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ABSTRACT Motor imagery electroencephalography (MI-EEG), which is an important subfield of active
brain–computer interface (BCI) systems, can be applied to help disabled people to consciously and directly
control prosthesis or external devices, aiding them in certain daily activities. However, the low signal-to-
noise ratio and spatial resolution make MI-EEG decoding a challenging task. Recently, some deep neural
approaches have shown good improvements over state-of-the-art BCI methods. In this study, an end-to-end
scheme that includes a multi-layer convolution neural network is constructed for an accurate spatial represen-
tation of multi-channel groupedMI-EEG signals, which is employed to extract the useful information present
in a multi-channel MI signal. Then the invariant spatial representations are captured from across-subjects
training for enhancing the generalization capability through a stacked sparse autoencoder framework, which
is inspired by representative deep learning models. Furthermore, a quantitative experimental analysis is
conducted on our private dataset and on a public BCI competition dataset. The results show the effectiveness
and significance of the proposed methodology.

INDEX TERMS Brain–computer interface, discriminative and representative deep learning, feature fusion,
convolution neural network, stacked sparse autoencoder.

I. INTRODUCTION
Brain–computer interface systems (BCIs) [1]–[3] try to map
human intention from brain activities, providing a new path-
way between the human brain and the external environment.
The best-known applications of BCIs include clinical trials
[4], emotion recognition [5], prosthesis or robot control [6],
[7], and game interaction [8]. For EEG-based BCI studies,
motor imagery electroencephalography (MI-EEG), which is
the only active BCI paradigm without the requirement of
external stimuli, is a popular and key research topic in BCI
applications. During imaging the movement of certain parts
of the body, the subjects’ intention can be detected from a spe-
cific brain signal response, which is a phenomenon named as
event-related synchronization (ERS) or event-related desyn-
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chronization (ERD) [9]. Therefore, the key step in MI-BCI
tasks is to decode the MI-EEG signals efficiently.

Several studies have been conducted on BCIs tasks,
highlighting the significance of MI-EEG data in the non-
invasive BCI domain [10], [11]. The EEG-based BCIs is
regarded as a pipeline framework, which includes three
main parts: 1) Signal pre-processing involving data augmen-
tation, noise and artefact removal, and electrode channel
selection; 2) Feature extraction and representation of the
appropriate properties or subcomponents of the constructed
signal; 3) Classification that involves outputting the dis-
crimination result by decoding the brain intention. Conven-
tional techniques employ machine learning approaches with
handcrafted features for decoding EEG signal [12], [13].
Moreover, the parameters are adjusted and handcrafted indi-
vidually, leading to inefficient learning and unsatisfactory
local optima [14]. In summary, it is challenging to translate
brain dynamics and classify the cognitive outcomes. The
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conventional techniques perform poorly considering the low
signal-to-noise ratio, low spatial resolution, and highly non-
stationary characteristics of MI-EEG signals. Furthermore,
it’s rather time-consuming to calibrate BCI system which
involves in a large number of labelled data training to opti-
mize the MI-EEG decoding framework before online testing
[15]. It is essential to adapt the BCI system to the objective
and handle the variations from subject to subject.

To address the challenge mentioned above, we utilize an
innovative multi-layer convolution neural network (CNN)
framework to learn complex temporal and spatial fea-
tures from different granular-grouped channels. Furthermore,
a stacked sparse autoencoder (SSAE) framework is proposed
to construct the overall representation and capture the invari-
ant features from the diversity of subjects. The experimental
results show that the proposed model can help capture useful
sub-spatial representations and perform well in the subject-
to-subject transfer leaning. The significance of this article
can be summarized as follows: first, the decoding method
exploits the granular-grouped spatial and temporal structures
of the intervention to obtain significantly invariant useful
features for the across-subjects learning. Second, this study
combines the discriminative and representative deep learn-
ing (DL) models [16] for an end-to-end MI-EEG decoding,
in order to extract the latent spatial representation and elevate
the generalization capability of the model.

II. RELATED WORK
DL methods have emerged as a promising technology that
can feasibly provide end-to-end learning in a BCI sys-
tem [17], [18]. DL framework can be broadly divided into
generative, discriminative andmiscellaneous types [19]–[21].
A discriminative DL (DDL) framework is applied to the clas-
sification, realized by characterizing through the conditional
distribution of the categories. In the other aspect, consid-
ering the distribution of joint probability on the respective
categories, the generative DL (GDL) architecture investigates
the correlation of the observed data. The results of recent
experiments show that DL methods, such as CNNs, deep
belief networks (DBN) and recursive neural network (RNN)
exhibit better classification accuracy than some state-of-the-
art BCImethods [22]–[24]. Specifically, studies have focused
on employing DL for MI-EEG decoding [25], [26]. Amin
et al. employed multi-layer CNNs to learn temporal and
spatial features fromMI-EEG signal [27]. Ma et al. proposed
channel-correlation architecture to construct the overall rep-
resentation extracting from channels for MI-EEG decoding
[28]. Considering single-trial MI EEG, Zhichuan et al. pro-
posed a deep CNN to take the role of feature extraction and
classification [29]. Lu et al. proposed a novel DL framework
based on the restricted Boltzmann machine-combined fre-
quential deep belief network to generate new representations
of EEG features [30]. Yang et al. used the RNN–LSTM
to extract the temporal dependence of MI-EEG data [31].
However, few studies have focused on exploring the influence
and efficiency of spatial features. To this end, we construct

FIGURE 1. Paradigm of a motor imagery recording session.

a multi-layer CNN framework to exploit different granular-
grouped information and utilize it to improve the decoding
performance.

III. TASK DEFINITION AND MATERIALS
We mainly elaborate the MI experimental task, organization
and pre-processing of the data, proposed CNN and SSAE
architecture, and training and testing strategies in this section.

A. MI TASK DEFINITION
For the MI task, we invited six human subjects (average
age of 26.5±3.5, with three males) to perform the MI-based
experiment. Each subject was seated in front of a computer
screen and was instructed to perform MI tasks including
executing the imaginary movement of the right or left hand.
As shown in Fig. 1, each trial was designed as four steps
including fixation, cue, MI, and break. A ‘‘rest’’ icon initially
appeared on the screen for 2 s after the start tone. This
guided the subjects to remain in a resting state, i.e., to clear
their mind in preparation for the coming task. Subsequently,
a left or right cue was presented for 2 s, and the subject
continuously performed the specifiedMI task for 3.5 s, taking
the reaction time into account. Finally, an interval of 1 s was
provided as an additional break.

B. DATA ORGANIZATION AND DESCRIPTION
To validate the performance of the proposed approach forMI-
EEG decoding, systematic and extensive experiments was
conducted on public BCI competition IV dataset 1 and a
private dataset collected from our laboratory based on the
paradigm mentioned above. The EEG data were recorded
using 64-channel caps attached to the scalp of the subjects.
The dataset contains recordings of 300 trials on average for
each subject. Each trial has a 3.5 s duration with a sampling
frequency of 256 Hz. Table 1 lists the details of the dataset.

IV. METHOD
To exploit the end-to-end learning capability of the
DL networks, the entire individual processing, including

VOLUME 8, 2020 202101



J. Yang et al.: Novel Deep Learning Scheme for MI-EEG Decoding Based on Spatial Representation Fusion

FIGURE 2. EEG channel selection of different groups.

FIGURE 3. Proposed deep CNN framework based on multi-channel feature fusion.

TABLE 1. Properties of the datasets.

pre-processing, feature extraction and representation, and
classification, should be implemented in oneDL block. In this
section, we introduce this decoding process in detail.

A. PREPROCESSING OF ACQUIRED DATA
In view of the noise and artifact impacts, we have to transform
the available data into an informative and convenient manner
for subsequent processing. The EEG data were preprocessed
using the EEGLAB toolbox in MATLAB [32]. For conve-
nience and to decreasing processing time, we first employ the
common average reference (CAR) and then filter raw signals
with frequencies between 7 and 35Hz, which overlapwith the

main rhythmic components of ERS/ERD with regard to the
MI-EEG [33]. Muscular and ocular artifacts [34] are removed
through the plug-in toolbox. The sliding window approach is
used to divide the MI trial data into individual segments (2 s)
with an overlap of 0.5 s.

B. PROPOSED CNN ARCHITECTURE
EEG signal is diverse from the other data format because of its
additional spatial resolution. Our goal is to decode the EEG
from the hand MI tasks and produce invariant feature maps
to translations on the input through corresponding electrode
and temporal power transformation. By contrast with RNN
which interested in forcing the model to process temporal and
contextual correlation of EEG signals, such as LSTM [35],
the standard CNN is schemed to recognize the overall shapes
and is local invariant to the position of the shapes. Therefore,
the CNN network is our optimum choice to exploits two
important characteristics of the cortex potential: local corre-
lation and invariance to different subjects [36,37]. Inspired
by this fact, we propose a novel MI-EEG decoding method
through a 2D-kernels-based CNN to capture the features of
the frequency and electrode position considering the diversity
of spatial granularity. Multi-layer CNN networks are applied
to extract MI-related features through the 2D kernel in the
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TABLE 2. Granular groups of channels.

convolutional step; the features are then subsampled to a
mini-type in the pooling step. In this design, the CNN part
consists of alternating convolution, pooling and fully con-
nected layers, with the convolution depth determined by the
channel granularity.

To make full use of the spatial features and exploit the
global invariant features form manifold subjects, we group
the most informative channel for MI-EGG into three different
granularities, as listed in Fig. 2 and Table 2.

It was demonstrated in several research [38], [39] that
the MI-EEG signals from the C3, C4 and Cz electrodes (G-
I) can obviously demonstrate the ERS/ERD characteristics.
Thus, we will discuss the classification results from vari-
ous fusion grouped of electrodes including G-I. Inspired by
the hypothetical fact that invariant features are contained in
different granularity of channels, our CNN architecture is
consequently designed to filter three grouped input data and
fusion them to capture global invariant representation for
inter-subject [40], [41] transfer, as shown in fig.3.

We have tried many groups of CNN hyperparameters with
a different number of layers and filters and ultimately adopt
this structure (illustrated in Table 3) before model training.
The deep learning frameworks including CNN, SSAE and
contrast networks, the model hyperparameters as the size
of neurons in the hidden layer and the convolution kernel
used by increasing in a certain range and the cross-validation
accuracy were recorded. The outperforming hyperparameters
was chosen to determine the decoding model. Most model
hyperparameters as the number of convolution layers were
determined according to previous experience and size of input
granularity.

Noted that the input MI-EEG contains two specific details
(time and electrode locations), our aim is to classify the
hand MI tasks through the 2D features. Considering the
effect from different electrode location (spatial features),
we have designed three CNN frameworks for the correspond-
ing channel-grouped EEG data. The input of the network
is expressed by x ∈ RT×C. The first layer of the CNN
containsM filters with a kernel size of A×B; this layer can be
employed to extract global information from all the channels.
The mapping outcomes of the CNN between input 2D signals
and a kernel is given by:

hmij = ReLU(a) = ReLU((Wm
∗ x)ij + bm) (1)

where x is the input 2D signals, and Wm and bm are the
weight matrix and bias value for m order filter, respectively
(m = 1, 2, . . . ,M). The activation function is selected as the

rectified linear unit (ReLU) [42] function, which is employed
to incorporate the nonlinear elements. The ReLU can be
expressed as:

ReLU(a) = max(0, a) (2)

The output of the convolutional layer is fed into the input
of the pooling layer. The pooling is carried out with a max
value sampling. Consequently, the output of the convolutional
layer is subsampled to small-sized datasets. Table 3 lists
the parameter details of each convolutional and max-pooling
layer of our CNN architecture.

The use of CNN results in the improved discriminating
capability of temporal and spatial variations ofmotor imagery
patterns of an EEG image. In addition, since the neural
network consists of not only a one-dimensional kernel to
extract MI patterns of the input image but also shallow layers
compared to conventional models, it has the advantage of
low computation complexity in training. Since the proposed
method utilizes an input image with time, frequency, and
electrode information, the training of the neural network is
robust to variations or abnormal patterns of MI EEG signals.

C. FEATURE REPRESENTATION USING SSAE
After the CNN architecture, we need a feature fusion block
to filter to the global and useful representation which domi-
nates the classifier. As a representative deep learning method,
the SSAE is an improved version of the stack autoencoder
(SAE) network [43] including input, hidden and output layer;
thus, it can reconstruct its own characteristic representation.
In terms of the SAE, the size of output is similar to the inputs.
During training, the input x is first fed into the hidden layer
to generate latent feature z, which corresponds to the decoder.
Subsequently, z is mapped to the output layer to reconstruct
y samples with a similar dimension and distribution to the
input, which is named the encoder. The two steps can be
expressed as:

z = σ (Wx→zx + bx→z) (3)

y = σ (Wz→yx + bz→y) (4)

where Wx→z and Wz→y are the weight matrices from input-
to-hidden and hidden-to-output layers, respectively. Accord-
ingly, bx→z and bz→y are the accordingly bias values of the
hidden and output layers, respectively.
σ (a) is the activation function which is defined as:

σ (a) =
1

1+ e−a
(5)

After the training of an autoencoder, the latent representation
in the hidden layer can serve for as input to the higher layer
in a deep hierarchical network or classification, which is con-
sequently named the stacked autoencoder. Some researchers
have applied the SAE to capture CNN features and have
demonstrated that it can extract advanced features and out-
perform the CNN-only framework [44]. This is why the
SAE is trained such that it automatically extracts the latent
and robust features by reproducing the input. To capture the
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TABLE 3. modified architecture of proposed CNN.

FIGURE 4. SSAE architecture.

important features from the data, a single layer of the SAE is
insufficient. An SSAE can capture the featuresmore precisely
than the SAE. The SSAE can be constructed by stacking
the hidden layers of the SAEs layer-by-layer. It captures
the hierarchical information of the input data. The training
data serve as input to the first SAE. After the first SAE
training completed, the reconstruction layer is removed. Sub-
sequently, the hidden layer output is inputted to the next SAE.
In this work, we used the SAE, DBN and SSAE for fusing
the features from CNN network and capturing the relevant
information from the granular-grouped feature vector. Fig.
4 shows the proposed architecture of the SSAE.

The entire SSAE block is operating under supervised man-
ner, and a softmax classifier [45] is added following this
block. The SSAE model includes several alternating SAE
blocks along with a softmax layer at the end. At the fine-
tuning step, the output layer of each SAE is declined, and
the output of latent representation will be directly fed into
the next SAE. This operation transforms the multi-channel
CNN features into advanced global representation, thus the
learning efficiency and discriminating capacity of MI-EEG
decoding networks are improved. The SSAE reconstructs the
useful invariant information from different granular-grouped
spatial features, and the best model is saved. When the entire
network is trained for the same subject, it reconstructs a

trial from another session with the same subject and same
class. The softmax layer performs as a classifier for the
reconstructed representation.

We can optimize the entire model by minimizing the cost
function, as shown below:

argmin
W ,b

[θ (x, y)] (6)

where θ (x, z) is the reconstruction error when the model is
trained to reconstruct the global features for the final output.

V. EXPERIMENTAL VERIFICATION
In this section, an experimental demonstration of the pro-
posed method is presented, and feature learning and certain
interrelated hyper-parameters of the proposed architecture are
studied. In this study, we mainly adopt inter-subject [46],
[47] training type and take comparison with the intra-subject
one (it will be special described if needed). Across-subjects
training use one subject as a testing set and all the rest as
a training set. The other is the individual training (intra-
subject) that individual acts as the training and testing set.
The inter-subject training methodology about MI based BCI
is regarded as more challenging about subject information
transfer, and more generalized and robust than the intra-
subject one. Taking the intra-subject training into account,
we performed 30 trials for unit validation dataset and thus 8-
fold and 9-fold cross validation for D1 and D2 respectively.
Fig. 5 shows the examples of inter-subject training for S1.

A. SPATIAL FEATURES LEARNING
Table 4 lists the diverse results obtained using the different
CNN layers with the SSAE fusion architecture. The combina-
tion of G- I withG-II, G-I withG-III, andG-I withG-II andG-
III gave an improvement in terms of the accuracy. The accu-
racy obtained by fusing all the CNN networks was the best
overall. Increasing the channel number in DL requires more
computational resources, leading to more considerations in
the construction of a BCI system.
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FIGURE 5. Block diagram representing the EEG trial structure for S1 inter-subject training.

TABLE 4. recognition accuracy of various CNN combinations.

In order to investigate the activation of spatial features,
the twice mapping power topographical distribution in the
D1 and D2 were computed after the proposed DL framework
learning and depicted in Fig. 6, where the color encodes the
average power of mapping fusion features corresponding to
the position of different electrodes signals, which indicate the
mapping feature energy from different electrodes inputs. We
took the power of fusion features from three granularity of
combination CNN processing as the indicator to explore the
ERS/ERD from electrodes and the effect after spatial feature
extracting. The power of the features apparently fluctuates
in the high granular electrodes, indicating that our proposed
method can learn more discriminant and informative features
from the raw EEG data. We can obviously find extremely
similar ERD for homologous MI data sets. It displays an
evident contralateral dominance. This result reveals that the
handMI task activated the areas of brain motor cortex and the
proposed framework can capture the useful features.

Feature fusion network are compared with the deep brief
network (DBN), SAE and SSAE. The testing was performed
with learning rates of 0.01 and 0.05, with the former yielding
a higher accuracy. In each of the SSAE, SAE, and DBN
models, the training process was initiated by increasing the
number of neurons in the hidden layer in the range of 10–100,
and the accuracy was recorded. The outperforming number of
neurons was chosen from the set of {10, 20, . . . 100}. Subse-
quently, the hidden layers were added consecutively, and this
procedure was continued until the addition of a hidden layer
no longer improved the accuracy. The parameters associated
with the last stage were saved as the final parameters.

FIGURE 6. Topographical distribution of power on different data.

Tables 5 and 6 list a final comparison of the different
feature fusion models employed for inter-subject training.
It can be found that the SSAEobviously outperforms the other
two approaches for most subjects, exhibiting average accu-
racies of 0.847 and 0.864 on the two datasets, respectively.
Comparing the other feature fusion method, we find that the
SSAE achieves a relatively lower standard deviation of all
subjects, indicating that the SSAE performs more robustly on
subject’s diversity.

B. INSPECTION OF TRAINING PROCESS
To evaluate the proposedDL network in training, Fig. 7 shows
the training and testing values for 26 epochs in cases with-
out preprocessing, without grouped channels, and with the
application of the proposed CNN–SSAE. The graphs show
that when the preprocessing is absent (the case a), the peak
value of accuracy for training is approximately 0.75 with a
validation accuracy below 0.6. This poor result is due to the
consideration of redundant information in the input, where
large amounts of data are fed into the end-to-end system,
and convolutional layers failure to find effective patterns that
allows discriminating movement intentions. In case b, using
most channel signals without grouping, the test accuracy
almost reaches 0.7. However, significant differences can be
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TABLE 5. Recognition accuracy of different feature fusion methods on a public dataset.

TABLE 6. Recognition accuracy of different feature fusion methods on a private dataset.

FIGURE 7. Train and test validation behavior.

observed between the training and testing values, suggesting
overfitting [48]. Finally, in case c, i.e., when applying the
proposed method, both the training and validation values
are higher than 0.8, indicating less overfitting. This result
validates the previous works, where channel-grouped CNN
algorithms were found to exhibit superior performance.

Fig. 8 shows the values of training and testing losses indi-
cated by red and blue dotted lines, respectively. The classifi-
cation loss of the entire framework first decreases and then
steadies at a fixed level during the training process, showing
no evident signs of overfitting.

Fig. 9 shows the result of the epoch size on the kappa
value performance, along with the average training period
(each training set contains 280 trials) on D1. The kappa
coefficient [49] is a measure of the overall accuracy, obtained
by eliminating the randomness of the classification result.
It can be defined as follows:

Kappa =
p0 − pe
1− pe

(7)

where P0 is the overall classification accuracy, and Pe is the
rate of theoretical consistency which is calculated as:

pe =
α1β1 + α2β2 + ...+ αcβc

n× n
(8)

FIGURE 8. Training and testing loss.

where {α1, α2, . . . , αc} and {β1, β2, . . . , βc} denote the num-
bers of real and predicted samples in the specific category,
respectively, c is the category size, and n is the total sam-
ple size. The kappa value typically falls between 0 and 1,
with the higher value indicating a high degree of consis-
tency. As shown in Fig. 9, the performance corresponding
to an epoch size of 400 with an appropriate computation
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FIGURE 9. Performance of epoch on kappa value and training time.

FIGURE 10. Performance of epoch on kappa value and training time.

TABLE 7. Average accuracy between two training strategy.

time (1500 s) is the best. The number of epochs is set as
300. The time consumption increases in a largely linear
manner.

The size of the filters (hyper parameters) in the convolu-
tional network can affect the performance and efficiency of
the end-to-end decoding process, as shown in Fig. 10. In this
case, we mainly arrange the network with filter numbers of
approximately 20 and 40.

In order to detect the effectiveness of the different DL
steps, we divided the proposed framework for only grouped
feature extractor (multi-layer CNN) and extracting by Multi-
Layer Perceptron (MLP) with SSAE fusion which ignore the
spatial correlation. We get the following results (Table 7)
through two training strategies. We can obviously perceive
the low average accuracy (less than eighty percent) and larger
gaps between two training strategies by virtue of divided
methods which indicate the two DL steps function in useful
and subjects-invariant features learning.

C. MODEL EVALUATION
Aimed to detect the across-subjects discrimination and
demonstrate the effectiveness of our method, the results

FIGURE 11. Comparison of five methods in different training.

FIGURE 12. Performance of training time.

obtained the reference mentioned method CSP–LDA [50],
KNN [51], RNN [52], and CNN [53] for decoding the same
MI tasks are compared with different training strategy as
illustrated in Fig. 11.

It is apparent from the histogram that the proposed
approach achieves a higher accuracy and lower deviation
between different training strategies, which shows that the
proposed scheme enhances the capability of decoding com-
plex MI tasks and outstanding generalization. It is interesting
that there is also small gap in the RNN method which guides
us to exploit it in further work.

Further, we experimentally analyze the computational
complexity of five methods by comparing their average train-
ing time for all subjects with two datasets. From Fig. 12,
we can clearly observe that the average training time of the
KNN are longer than other approaches. The fact that the CSP-
LDA runs faster than DL models demonstrates its efficiency,
but unfortunately with extremely low accuracy revealed in
Fig. 11. It is noted that RNN is unexpectedly time-consuming,
although there is no channel selection about it. In addition, all
methods are slow in D2 which can be explained by involving
more subjects and trials.

For model convergence evaluation, we replace the feature
extracting part (multilayer CNN) of the DL decoding models.
The kappa value for the MI task according to the increasing
epochs employed among the three models was illustrated
in Fig. 13. It was observed that the kappa value climbs
sharply after the 13-15 epochs. All models showed that kappa
converged as the training epochs increased. The scatter line
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TABLE 8. Kappa value result of CNN-SSAE methods compared with CNN and FBCSP (public data).

TABLE 9. Kappa value result of CNN-SSAE methods compared with CNN and FBCSP (private data).

FIGURE 13. Mean classification accuracy and convergence point for
different feature extracting frameworks.

in graph shows the convergence performance of the different
frameworks’ training loss. It indicates that at least 23 epochs
were needed to classify motor imagery tasks reliably with
the converged performance. In general, the proposed feature
learning framework achieve a high classification and fast
convergence performance.

For evaluating the different architectures, we used all the
subjects of D1 and D2 for inter-subject training under the
filter bank common spatial patterns (FBCSPs), CNN, and
CNN–SSAE decoding framework. To compare our approach
with these methods, we highlighted the best-case kappa val-
ues on bold labels. As listed in Tables 8 and 9, the average
kappa value among subjects was 0.381 for FBCSP [54] and
0.402 for the CNN. The average kappa value of our approach
is higher than those of the two approaches. Our method
outperforms the FBCSP and CNN methods for 5 out of the
6 subjects in D1 and 5 out of the 7 subjects in D2.

To explore the aftereffect of the random initializations of
the model hyperparameter, eight initialization setting cases
(including various combinations of the spatial filter size,
CNN kernel size, and increasing number of neurons in the
hidden layer) are used to make a comparison on different
datasets through inter-subject training, as listed in Table 10.

TABLE 10. Accuracy of model in different initializations.

The results show that the CNN–SSAE noticeably outper-
forms the other two methods in most cases in terms of
the average accuracy. Moreover, the CNN–SSAE achieves
a much lower standard deviation value for the different ini-
tializations, indicating that the CNN–SSAE model depends
less on the hyperparameter and performs more robustly on
the different subjects.

VI. CONCLUSION AND FUTURE WORK
In this work, a novel neural network framework was pro-
posed for decoding multi-channel MI-EEG signals into
movement intention categories. A CNN based on different
granular-grouped channels and a stacked sparse autoencoder
(SSAE)-combined CNN method were applied to MI data for
improving the discriminative and generalization capability of
the MI-EEG decoding model. The datasets collected from
our laboratory and from BCI Competition IV dataset 1 were
used. Our experiments showed that the feature fusion network
SSAE exhibits an accuracy of up to 86.41%. This inspires us
to study the spatial feature and channel selection for MI-EEG
decoding. Comparison and simulation experiments validate
that the MI state of hand movement from different limbs
could be classified with high accuracy using the proposed DL
methods. In addition, several experiments were conducted to
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verify the efficiency and computational complexity of the
proposed DL models, particularly in terms of the training
period. Finally, we found evidence that the generalization
capability for different subjects can be improved by the
CNN–SSAE.

However, we mostly focused on the results regarding
invariance from spatial features and the across-subjects trans-
fer learning capability of the models which ignore the feature
from other domains for our future research directions. Cur-
rently, few studies have applied hybrid DL framework to BCI
applications. This work paves the way for using hybrid DL
methods (discriminative and representative DL) in practical
MI-BCI systems and also can be applied to the other BCI
paradigm such as P300 and SSVEP. Moreover, the proposed
method can be further transferred to learning across-sessions
representations to shorten user-target BCI system calibration
periods.
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