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ABSTRACT Shipping containers are tokens of multimodal international transportation and rapid logistics.
Container deliveries are scheduled to satisfy rapidly changing requirements. Unpredictable increases in costs
and unforeseeable events such as pandemics compel ship owners and managers to adopt risk minimization
measures. This study addresses one issue: how to determine an alternative port of call from massive data
to offer a realistic destination change recommendation for a container vessel. Recommendation algorithms
have become ubiquitous and are used effectively in other fields, but there is no such model for the port of call
selection or recommendation. Large scale automatic identification system (AIS) data are readily available.
We developed a computational framework based on a novel natural language programming algorithm that
was tailored to support port recommendation rather than use a conventional adjacency matrix method.
We mined large scale AIS data to construct sequential berth records for container vessels and mapped each
port onto a vector in an embedded space. The natural language neural programming algorithm can suggest
ports similar to the scheduled ports of call that were unable to offer service. The recommendations were
validated with geo-analysis of sailing distance and could offer viable alternative ports to shipping managers.

INDEX TERMS Container shipping, neural natural language programming algorithm, AIS, network
embedding, port2vec, port recommendation.

I. INTRODUCTION
Shipping containers are a consequence of the modernization
of transportation and logistics that began when the shipping
industry entered the megaship era in 2007. In that year,
Maersk Line companies began to use container ships with a
carrying capacity of more than 10,000 twenty-foot equivalent
units (TEUs) to benefit from economies of scale. Today,
to meet the demands of efficiency and environmental pro-
tection, even coal and grain shipments, which have always
been shipped by bulk cargo vessels, are gradually becoming
a part of the global logistics chain of container ships and rail
transportation [1]. These trends, together with the retirement
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FIGURE 1. Network of global ship passages in 2018.

and laying up of smaller older deep sea vessels, ensure that
the proportion of megaships in the global container ship fleet
will continue to increase.

Container ship routes constitute a maritime network
(Figure 1). Scholars have conducted in-depth research into
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FIGURE 2. Personalized recommendations on a trip website.

many aspects of container ship services. The spoke–hub
transportation model for container ships has been opti-
mized to ensure efficient shipping operation and manage-
ment [2], [3]. Reference [4] examined how to maximize a
company’s benefit, in terms of profit and safety, from ship
berth capacity and allocation in response to ship movement.
Optimal routes were determined for cases of sailing time
uncertainty [5] and inefficient fleet shipping practices [6].
Global warming has forced researchers to pay attention to
the environmental effects of container ship emissions [7], [8].
Reference [9] proposed innovative design alternatives for
marine container terminals to facilitate efficient ship han-
dling and container processing. Reference [10] modeled con-
tainer operations to predict optimal cargo throughput for each
docked ship. Reference [11] investigated container scanning
systems to improve cargo monitoring.

There are still unexplored areas of research into improving
container ship services. The large proportion of megaships in
the global container ship fleet poses challenges to maritime
administration. If there is a shipping disruption [12], perhaps
due to a pandemic in some port [13], how can a good recom-
mendation for alternative port berths for a vessel be created?
How can we design and create a quantization index from big
data for the destination berth of a vessel that will ensure the
safety of shipping and the integrity of the logistics chain?

Many optimization models of maritime networks have
been proposed that use the complex network theory and
origin–destination adjacency matrices to parameterize vessel
size, sailing frequency, port berths and other characteristics.
The nodes and adjacent links comprise spatial networks,
or graphs, that reveal shipping patterns [14], [15], robust-
ness [16], and even economic trends [17]. Thus port–port
relations derived from origin–destination shipping data can
be constructed to facilitate the mining of the inherent law.

Personalized recommendation systems have developed
rapidly since the 1990s; many recommendation systems are
used in various business environments [18]. For example,
e-shopping companies personalize online stores to direct
customers to products (such as books, cameras, computers,
points of interest) that are likely to be attractive (Figure 2).
Recommendations are created using collaborative filtering
algorithms and machine learning [19], [20].

As things stand, the choice of an alternative port depends
primarily on the experience and knowledge of the captain of
a ship, and there may in practice be little prior data analysis
to inform the decision.

In this article, we describe our research into providing
alternative port recommendations using big data. A perfect

FIGURE 3. Mining synonyms for container ship’s shipping law.

recommendation results from reliable correlation analysis
that determines a spatial relationship, similar to the approach
of spatially correlating road use in a traffic study [21], [22].
Berth records are strong preference indicators that are useful
for targeting an acceptable choice and provide accurate infor-
mation that matches the needs of a vessel and its relationship
with a port. This article describes how we determined simi-
larities between ports to obtain the perfect recommendation.

Reference [23] proposed a novel approach to quantifying
vehicle interactions at road intersections that used natural
language processing of large scale long distance route data.
Shipping has similar semantic rules and the selection of a des-
tination port for a container vessel depends on the nature of
the port hinterland infrastructure. Shipping lines can always
choose one or more ports from a number of ports having the
same hinterland. Containers can then be distributed into this
zone by land transportation (train and truck) or vessels of
local shipping lines. These ports thus have many similarities,
and one may be substituted for another. If port C1 is not
fully operational for socioeconomic, weather or pandemic
reasons, port C2 or port C3 could be a suitable alternative.
A container shipping line schedule can be read semantically
as a regular and fixed document. Text that forms berth records
is a sequence of words, with synonyms identified from the
context of the central word (Figure 3). We used Port2vec,
derived from word2vec, to transform interactions between
ports, obtained from berth records, into vectors and used a
high degree of similarity between port vectors to suggest one
or more appropriate recommendations for an alternative port.

The research consisted of the following major steps.

1) STEP 1
We used the automatic identification system (AIS) data,
which were obtained from raw messages received by base
stations throughout the world. The algorithm we created
searched for detailed information, including time of arrival,
time of departure, port name, ship type, and suchlike. The
record was constructed from the basic AIS data, leveraging
berth data. The text documents contained sequential berth
records (Figure 4), which we thenmerged with the port of call
records of all container ships throughout the world to form a
training data set.
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FIGURE 4. Sequential berth records to training text.

FIGURE 5. Embedding representation.

2) STEP 2
In a shipping graph G = (V , E), V is a set of vertex
points (nodes) representing ports, and E is a set of directed
edges (links) representing shipping routes, which are rela-
tionships between nodes [24]. International ports create a
large network with thousands of nodes containing many
berths (Figure 1). Conventional maritime network analysis
constructs adjacencymatrices that identify bottlenecks. How-
ever, high computational complexity, low parallelizability
and the inapplicability of machine learning methods lead to
redundancy and noise [25]. In contrast to network relation
representation, the use of embedding allows a port to be
represented by a vector, and the similarity of vectors in a
low dimensional vector space can form the basis of a port
recommendation algorithm (Figure 5) [26].

Ports with similar contexts were mapped to neighboring
vectors in the embedding space. The port recommendation
model was trained using a large scale dataset. We imple-
mented an approach that embedded ports in sequence into a
low dimensional vector space using a neural natural language
processing model applied to a berthing time series. Thus,
ports with similar contexts (i.e., ports at which vessels of
the same type had previously berthed or were scheduled to
berth) were mapped onto neighboring vectors in the embed-
ding space and were identified as potential recommendations
using geo-analysis.

In our work, 200,000 berth records of container ships
for 2018 were extracted from the data provided by
AIS-equipped vessels throughout the world. Each berth port
was considered to be a word and berth records were assem-
bled as documents. The vector representation of each port
was calculated from documents. The algorithm was trained
by embedding technology.

FIGURE 6. The workflow for computing recommendation results.

The real number vectors for each port in the database were
created from textual geographic information by Port2vec.
The port and text datasets were combined to form port–berth
records. Relationships between ports were mined to iden-
tify similarities between vectors. The algorithm then pre-
sented similar vectors, which had been calculated using the
geographical factors, as final recommendation results. A
flowchart of the entire process is given in Figure 6.

This article is structured as follows. Section I has given
an overview of research into recommendation methods and
a summary of our research method. Section II describes how
we obtained vectors of ports and calculated similarities using
the model. Section III describes how we mined the sequen-
tial data as training data from the AIS dataset. Section IV
describes our data experiment and presents a discussion of
the results. Our conclusions are presented for future research,
in Section V.

II. RESEARCH METHODOLOGY
A. OVERVIEW
This section outlines the principal tasks that must be com-
pleted to identify a substitute port. From a macro perspective,
container vessels follow routes and have berth allocations that
are fixed and published as a part of their business contract,
in contrast to the navigation rules for bulk cargo ships and
tankers, and ports of call are related to each other in a sailing
sequence.

We can transform the linear programming transportation
problem of container shipping into a natural language pro-
cessing problem by mining words with high similarity and
high relatedness from the published text. ImageNet object
recognition and switchboard speech recognition have been
extremely successful in neural network learning since 2012,
and these learning methods have been introduced into natural
language processing (NLP) [27], and we used it in this appli-
cation. Word2vec has been used in many NLP applications.
It is a template for a statistical language model that learns
the probability functions of word sequences and calculates
statistical properties of the words. In this study, each word
in a text was represented by a single vector in a low dimen-
sional space, and distances between words were calculated to
indicate semantic relatedness in estimating similarity [28].

Researchers now have access to different areas of percep-
tion to capture correlation information that is represented
by this embedded language model. A novel method, the
visually supervised word2vec model, has been developed
to merge visual modality with natural language to obtain
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important relation words in knowledge acquisition [29]. The
sound–word2vec model was developed to learn specialized
word embedding in order to capture interest in sounds [30];
word2vec has also been used to capture meaningful relation-
ships in natural music [31]. Linguistic cues from video clips
with spatiotemporal features were used to capture discrimina-
tive visual features using action–word2vec [32]. The methods
have improved to the extent that we find it practical to identify
internal relationships by mining semantic associations.

We used similar techniques to find human behaviors that
influenced port selection, and used mining to develop port
recommendations for ships. Figs. 3 and 5 give an outline of
the method we used. We can include data for the hinterland
because the behavior of a container ship captain in choosing
a port is similar to the semantic search of synonyms in natural
language. The use of an adjacency matrix is computationally
intensive and not conducive to measuring the node simi-
larity in conventional port–relation expression, hence in the
embedding approach, we associated each port with a vector
representation. Thus, similarities can be measured using a
vector cosine calculation.

B. STATISTICAL LANGUAGE MODEL COMPUTATION
An NLP approach leverages the word order in text docu-
ments, explicitly modeling the assumption that nearby words
in a word sequence are statistically more likely to be inter-
related than distant words. Vocabulary size may become
immense in practical applications, and recently developed
NLP models evaluate the statistical properties of words and
the relations between them.

NLP tasks such as machine translation and information
extraction require that a probability be assigned to individual
words in a sequence. Conventional n-gram methods use sen-
tences that consist of words w1,w2,. . . , wn−1 in a sequence
and create an n-gram Markov model of order n − 1 that
determines the probability of a word appearing based on the
previous n−1 words [33]. The advantage of an n-grammodel
is that it contains all the information provided by the first n−1
words. These words strongly constrain the nth word. The dis-
advantage of this model is that it needs a considerable amount
of training text to determine the parameters of the model.
As we know, there are plenty of ports available for training.
When n is large, the parameter space of the model becomes
large. We introduced a method of learning distributed repre-
sentation for words to avoid high dimensionality and to obtain
semantic neighbors in a low dimension [34].

NLP modeling in this study included low dimensional
distributed embedding of words using a neural network.
We constructed the objective function F(w, Context(w)),
which consists of a word w and its context Context(w).
In contrast to the n-gram model, this method does not retain
all probability values. We used a continuous bag-of-words
model (CBOW) to construct F(w, Context(w)). A CBOW
model works well and requires less computing time since it
has only three layers: input layer, hidden layer, and output
layer (Figure 7) [35].

FIGURE 7. Continuous bag-of-words model.

The one-hot representation we used associates all words
of the port with a single vector expression. Natural language
models usually represent each word as a feature vector of
the same length as the word count of the dictionary. The
vector contains a single 1, corresponding to the position of
the word in the dictionary, and all other entries are 0. One-hot
representation of the large number of ports and berths across
the world would require vectors of great length and introduce
severe data sparsity [36]. However, using only this method
isolates words and prevents the expression of words that play
no part in representing the relationship.

The input consisted of each context word vector with one-
hot representation. The transposition of output vector was
y = (yw,1, yw,2, . . . , yw,N ), and each element was the pre-
dicted probability of each word from the corpus appearing
as the central word. Then the final probability of the central
word wi, given surrounding words Context(wi), was given by
the Softmax function:

p(wi|Context(wi)) =
eyw,iw∑N
i=1 e

yw,i
(1)

where iw is word i in the dictionary [37].

C. TRAINING PORT VECTORS AND CALCULATING
SIMILARITIES BETWEEN VECTORS
The model samples phrases (groups of words) depending
on the size of the window by using a sliding window. The
following diagram illustrates the process. The purple box
contains the central word, and the words in the yellow box
are context words.

Data are sampled through the sliding window until the
training data have been completely parsed and the final
training of the model is completed. When a set of context
words was input, the vector produced in the output layer con-
tained the prediction probabilities for all words in the corpus.
We expect that the probability of the occurrence of the middle
word is the highest and that the probability of the occurrence
of other words is as small as possible. When we construct
the objective function, we expect that the probability of the
occurrence of positive samples is the greatest and that of
negative samples is the least. The objective function is:

F(w,Context(w)) = σ (x>w θ
ω)

∏
u∈NEG(w)

[1− σ (x>w θ
u)] (2)
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where xw is the word vector sum of Context(w), NEG(w) is
the set of negative central words in the sample w, θ i is the
coefficient vector for any word of i which is w or belongs to
NEG(w) in the corpus, σ (ϕ) is the Sigmoid function that is
the activation function of the model coefficient vector:

yi = σ (ϕ) =
1

1+ e−ϕ
(3)

and σ (x>w θ
i) is the probability of word i calculated.

The training was accelerated, using negative sampling by
stochastic gradient descent. In order to facilitate derivative
calculation, the logarithm of the objective function was taken:

L =
∑
w∈C

∑
i∈{w}∪NEG(w)

{Lw(i) · log[σ (x>w θ
i)]

+[1− Lw(i)]log[σ (x>w θ
i)]} (4)

where

Lw(i) =

{
1 where word_i← w
0 where word_i← NEG(w)

(5)

Both θ i and v(w̃) are constantly updated by the gradient
descent calculation:

∂L
∂θ i
= Lw(i)[1− σ (x>w θ

i)]xw − [1− Lw(i)]σ (x>w θ
i)xw

= [Lw(x)− σ (x>wθ
i)]xw (6)

θ i := θ i + η ·
∂L
∂θ i
· xw (7)

∂L
∂xw
= [Lw(i)− σ (x>w θ

i)]θ i (8)

v(w̃) := v(w̃)+ η
∑

i∈{w}∪NEG(w)

∂L
∂xw

, w̃ ∈ Context(w) (9)

When the optimal parameter set θ∗ of θ i has been deter-
mined by optimization, p(w|Context(w)) is given by F(w,
Context(w)); η is the default learning rate, 0.025; v(w̃) is
updated constantly; and L is calculated by gradient descent.
Each vector v(w̃) becomes stable in the hidden layer which
will be input cosine similarity calculation [38].

In summary, embedded representations ofwords in a vector
space are used to give a measure of the similarity of words
in text sentences, based on the assumption that words that
appear frequently in a document and co-occurring words
within the same context are semantically similar.

The similarity between ports in terms of berths was mea-
sured by the cosine similarity cos(θ ) of vectors calculated in
the hidden layer; two vectors for port a and port b are similar
when:

Cos Sim(a, b) = cos(θ ) =

∑n
i=1 aibi√∑n

i=1 a
2
i

√∑n
i=1 b

2
i

(10)

where ai and bi are the elements of port vectors a and b.
Vectors with similar contexts have larger cosine values when
ports have similar neighboring contexts.

TABLE 1. Description of automatic information system parameters.

FIGURE 8. Choosing central words with the sliding window.

Our Port2vec model was trained by the Python package
gensim of word2vec. The model was:

Model = gensim.models.Word2Vec

(documents, dimension,window)

where documents are text sentences that contain the berth port
sequences used to determine the similarity; dimension is the
vector length, with the value set to 200; and window is the set
of words surrounding the central word that form the context
of the central word for training, with the value set to 5 [23].

III. CONVERTING SEQUENTIAL TRAINING DATA FROM
AIS DATA
The berth records of container ships that were used as input
data for the Port2vec model originated from AIS. AIS uses
transponders and GPS receivers to transmit and receive static
and dynamic vessel and voyage data between other vessels
and ground stations. There is a wealth of AIS data, which is
used for collision avoidance, marine traffic management, and
trade analysis of the maritime business. AIS parameters used
in this study are given in Table 1.

In this section, we describe how we used port informa-
tion to provide data based recommendations, including the
neural NLP models that are fundamental to our port rec-
ommendation system. AIS vessel data tuples and port–berth
tuples were the basis of shipping characteristic representation
(Figure 8). Data derived from AIS constituted the ship data
tuples (Table 1). The port–berth tuples contained information
about ports and berths. Each port was artificially delimited by
an irregular polygonal boundary.

The relevant procedure was as follows.

1) STEP 1
AIS data tuples, which contain static vessel information and
dynamic data such as position, velocity, and heading, were
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obtained from navigation information. Port–berth tuples con-
tain port attributes. Tuples were defined as follows.

The AIS vessel data tuple was defined as:

Ati = (mi, li,wi, vti , p
t
i , c

t
i , d

t
i ) (11)

where Ati is the tuple for vessel i at time t , mi is the unique
identification of vessel i, li is the length of the vessel, wi is
the beam of the vessel, vti is the vessel speed at location p

t
i , c

t
i

is the heading, and d ti is the vessel draft.
The port–berth tuple was defined as:

Ti = (fi, bi, ni) (12)

where Ti is the tuple of port i; fi is the database key for
port i; bi is an irregular polygon representing the boundary
of port; and ni is the name of port i.

2) STEP 2
In a large port, ship speed is only 9–15 km/h in the fair-
way, and arrival or departure takes nearly one hour. We set
30 minutes as the interval for the observation window of a
vessel position in the AIS data tomoderate computer resource
use during queries. For data recorded within the interval,
we compared ports and berths, screened out vessels that had
latitude and longitude values located within the port bound-
ary, and compared vessel characteristics to derive the specific
characteristics of the destination port of call.

3) STEP 3
We created a description of the characteristics of arrivals,
departures, and berthing for a port using the following
process.

Define the boundary of port y as by in the sampling period t .
The function contains(by, px) shows that vessel x was located
within the polygonal port boundary by. The set of all ships in
port y at time t , Rty, was defined as:

Rty = {Mmsix |contains(by, px) ∧ tx > t −1t ∧ tx ≤ t ∧ vx
≤ 1v} (13)

At time t +1t , the set of all vessels in port y was defined
as:

Rt+1ty = {Mmsix |contains(by, px) ∧ tx > t ∧ tx ≤ t +1t

∧vx ≤ 1v} (14)

Two other conditions for deriving characteristics were
defined. The timestep 1t was the sampling time of 30 min
and an increment 1v of 1 km/h was used for vessel speed,
which may be affected by wind and current when the vessel
is moored in a harbor.
The heading rate can be used as a reference point because

it does not vary when vessels are moored. The sampling time
for this parameter was set to 30 minutes.
If the set of vessels that reach or leave port y during the

interval from time t to time t + 1t is Dt+1ty , then Dt+1ty =

Rt+1ty − Rty shows the arrival or departure of one or more
vessels.

FIGURE 9. Sailing and berthing of container ships.

The arrival time of a vessel allows us to quickly extract
data for ships that arrive at a port or berth, such as arrival
frequency, docking records, and similar information. The
extremely large quantity of AIS data makes it impossible
to monitor the positional information of every ship at any
time. Thus, data snapshots were used to extract the arrival
and departure time and berth details of ships by sampling
historical AIS data at intervals and combining snapshot data
with AIS data tuples and port–berth tuples.

We obtained ship position information from AIS data,
deriving port and port boundaries and screening out vessels
that were outside port boundaries by latitude and longitude.
The remaining data were compared with the characteristics
of vessels arriving at the port to obtain the characteristics
of vessels departing from the port. The characteristics of all
berthing behavior were extracted and assembled to form a
sequential berth record for our training data:

Portberth_seq = {Port1,Port2,Port3, . . . ,Portn} (15)

The sequential words were extracted as the training text in
Figure 4 and input to the gesim package.

IV. EXPERIMENTAL RESULTS AND RECOMMENDATION
EXPLANATION
This section demonstrates the operation of the Port2Vec
recommendation model. The experimental AIS data were
obtained from hifleet.com. The proportion of ships with
deadweight >50,000 tonnes was 43.56%, showing that port
facilities are very adaptable in terms of ship size (Figure 10).

We chose Shanghai, the largest container ship port in the
world in terms of throughput, and a typical regional port in
China; Singapore, a global hub port in the Malacca Strait;
and Hamburg, the third largest container ship hub in Europe,
to test our method of determining the similarity between
ports and creating recommendations for alternative destina-
tion ports for vessels. The geographical factor we set was the
sailing distance from the chosen port to backup ports based
on sailing cost. The function for a recommendation of port i
was calculated as:

Ri =
Si
δi

(16)

where Si is the similarity calculated by the Port2vec algorithm
and δi is the attenuation coefficient of sailing distance. The
recommendation value of the backup port is Ri.

The ports of Zhangjiagang, Nantong, Ningbo, and
Zhoushan are located in the Yangtze River delta along the
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FIGURE 10. Registration and deadweight distributions of data.

FIGURE 11. Location and recommendation values to Shanghai of
alternative ports.

economic belt on China’s mainland coastline. Zhangjia-
gang has 16 berths, with an annual throughput capacity of
more than 60 million tonnes. Nantong has 24 public berths
above 1000 tonnes, with a maximum berthing capacity of
200,000 tonnes. These two river ports can be used by any
vessel as alternatives to Shanghai (Figure 11).

FIGURE 12. Location and recommendation values to Singapore of
alternative ports.

Ningbo and Zhoushan are the top two recommended ports
for the period 1995–2015. Chinese hub ports associated with
the Silk Road have grown from two (Hongkong and Shang-
hai) to four (Shanghai, Shenzhen, Ningbo, and Hongkong)
due to their relative centrality in the complex port net-
work [39]. The set of shipping lines using Ningbo overlaps
greatly with the set of those using Shanghai. Qingdao and
Kobe are determined to be similar ports because they both
handle megaships and both are hubs of international land
freight networks.

Likewise, Singapore and Hamburg (Figure 12 and
Figure 13) are similar, benefiting from the volume of ship-
ping that passes through the Malacca Strait or the North Sea
by an ability to forward containers across a continent. Our
analysis also supports the view that China’s investment in
developing Melaka Gateway as a backup port for Singapore
is a reasonable assurance of trade security.

Melaka Gateway as a backup port for Singapore is a rea-
sonable assurance of trade security.

Our Port2vec analysis and related geographical analysis
enabled us to select six container ship ports, most of which
are in the top 20 ports of world, to offer data based recom-
mendations tomaritimemanagement: Lianyungang, Xiamen,
Hongkong, and Tianjin in China, Los Angeles in the United
States and Inchon in South Korea. As we acknowledge,
if theses ports were inactive due to a pandemic, there would
be great financial losses. The top five recommendations of
alternatives to each of these ports are given in Table 2.
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FIGURE 13. Location and recommendation values to Hamburg of
alternative ports.

TABLE 2. Top five recommendations for selected main spots.

The results presented in Table 2 show that the ports
with a high recommendation value have similar connections
to internal transportation networks and are export-focused.
The computational framework we developed will help ship-
ping managers to choose alternative destination ports effec-
tively, especially in a period of epidemic. This work can
also help us to detect communities of port clusters in the
future.

V. CONCLUSION
We used a novel approach to calculate the similarity using
word embedding. This study demonstrates for the first
time that Port2vec technology, derived from word2vec,
can be used effectively to provide port recommendations
in shipping and maritime applications. The key points in

our research are summarized as follows: Port2vec can
identify relevant similarities between container ship ports;
and geographical analysis supports the effectiveness of the
methodology.

This recommendation technology can be used only for con-
tainer ports because it leverages sequences of berth records
by treating them as textual sentences. In subsequent research,
we intend to improve the approach to provide recommenda-
tions for other types of shipping.
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