Future extensions of this work include adapting FCE to deal
with realistic implementation challenges, especially large CS
measurements errors and invalid measurements caused by
wireless channel impairments [59], [60]. In addition, develop-
ing a hardware implementation of an FCE-based ECG moni-
toring system within a smart-home framework [61]. Realistic
ECG reconstruction performance and energy consumption
are then measured, evaluated and compared.
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