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ABSTRACT The ability for autonomous vehicles to cooperatively navigate, especially in GPS denied
environments, is becoming increasingly important. It also requires the ability to initialize, or reinitialize
estimation algorithms for cooperative systems on-the-fly in cases where precise a priori state information
is unavailable. In this paper, we provide a framework that allows estimation of the relative pose and
orientation between vehicles in the presence of high initial uncertainty. Effects of cooperation among
multiple vehicles exchanging estimates of heading rate and velocity and external sensor measurements are
analyzed. A Multi-Hypothesis Extended Kalman Filter (MHEKF) technique is used to initialize pairwise
vehicles using range-only measurements. Using solutions identified by the MHEKF algorithm, a joint
filter comprising of multiple vehicles is initialized. Sufficient conditions to maintain bounded errors are
derived through nonlinear observability analysis using Lie derivatives for the pairwise and the multi-vehicle
cases. Using these conditions as passive constraints in the system, simulation and hardware experiments
are performed to demonstrate the advantages of using MHEKF when the initial conditions are unreliable.
A multi-vehicle testbed for heterogeneous platforms with different sensing modalities is developed to
facilitate hardware testing. Improvements in the system performance when cooperation is introduced among
vehicles is also highlighted through experiments.

INDEX TERMS Cooperative localization, relative framework, initialization, observability.

I. INTRODUCTION
In recent years, the safe operation of autonomous vehicles
in the civil and military domain has become an impor-
tant area of research. Different entities like NASA [1],
Uber [2], Hyundai [3] are working towards urban air mobility
(UAM) [4]–[6] and development of unmanned vehicles traffic
management (UTM) [7], [8] systems. Similarly, the ability to
deploy unmanned vehicles in hostile environments has been a
growing demand for military applications. Autonomous vehi-
cles (manned/unmanned) in the civilian or military domain
should be capable of estimating its pose and orientation in
the inertial frame, relative to its surrounding, and with respect
to other vehicles operating in close proximity [9], [10].
This ability is termed as localization in literature [11]–[16].
Currently, localization is dependent on the combination of
information from the inertial measurement unit (IMU) and
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from the global positioning system (GPS). In hostile territory
or in urban canyons, GPS availability can be limited, or the
quality of information may degrade due to jamming or occlu-
sions. In the absence of reliable GPS, range measurements
from ranging radios, ultra-wideband (UWB) sensors, infrared
sensors [17], [18], and/or bearing measurements from cam-
eras [19] between vehicles and known points of interest (land-
marks) are used with the IMU data for localization.

Relative localization is defined as the process of estimat-
ing the relative pose and orientation among vehicles using
inter-vehicle measurements with respect to a common refer-
ence frame (in this case, the body frame of the vehicle that is
measuring). Precise relative localization is a key for safe oper-
ation among multiple autonomous vehicles for close coordi-
nation and control purposes. Several researchers have inves-
tigated relative localization between two vehicles [20]–[22].
Two vehicle relative localization accuracy is low and highly
dependent on sensing and observability constraints. It has
been shown that the localization accuracy can be improved
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significantly by exploiting cooperation, where vehicles share
their local (IMU) and external (camera, LIDAR) information
among the group for localization. This is known as coopera-
tive localization (CL) [23]–[26]. There are several advantages
of CL that include but are not limited to improvement in esti-
mation accuracy, increase in sensing capacity, and decreased
chances of single-point failure. In this paper, we focus on
the development of relative localization using range-only
measurements amongmultiple cooperating vehicles. Relative
framework-based CL was developed by Mishra et al [27] to
aid the landing of autonomous vehicles on a moving platform
using range-only measurements. Araki et al [28] developed
a range measurement based CL scenario for autonomous
driving in a GPS-denied environment.

One of the fundamental issues with range-only or
bearing-only relative localization is the issue of filter ini-
tialization without a-priori information. The existing liter-
ature does not completely address the initialization issues
with relative localization, specifically when cooperation is
involved. Initialization problem can easily be solved using
particle filters. However, particle filters are computationally
expensive for on-board implementation on small robots and
UAVs [29], [30]. Xue and Schwartz [29] have provided a
comparative study on the performance and time complexity
of an EKF and a particle filter. Simulation results provided
in the paper show that even though the estimation accuracy
of the particle filter is better when compared to EKFs for
the same conditions, the time complexity to reach a similar
performance is high, making it difficult for implementation in
real-time applications. On the other hand, Extended Kalman
Filter (EKF), an asymptotic observer, is lightweight and pro-
vides good state estimates if good a-priori state information is
available. Researchers have used a combined approach with
multiple EKFs to tackle the initialization.

A Modified Polar Coordinate Extended Kalman Filter
(MPEKF) based solution was proposed in [31]. The authors
assume knowledge of inter-vehicle bearing measurements to
convert the states to be estimated from cartesian to polar coor-
dinates. A bank of filters with multiple range estimates was
used to cover the uncertainty in range. The performance of
this filter was compared to a particle filter, and the particle fil-
ter provided higher estimation accuracy. A modified version
of this algorithm was also developed in the same literature
called the Range-parameterised EKF (RPEKF), where range
measurements are chosen from an interval of [ρmin, ρmax].
Although this method provided comparable results to the
particle filter, choosing ρmin and ρmax , which influences
the performance of the RPEKF as stated by the authors,
is dependent on the application, trajectories, agent velocities,
to name a few factors. Similarly, Bai and Beard [32] have
used a number of EKFs to estimate the relative orientation
when relative position measurements are available. In prac-
tice, relative position measurements are hardly available for
small UAVs. A weighing technique to assign weights to each
individual EKF was used, and the estimates and uncertainty
calculated for the filter at every point is a weighted average

of the estimates from all the filters. This can lead to filter
divergence if some filter estimates are far away from the
actual estimates. Calculation of the weighted average also
increases the computational complexity of the system.

In our recent work, [33], we have proposed a Multi-
Hypothesis Extended Kalman Filter (MHEKF) to estimate
relative position and relative heading for two vehicles using
range-only measurements. Although the Multi-Hypothesis
Extended Kalman Filter sounds similar to the Multi Hypoth-
esis Kalman Filter (MHEKF) or more commonly referred to
as theMulti Hypothesis Object Tracking EKF (MHOT-EKF),
both these techniques have different structures as well as
applications. The MHOT-EKF is a technique used for track-
ing multiple objects and enables efficient tracking even when
data association cannot be made, specially in crowded envi-
ronments [34], [35]. The MHEKF proposed in [33] and fur-
ther improved upon in this paper is a technique developed to
address the issue of initialization of estimation algorithms in
the presence of large initial uncertainty or low/none a-priori
information, especially for platforms with low processing
power and real-time implementation. The initialization prob-
lem for the relative position was solved using a-priori noisy
heading information in [33]. We used a simple χ2 elimi-
nation technique to identify filters that provided the ‘‘best’’
estimate and prune out filters with large covariances. It has
been shown that for a nonlinear system, an EKF does not
provide consistent estimates initial conditions are far from the
true states [36]. As the EKF cannot perform accurately with
high initial uncertainty and the computational complexity of
a Particle Filter is higher to achieve similar performance,
the MHEKF provides a solution that is accurate, consistent,
and can be performed in real-time on platforms with low
processing power.

In this paper, we extend the 2-vehicle relative localiza-
tion work [33] to an N-vehicle cooperative relative local-
ization problem using the concept of MHEKF to initialize
an N-vehicle joint filter with no a-priori information (no
position or heading information is present). The goal of the
N-vehicle filter is to cooperatively estimate the relative pose
and orientation of the vehicles with respect to the central
vehicle using range measurements between vehicles. We use
a 2-vehicle pairwise MHEKF filter to initialize the N-vehicle
filter without a-priori relative position and relative heading
information. Additionally, in this paper, we perform nonlinear
observability analysis [37] to investigate the effect of relative
motion on the MHEKF initialization. Antonelli et al. [38]
performed a linear observability analysis for relative local-
ization. Linear observability analysis of nonlinear systems
sometimes leads to inaccurate conditions. In [39], observabil-
ity analysis for bearing-only and relative pose measurements
were performed for a pairwise case, and sufficient conditions
were discussed based on the system dynamics. In this paper,
we derive conditions for minimum and maximum observabil-
ity as a function of the relative trajectories among vehicles
and obtain conditions for the N-vehicle case. Using these
conditions, the concept of Initialization Manuevers (IMs) has
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been discussed, which can lead to faster identification of the
working filter fromMHEKF. The effect of system observabil-
ity on the convergence time for the MHEKF has also been
discussed. Furthermore, we have developed a multi-vehicle
experimental testbed to validate the MHEKF based coop-
erative relative localization where we use ultra-wideband
(UWB) low-cost Decawave [40] sensors to measure the range
between vehicles.

Based on the discussion above, the major contributions of
this paper are can be reiterated as follows:
• Development of an N-vehicle cooperative relative local-
ization estimator using range-onlymeasurements among
vehicles in the presence of large initial uncertainty.

• Improvement of the Multi-Hypothesis Extended
Kalman Filter (MHEKF) technique introduced in [33]
by removing a-priori heading information. A rule of
thumb while choosing the initial number of filters for
the MHEKF has also been provided in the paper, which
is a function of the overlap between the 2σ uncertainty
ellipses around the different initial points. This is used
as a user-input based on the application scenario.

• Nonlinear observability analysis using Lie derivatives
has been performed for both the pairwise case and the
N-vehicle case that aids in identifying the relative tra-
jectories among vehicles that provide better estimation
accuracy.

• A multi-vehicle testbed has been developed where dif-
ferent sensors (UWB decawave, cameras) have been
used to perform the cooperative relative localization
algorithm

The paper is organized in the following manner. Section II
formulates the mathematical definition of the problem.
Simulation results are presented in this section to aid in under-
standing the estimation problem with no a-priori information
and the use of the MHEKF algorithm in resolving it is also
presented. A nonlinear Observability analysis for the direct
and indirect measurements cases are presented in Section III
followed by hardware results detailed in Section IV.
Conclusions from the paper and possible future work are
discussed in V.

II. PROBLEM FORMULATION
Consider N vehicles moving in a horizontal plane as shown
in Figure 1. The inertial equations of motion of the ith vehicle
is represented using a unicycle kinematic model asṗniṗei

ψ̇i

 =
vi cosψivi sinψi

ωi

 (1)

where, vi and ωi are the linear and angular velocities of the
ith vehicle, [pni , pei ]

> is the position vector in the iner-
tial coordinate (NED) frame, ψi is the heading angle, and
i ε [1, · · · ,N ]. In the absence of GPS or any global infor-
mation in the form of landmarks, relative pose estimation
provides navigation and path-planning solutions for close
coordination and control problems. Using (1), the relative

pose between the ith and jth vehicle is obtained by rotation
of the inertial frame of the jth vehicle in (1) to the ith vehicle’s
frame as shown in Figure 1. The relative pose is represented
as  pixji

piyji
δiψji

 =
 cosψi sinψi 0
− sinψi cosψi 0

0 0 1

pnj − pnipej − pei
ψj − ψi

 (2)

where, the ith vehicle is the central vehicle i.e the body frame
of the vehicle in which the relative pose and heading are cal-
culated. Using (2), the relative pose motion model is derived
by taking the time derivative of (2) and the final equations are
defined as

ẋ iji = f (x iji, u
i
ji, σuiji

)

=

 ṗixji
ṗiyji
˙δiψ ji

 =
ω̂ipiyji + v̂j cos δψ i

ji − v̂i
−ω̂ipixji + v̂j sin δψ

i
ji

ω̂j − ω̂i

 (3)

where, pixji , p
i
yji and, δψ

i
ji are the relative pose of the j

th vehicle
in the central (ith) vehicle’s frame, v̂j and, ω̂j are the noisy
odometry measurements from the jth vehicle’s onboard nav-
igation system. For relative pose estimation, it is considered
that the vehicles are fitted with sensors capable of measuring
inter-vehicle range. The sensor model is represented as

ρiji = h(x)+ µρji
= ρiji + µρji

=

√
pixji

2
+ piyji

2
+ µρji (4)

where, µρji is zero-mean Gaussian noise with σρ standard
deviation. If the vehicles are cooperating, then additional
range measurements are present between the jth and k th vehi-
cle where j, k ε[1,N ] and j, k 6= i. The cooperative range
measurement is represented as

ρijk =
√
(pixji − p

i
xki )

2 + (piyji − p
i
yki )

2 (5)

where, pixji , p
i
xki , p

i
yji and p

i
yki are all estimated in the ith vehi-

cles frame. Henceforth in the paper, the cases with only direct
range (between the ith and jth vehicles where jε[1,N ] and
j 6= i and represented by the solid lines in Figure 1) mea-
surements will be referred to as direct measurement localiza-
tion (DML) and the cases considering the direct and indirect
(between the jth and k th vehicles where j, k ε [1,N ] and
j, k 6= i and represented by the dotted lines in Figure 1) range
measurements will be referred to as indirect measurement
localization (IML). State estimation of an N-vehicle system,
as shown in Figure 2 using an Extended Kalman Filter (EKF),
will provide accurate estimates in the presence of reliable
a-priori information (low uncertainty). However, for vehicles
traveling over long distances without GPS or with the need
to re-initialize, the assumption of low initial uncertainty for
multiple vehicles is not valid. For example, Figure 3 repre-
sents a case of multiple vehicles with high initial uncertainty.
The true global trajectories and range measurements of these
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FIGURE 1. Relative navigation scenario - pairwise (only direct measurement - left) and multiple (with direct and indirect measurements - right).

FIGURE 2. Cooperative relative navigation scenario - true trajectory (left) and corresponding range measurements (right).

TABLE 1. Simulation parameters - multiple relative localization for Figure 3.

vehicles are shown in Figure 2. The simulation parameters for
this case is presented in Table 1.
The vehicles are moving in an area of 120m x 120m in

Figure 2. A close look at the uncertainty in relative pose
between vehicles 1 and 4 in Figure 3 show that the bounds
are high. The filter is inconsistent, and these results are
commensurate with the behavior among the other vehicle
pairs with respect to the central vehicle (omitted from paper).

With such high uncertainty and errors of the order of 40m,
it is unsuitable for any application. The average uncertainty
in δψ1

41 is approximately 180◦, which provides no informa-
tion regarding the relative direction of motion among the
vehicle pairs. It is clear from this figure that even when
the vehicles have indirect measurements, due to the initial
high uncertainty, the errors in the estimates are high, and
thus the EKF fails. In [33], the authors solved a pairwise
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FIGURE 3. Cooperative relative localization with high initial uncertainty (vehicle pair - 41).

case using MHEKF. An argument can be made regarding the
use of geometric overlay of range measurements to initialize
multiple vehicle pairs without the need for multiple filters.
This method provides accurate pose and orientation estimates
to initialize a system, given all the measurements are avail-
able at the same time. Constraints in network bandwidth can
cause delays that will reduce the efficiency of this method.
Although, in this paper, we assume no data loss or delays in
communication and inter-vehicle measurement, all the range
information between different pairwise vehicles need not be
available at the central vehicle at the same time. Due to
the pairwise approach, each vehicle pair is initialized when
measurements are received. Thus the system is robust to
handle the addition of new vehicles at any time.

One of the drawbacks of using the MHEKF approach is
that the vehicles have to be in the sensing and communica-
tion range of the central vehicle during the initialization as
the relative pose estimation is performed at a central node.
A distributed approach solves this problem. However, that
reduces the efficiency of the estimator. The advantages and
disadvantages of the different approaches are discussed in
detail in [41], redand is outside the purview of this paper. Data
delays and communication drop-outs can be handled using
a batch processing technique which is better equipped than
sequential estimators. Using an EKF for the multi hypothesis
approach may increase the run time to identify a working
filter, but these filters are computationally efficient. In order
to use the MHEKF to initialize the N-vehicle filter, it is
important to provide a brief summary of the findings from
the paper [33]. In [33], the authors use noisy magnetometer
readings to initialize the relative heading between pairwise

vehicles. In this paper, we assume no knowledge of relative
orientation through sensors (internal or external) and initial-
ize it with relative pose thus increasing the robustness of the
approach as seen in Section II-A.

A. MULTI-HYPOTHESIS EXTENDED KALMAN FILTER
(MHEKF)
For a complete understanding of the MHEKF, it is essential
to highlight the main steps for a single EKF. The prediction
step of a continuous-discrete EKF can be outlined as

x̂+ = x̂− + (
Ts
Np

) f (x, u)

P+ = P− + (
Ts
Np

) (FP+ PFT + Q)

Here F = ∂f
∂x f (x, u), Ts is the sampling time for integrating

the IMU measurements and Np is the number of prediction
steps before a measurement is integrated into the update step.
A continuous-discrete EKF [42] is used as it automatically
allows for integrating the higher rate of the IMU data as
compared to the frequency of the range measurement. When
inter-vehicle range measurements are available, we update
the filter using the standard equations,

x̂+ = x̂− + L(ρ̃ − ρ̂)

P+ = (I − LH )P−

where, ρ̃ is the range measurement received, ρ̂ is the pre-
dicted measurement from the filter, H =

∂h(x̂,u)
∂x is the

measurement Jacobian and L is the Kalman gain. A single
filter cannot handle the high uncertainties when initialized
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TABLE 2. Simulation parameters - MHEKF for Figs 4- 6.

away from the truth as seen in Figure 3 and hence we move
to a Multi-Hypothesis approach detailed below.

Using range data only, 2π uncertainty is assumed in the
relative bearing. A bank of initial guesses is placed on the
circumference using the range measurement as the radius
while uniformly dividing the circle into Nη evenly spaced
initial estimates using Algorithm 1. Figure 4 shows an exam-
ple where 36 filters are initialized. The choice of the number
of filters is dependent on the application. Depending on the
overlap percentage i.e, how closely the initial points are
sampled, an initial start regarding the number of guesses as
a function of the 2σ overlap is defined in Algorithm 1. Each
filter is represented using solid stars, and the dotted circu-
lar trajectories represent the 2σ uncertainty in the relative
position. The initial guesses are chosen such that there are
two guesses within the uncertainty overlap to ensure that at
least a single filter remains consistent throughout the run. The
square marks the true relative position between the vehicles,
the diamond denotes a filter initialized far away from the
truth, and the hexagon denotes a filter spawned close to the
true position. Intuitively, the filter initialized close by has a
high probability of converging. For every initial px , py pair,
there are Nψ combinations of δψ . In this section, vehicles 1
and 4 are used from Figure 2 to demonstrate the effectiveness
of the MHEKF technique. Algorithm 1 summarizes the steps
needed to initialize the pairwise MHEKF where Nψ is the
number of evenly placed points for heading initialization,
Nη is the number of evenly placed points for position ini-
tialization, and k = 2π

Nη
. The simulation parameters for the

MHEKF are listed in Table 2.

Algorithm 1 Multi-Hypothesis Extended Kalman Filter -
Initialization

Step 1→ Circle circumference: 2πρ
Step 2 → Minimum number of circles without overlap:
τ =

2πρ
2σ − 1

Step 3→ Round off τ to the nearest even integer
Step 4 → Defining overlap% α, number of points:
Nη = τ + 2ατσ
for i in 1 - Nη do
for j in 1 - Nψ do
Step 5→ Initialize ṗixji = ρ cos(ηk )
Step 6→ Initialize ṗiyji = ρ sin(ηk )

Step 7→ Initialize ˙δψ i
ji =

2π
Nψ

end for
end for

FIGURE 4. MHEKF - initial guesses (solid star), 2 σ bounds (dotted black
lines), and true relative pose (solid black square).

Once the algorithm begins, the linear velocity vi and angu-
lar velocity ωi are exchanged between the central vehicle and
the jth vehicle, which are used as inputs to the estimator. This
maintains the conditions necessary for EKF convergence,
as derived in [36]. As explained in [33], many of the filters
initialized via the MHEKF will fail simply because the non-
linearities associated with them are high if they are initialized
at points away from the actual initial states as seen in Figure 5.
For example, the initial guess highlighted in diamond in
Figure 4 starts away from the true relative position and fails
as expected. However, other filters will track the system quite
well if they start close to the true pose like the initial guess
marked as a hexagon in Figure 4. In order to find filters that
are close to the true trajectory, we use a simple χ2 inspired
approach. We define ek = |ρ − ρ̂| and sum the number
of times each filter’s range residual is below a user-defined
threshold. Usually, this threshold is chosen as 3σρ where σρ
is the measurement noise associated with range. Whenever it
is below that threshold, a count for that filter is incremented.
The larger the χ -count of a filter means the higher chance
of that filter converging eventually. The cumulative plot for
χ2 sum for every filter is presented in Figure 5. The filters
initialized close to the truth have higher χ -counts as seen with
the solid line that corresponds to the initial guess marked as
a hexagon. However, the filters initialized far away have low
χ -counts are discarded. The χ2 elimination technique is

if |ek | ≤ cσρ, then χk = χk + 1 (6)
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FIGURE 5. MHEKF - all trajectories (left) & the corresponding cumulative χ-counts (right).

FIGURE 6. MHEKF - best filter errors (left) and bad filter errors (right).

As seen from Figure 5, this criteria identifies the filter with
the largest χ value, and we use this as our best estimate to
initialize the N-vehicle system. Using the elimination tech-
nique from (6), the best estimate and one of the bad filters
are represented in Figure 6. It is to be noted that the filter
with the best estimates on the left does not show a significant
improvement in the covariance from the initialization. This
clearly shows that the MHEKF is not used to improve the
quality of estimates for the best filter but avoids a bad initial
guess to be used in the initialization of the N-vehicle system.
The best estimates in Figure 6 is from the initial guess marked

with a hexagon in Figure 4 whereas the bad filter estimates
shown is the guess marked as a diamond. It is seen that the
best guess is consistent and observable with tight uncertainty
bounds. This technique with a pairwise solution is used to
provide decent initial guesses among vehicle pairs (vehicle 4
and vehicle 1) with smaller uncertainties to start the N-vehicle
filter.

In this case, results for a 100 seconds run is shown. The
time for the MHEKF to converge is user-defined, depending
on the accuracy demanded by the application. However, cer-
tain trajectories have been shown to provide a working filter
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FIGURE 7. Error with 3σ bounds for a multi-vehicle scenario. The trajectory followed is the same as
Figure 2. The dotted line indicate IML and the solid lines indicate DML.

TABLE 3. Cooperative relative localization - RMS errors (sim).

faster than other trajectories. These trajectories are referred
to as Initialization Maneuvers (IM). The convergence of the
uncertainty bounds is closely related to the observability
of the system, which is discussed in detail in Section III.
Improving the observability of the system by increasing the
relevant information in the estimation aids in identifying the
best filter quickly.

Based on the MHEKF technique to initialize vehicles in
a pairwise scenario, Figure 7 represents the N-vehicle filter
where each of the vehicle pairs is initialized after 20 seconds
(represented by the black vertical line). After the 20 second
mark, indirect range measurements are added to the estima-
tor (represented by dotted lines). It is clear from Figure 7
that indirect measurements among vehicles aids in faster
convergence and improves estimation quality. These indirect
measurements add cross-correlation terms in the uncertainty
matrix and make it a tightly coupled system that provides
consistent and observable estimates. This is also highlighted
from Table 3.

The root mean square (RMS) errors in the relative pose
and orientation are shown for both the IML and DML cases,
and the average px and py between the vehicles are also
included to highlight the performance of the filters. Although

both the DML and IML have small RMS errors, it is clear
that for every vehicle pair, IML outperforms DML, which
is expected. The accurate performance of the filters even
when no a-priori information is present is due to the pairwise
Multi-Hypothesis approach. This light-weight initialization
technique identifies the best filter between pairwise vehicles,
which have low uncertainty and are consistent. Hence, in this
section, we have shown the effectiveness and efficiency of
usingMHEKF to initialize anN-vehicle filter with no a-priori
information. The algorithm followed for the localization
of the N-vehicle filter is similar to [25]. The information
exchange in the system is represented in Figure 8. The
pairwise vehicles are initialized using MHEKF, and after
identifying the best filter, this information, along with the
individual vehicles’ odometry and range measurements, are
used as inputs to the N-vehicle filter. Since the MHEKF is a
filtering problem, convergence rate and quality of estimation
are dependent on the quality of measurements (range in this
case) received, which is closely tied to the observability
of the system. The system described in (3) is nonlinear,
and Lie derivatives [37] are used to provide a thumb rule
in choosing trajectories that makes the system observable
in Section III.
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FIGURE 8. Block diagram for cooperative relative localization.

III. OBSERVABILITY ANALYSIS
As discussed in Section II, pairwise MHEKF can be used
to seed a multi-vehicle system with no a-priori information.
EKF can be described as an asymptotic observer, and the
boundedness on the error in its estimates is tied to system
observability. The system defined in (3) is a nonlinear model
with range measurement between pairwise vehicles and non-
linear observability analysis using Lie derivatives [37] is
performed to determine conditions that will keep the system
observable such that the uncertainty limits are bounded and
decreases over time. A general nonlinear systemwith states X
and inputs u = [vi, ωi]> can be defined as

Ẋ = f (X , u)

=

N∑
i=1

fvi (X )Vi +
N∑
i=1

fωi (X )ωi (7)

where N is the total number of vehicles in the system,
fvi and fωi are the different system models when excited by
solitary inputs not dependent on each other. In the pairwise
relative localization case, the inputs to the system are U =
[vi, ωi, vj, ωj]>. Based on (7), the system can be represented
as Ẋ = fvivi+fωiωi + fvjvj+fωjωj where the different models
are

fvj =
[
cos δψ i

ji, sin δψ
i
ji, 0

]>
(8)

fvi =
[
−1, 0, 0

]> (9)

fωj =
[
0, 0, 1

]> (10)

fωi =
[
piyji , −p

i
xji , −1

]>
(11)

The nth order Lie derivatives for a nonlinear system with
the motion model Ẋ = f (X , u) and measurement model
z = h(X ) = [h1(X ) h2(X ) · · · hn(X )]> is defined as

Lnf (h) =
∂

∂x
[Ln−1f (h)]ẋ (12)

where, the zeroth order Lie derivative is defined as L0f (h) = h.
A matrix G can be defined as

G =

 L0f (h1) · · · L0f (hn)
...

. . .
...

Ln−1f (h1) · · · L
n−1
f (hn)

 (13)

The gradient of matrix G defined in (13) is the observability
matrix of the system (O = 1G). Using (12) and (13), the Lie
derivatives for the system defined in (3) is defined as

L0f (h) = ρ =
√
(pixji

2
+ piyji

2
)

∇L0f (h) =
∂ρ

∂x
=

[
pixji
ρiji

piyji
ρiji

0

]
L1fvj (h) = ∇L

0
f (h)fvj =

[
pixji
ρiji

cos δψ i
ji +

piyji
ρiji

sin δψ i
ji

]
(14)

L1fvi (h) = ∇L
0
f (h)fvi = −

pixji
ρiji

L1fωj (h) = ∇L
0
f (h)fωj = 0 (15)

L1fωi (h) = ∇L
0
f (h)fωi = 0

The observability matrix O is defined using (13) as

O =
[
∇L0f (h), ∇L

1
fvj
(h), ∇L1fvi

(h)
]>

=



pixji
ρiji

piyji
ρiji

0

piyjiJ
−

ρiji
3/2 −

pixjiJ
−

ρiji
3/2

J−

ρiji

−

piyji
2

ρiji
3/2

pixjip
i
yji

ρiji
3/2 0


(16)
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where, J− = piyji cos δψ
i
ji − p

i
xji sin δψ

i
ji. The Row Reduced

Echelon Form (RREF) of O from (16) is calculated as

Urref =

1 0 0
0 1 0
0 0 1

 (17)

Urref satisfies the properties of a RREF matrix, where the
leading coefficient in one row is always right of the leading
coefficient in the preceding row. The rank of Urref matrix
from (17) is 3 for the pairwise relative localization case,
which is a full rank system. For a general relative localization
algorithm where every vehicle has 3 states each, the full rank
redof the system is 3(N − 1). An interesting observation
from (14) is that space spanned by the velocity excitation is
nonzero, whereas the angular velocity spans a null space and
does not directly contribute to the observability of the system.
From (16), it is clear that in a pairwise case, the linear velocity
of both the vehicles has to be nonzero for the system to
remain observable. Optimizing the relative heading between
the pairwise vehicles can aid in path planning algorithms to
increase the information flow in the system and ensure system
observability. The determinant of the observability gramian
(O>O) provides insight regarding the types of trajectories that
improve system observability based on range measurement.
Using (16), the determinant of the observability gramian is

1O>O =
pi2yji
ρi3ji

(piyji cos δψ
i
ji − p

i
xji sin δψ

i2
ji ) (18)

Taking the first derivative of (18) with respect to δψ i
ji and

setting it to zero provides the roots of (18) which can either
be a maxima or a minima. The roots of (18) are
• piyji = 0

• δψ i
ji = tan−1(

piyji
pixji

)

• δψ i
ji = tan−1(

−pixji
piyji

)

It is clear that when piyji = 0, the determinant is minimized.
In order to find the roots which maximize and the roots
which minimize (18), the second order derivative of (18) is
calculated. The second order differential of (18) is given as

∂21O>O
∂δiψ2 = −

2pi2yji
ρi3ji

[(J−)2 − (J+)2] (19)

where,

J− = piyji cos δψ
i
ji − p

i
xji sin δψ

i
ji

J+ = piyji sin δψ
i
ji + p

i
xji cos δψ

i
ji

Substituting δψ i
ji = tan−1(

piyji
pixji

) in (19), we get ∂
21O>O
∂δiψ2 =

2pi2yji
ρji

and with δψ i
ji = tan−1(

−pixji
piyji

) in (19), ∂
21O>O
∂δiψ2 = −

2pi2yji
ρiji

.

Hence, δψ i min
ji = tan−1(

piyji
pixji

) drives the observability of

the system towards the minima and δψ i max
ji = tan−1(

−pixji
piyji

)

towards the maxima condition. This is shown in Figure 9
where if the jth moves along the line joining the two vehicles
then the information available in the system is minimized and
if it moves perpendicular to the line joining the two vehicles,
the information in the system is maximized.

FIGURE 9. Roots of the observability gramian explained geometrically

θ1 = tan−1(
pi

yji
pi

xji

) and θ2 = tan−1(
−pi

xji
pi

yji

)).

It was previously discussed in Section II that the time taken
for the MHEKF to identify the best filter depends on several
factors, the most important being the relative trajectories of
the vehicles. The effect of the relative trajectories among
vehicles on the system observability, which determines the
convergence rate of the uncertainty bounds, is clear from (18).
In order to initialize a system, the time taken to determine a
working filter is an essential parameter dependent on themea-
surements received. It is to be noted that true vehicle states
are used to calculate the observability gramian. Conditions
required to maintain an observable system are determined as
a pre-processed quantity, and hence true states are used.

Figure 10 represents the variation of range measure-
ment ρ, determinant of the observability gramian 1O>O,
the information in the system P−1 and the cumulative
χ -count of all filters initialized in the system with respect
to the trajectories. The left column represents two vehicles
following circular trajectories in opposite directions, which
is clear from the range measurement, which increases and
decreases periodically. As expected, based on the range
measurement, the observability gramian also follows a cyclic
nature. However, there are several points where 1O>O = 0.
The information in the system, which is the inverse of the
uncertainty, also shows several different minima andmaxima.
The right column shows pairwise vehicles (vehicles 1 and 4)
from Figure 2 following spline trajectories. The changes in
range measurement are smoother and gradual in this case.
1O>O reveals an interesting pattern. Although there are

different maxima and minima, the area covered is higher than
the circular trajectory case (on the left), and this behavior is
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FIGURE 10. Observability as a factor in determining trajectories with faster convergence time to identify best filter in MHEKF.

reflected in the information plot where each of the maxima
is higher than the previous peak, and the number of min-
ima is less. This effect is also reflected in the cumulative
χ -count plots for both the different sets of trajectories. On the
left, it is clearly seen that even around the 80 sec. mark,
there are a number of filters with high χ -counts. Most of
these filters, however, do not qualify as the ‘‘best’’ filter as
their slope reduces near the 100 sec. mark. This behavior is
most likely because these filters are inconsistent. As stated in
Section I, inconsistent, or over-confident behavior in an EKF
is caused by high nonlinearities in the system due to incorrect
modeling. As the EKF linearized the system by calculating
jacobians, so the jacobians of the filters initialized at points

far away from the truth are not calculated near the equilibrium
points and hence exhibit behavior that is not accounted for in
the system model [43].

In this case, it is difficult to identify the best filter with
shorter initialization times. The cumulative χ -counts on the
right show that even after the 20 sec. mark, there are 4 distinct
filters, and each of these filters performs well till the 100 sec.
mark. It has been verified through numerous simulation
and hardware experiments, including Monte-Carlo runs, that
these filters with the highest χ -count are consistent. So any of
these 4 filters (for this case) can be used for the initialization
of the larger filter. Information from these filters can also
be fused using techniques like covariance intersection [44].
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Since the information and the uncertainty bounds for these
4 filters are almost the same, in this case, we have chosen
one of the filters for the N-vehicle initialization. So it is clear
that if pairwise vehicles follow this trajectory, the best filter is
identified within a smaller time frame. The time frame to use
an MHEKF to identify a filter is a user-dependent parameter.
In terms of practical feasibility, a small window of time to
identify a good filter is desirable. In this case, the ‘‘smaller
time frame’’ is meant as a comparison between the two
different trajectory cases shown in Figure 10. So, the time
frame of the spline trajectories to identify a good filter is
smaller as compared to the time taken if the vehicles follow
circular trajectories. This result is also verified from the
information and range measurement plots for the two cases,
which have been discussed in this section. Such trajectories
which reduce the initialization time effectively pruning out
inconsistent and/or unobservable filters within smaller time
frames can be referred to as initialization maneuvers (IM).
The goal of any optimization algorithm will, therefore, be to
generate IMs where minimizing initialization time is one of
the key constraints. From (18), we show conditions to main-
tain observability between pairwise vehicles. So (18) shows
the conditions that can be utilized in generating trajectories
for the pairwise case in MHEKF to provide a consistent filter
faster. In this paper, as we solve an N-vehicle filter, indirect
measurements (represented by the dotted lines in Figure 1)
are also included in calculating the observability gramian.
The system can be defined with each input as in (14) where
the individual manifolds are:

fvj = [cos δψ i
ji, sin δψ

i
ji, 0, · · · cos δψ

i
Ni, sin δψ

i
Ni, 0]

>

(20)

fvi = [−1, 0, 0, · · · 0, 0, 0]> (21)

fωj = [0, 0, 1, · · · 0, 0, 1]> (22)

fωi = [piyji , −p
i
xji , −1, · · · p

i
yNi , −p

i
xNi , −1]

> (23)

The observability matrix is similar to the pairwise case (16)
based on the number of cooperating measurements among
the vehicles. For a 3 vehicle system with one cooperating
measurement, the RREF matrix is defined as

Urref =



1 0 0 −1 0 1py
0 1 0 0 −1 −1px
0 0 1 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(24)

where, 1pix = pixji − pixki , 1p
i
y = piyji − piyki , j, k ε[2,N ],

j, k 6= i and i = 1 is the central vehicle. From (24), it is
clear that the rank of the system is 3(N − 2), which makes it
a rank 3 deficient system with only indirect range measure-
ments. Using the concepts developed in [26] by converting the
N-vehicle problem into a 2-level tree, the system becomes full
rank when at least one vehicle is present in the sensing region
of the central vehicle. The rank of the system is 3(N−2) from

the indirect measurement and 3 for the direct measurement
between the central and jth vehicle. The total rank of the
system is 3(N − 2) + 3 = 3(N − 1), which is the full rank
for a cooperative relative localization problem. As part of the
future work, controllers with optimized relative heading can
be designed to maintain these conditions to ensure maximum
observability in the system. Based on the simulation results
in Section II, hardware experiments were also conducted to
verify the performance of the MHEKF and the N-vehicle in
the relative navigation problem, and the results are provided
in Section IV.

IV. HARDWARE SETUP AND RESULTS
Amulti-vehicle testbed with different sensing modalities was
developed for experimental verification. Figure 11 represents
a simplified image of the testing platform with 3 robots. The
number of robots in the system is variable and heterogeneous
robots can be used for testing different algorithms. One of
the main features of this testing platform is the seamless
integration of different types of sensors. Experiments for
this paper was performed using 3 kobuki-base turtlebots [45]
fitted with Ultra Wide Band (UWB) range sensors called
Decawave (dwm1001) [40]. The turtlebots come with sev-
eral pre-existing Robot Operating System (ROS) packages
that allow end-users to directly read and visualize the IMU
data from the robot. With the Decawave sensors, this setup
provides a means to directly read range measurements into
ROS and provide appropriate control commands in the form
of linear and angular velocity. The robots are fitted with
gigabyte Brix computers, which is an onboard i5 computer
capable of performing complex operations. These computers
are powered by an external power bank that can prevent
voltage surges.

The experiment was performed in the presence of 12 Opti-
track Motion capture (Mocap) cameras. The Mocap system
acts as an indoor GPS and is used for comparison. As seen
from Figure 12, the robots are fitted with silver markers on
the top plate. The infrared cameras can detect these markers
and with the help of custom templates unique to each robot,
provide the true position, velocity and heading with respect
to the Mocap room area. Using nodes constructed in python,
the turtlebots are sent velocity and turn-rate commands indi-
vidually and the experimental data is recorded on a master
computer running ROS. The robot computers are setup as
slave and themaster computer connects to all the robots over a
WiFi network. The experiment is performed using real-range
measurements from the Decawave sensors which are setup
as anchor and tag based on the vehicle which is measuring
the range. The sensors provide accurate range measurements
up to 10m but are prone to multi-path errors and interference
from electromagnetic fields in its immediate vicinity. The
codes for this experiment are available on github at Github
Code and the experimental video is available on youtube at
Experimental Video. The parameters used in the hardware
experiment are listed in Table 4.
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FIGURE 11. R.I.S.C Lab multi-vehicle test bed.

FIGURE 12. Experimental setup - multiple turtlebots with Decawave sensors with MOCAP as the indoor GPS system.

TABLE 4. Hardware parameters - multiple relative localization for Figs 13- 14.

A closer look at the pairwise trajectories between
vehicles 1 and 2 shows that they are moving closer, whereas
vehicles 1 and 3 in Figure 13 are moving away from each

other. From the observability analysis in Section III, it is
clear that a gradual increase in range decreases the overall
system observability. In this case, as the vehicles are moving
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FIGURE 13. Hardware setup - true trajectories (left) & range measurement (right).

FIGURE 14. Hardware - error with 3σ bounds for multi-vehicle scenario. The trajectory followed is
represented in Figure 13.

away from each other, the range between them increases (seen
in Figure 13) that reduces the overall system observability.
As these are hardware systems, non-linearities develop in
the robots from its natural wear and tear and are not always
accounted for in the vehicle dynamics. This makes it impor-
tant to choose proper trajectories such that there is enough
variation in the range measurement.

As detailed in Section II, the states of a multi-vehicle
cooperative relative framework is defined in (2). Figure 13
represents the global trajectory where vehicle 1 is the central
vehicle, and the pose of the other vehicles is estimated in
vehicle 1’s body frame. Due to physical space limitation in
the Mocap area and network bandwidth constraints, three
turtlebots are used in the hardware experiment. The results

are represented in Figure 14, where solid lines represent the
direct measurement localization (DML) and 3σ bounds, and
dotted lines represent indirect measurement (IML) relative
errors among the vehicle pairs. It is to be noted that MHEKF
is used to initialize the filters, and around the 13-second mark
(marked by a dotted vertical line), indirect range measure-
ments are used in the estimation algorithm. Improvement
with IML is not significantly visible in the hardware experi-
ments due to certain logistical constraints like limited space
in the experimental region (seen in Figure 12), the number of
turtlebots used (3, in this case, to make sure there are no col-
lisions in the available area) and not a significant variation of
relative movement like the simulation. The relative geometry
during the start of the N-vehicle filter is not ideal as well.
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TABLE 5. Cooperative relative localization - RMS errors (HW).

However, from Figure 14 and Table 5, it is evident that
the overall error is reduced using IML. Given enough phys-
ical space and network bandwidths with a higher num-
ber of robots, hardware experiments will also show similar
improvements as the simulation case. However, the results
shown in Figure 14 are in accordance with the findings
in Section III. An increase in overall range measurement
between vehicles 1 and 3 reduces the observability in the
system as the uncertainty bounds in px between these two
vehicles does not decrease over time whereas for vehicle
pair 1 and 2. The uncertainty bounds decrease for all states.
Similarly, the variation in the range between vehicle pairs 1
and 2 is greater than vehicle pairs 1 and 3 which indicates a
higher range rate that generally provides more information in
the system. Based on these results, it is clear that the results
obtained in the hardware experiment are commensurate with
the simulations, and MHEKF can be used to initialize an
N-vehicle system with no a-priori information. The main
contributions of this paper are summarized in Section V,
and discussions regarding some of the interesting future
work using the results from the observability section are also
provided.

V. CONCLUSION
In this paper, we have successfully solved a relative coop-
erative navigation problem with no a-priori information.
Simulation results in Section II and hardware results in
Section IV demonstrate that an N-vehicle cooperative filter
can be initialized using limited computation capabilities
when no a priori information is available. This coopera-
tive filter is initialized by leveraging the outputs from the
multiple pairwise filters using the MHEKF. A nonlinear
observability analysis using Lie derivatives was performed to
provide analytical conditions for observability of the pairwise
and the cooperative cases. Those observability constraints
were then used to select effective vehicle trajectories which
were demonstrated to improve filter performance both in
simulation and in hardware. Real-time hardware experiments
were conducted using multiple ROS-based platforms consist-
ing of Turtlebots, Decawave ranging sensors, and on-board
processors for real-time demonstration of the multi-agent
initialization and filter performance.

In the future, the MHEKF technique will be used for vari-
ous applications to demonstrate its advantage. Cost functions
based on (18) will be developed to provide optimized vehicle
trajectories given the vehicle and sensor characteristics and
limitations. The filter will also be adapted for use in a batch
framework to improve robustness to communication delays
and dropouts.
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