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ABSTRACT The nonlinear Lane-Emden type equation can be used to describe many physical phenomena.
To solve this type of equation, a method based on deep neural network is proposed. The output layer of this
network has two layers, the last one of which scaling the outputs of their neighbors with an aim at coping
with issues where the values of function to be approximated are much less or larger than the order of 1. The
Lane-Emden equation and its initial conditions are employed to construct the loss function, and the problem
of solving Lane-Emden equation is transformed into an optimization problem. A hybrid method combined
Adam and L-BFGS-B methods is used to solve the optimization problem and consequently the Lane-Emden
type equation is solved. To increase the accuracy, an adaptive strategy is incorporated into the training data
sampling method. Especially, a strategy in coping with the issue about solving white-dwarf problem is
proposed. Numerical experiments are conducted in which reference solutions including analytical solutions
and numerical solutions given by Runge-Kutta method are used to verify the effectiveness of our proposed
method. More importantly, the solutions over large domains are calculated by the use of the proposed method.
The results show that the results given by our method are in good agreement with the reference solutions,
and in cases where existent neural-network-based method fails, our method is able to produce convincible
results.

INDEX TERMS Deep learning, artificial neural network, Lane-Emden type equation, polytropic gas sphere

model, isothermal gas sphere model, white-dwarf model.

I. INTRODUCTION
The Lane-Emden equation was named after two physicists
Jonathan H. Lane and Robert Emden in memory of their
first use of this type of equation in investigating the equilib-
rium density distribution in self-gravitating spherical poly-
tropic gas sphere in dytrostatic equilibrium [1], [2]. Later
it was modified to model isothermal gas spheres in gravita-
tional equilibrium [3], the gravitational potential of degen-
erate white-dwarf star [3], the formation and propagation of
shock formed during gravitational collapse of polytropic gas
sphere [4]. Besides its applications in astrophysics, this type
of equation was employed to simulate thermal explosion in
cylindrical vessel [5] thermal distribution in human head [6]
and stress on an axisymmetric shallow membrane cap [7].
The main difficulty to solve Lane-Emden equation numer-
ically is the singularity at the point x = 0. To solve this
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type of equation, some methods including analytical ones,
numerical ones and their combinations have been proposed
in the literature. For analytical methods, Adomian decom-
position method [8], [9], homotopy method [10]-[15], and
transformation method [16] are developed. Adomian decom-
position method was first proposed to solve polytropic gas
sphere problem in [8] where the Lane-Emden equation is
reformulated into a form of operator equation onto which
Adomian decomposition is applied and a recursive relation
of the components in the series expansion of the solution can
be derived. This method was further improved in [9] where
a well-defined transformation was used to remove the term
y' in the equation before the use of Adomian decomposition.
Sometimes it is troublesome to calculate the Adomian poly-
nomials in the Adomian decomposition method. A universal
framework of homotopy analysis method for differential
equation was first proposed in [10] and possibly first used
to solve Lane-Emden equation in [11]. This method can
be considered as a generalized Taylor expansion method.
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An improved homotopy analysis method was applied to solve
the Lane-Emden equation in [12]. The advantage of this
method is its built-in convergence criteria similar to the orig-
inal one but more flexible. In addition to homotopy analysis
method, homotopy perturbation method was first proposed
in [13] and later proposed to tackle the Lane-Emden equation
in [14], [15]. It is able to use low-order approximation
solution to obtain high accuracy, while the homotopy analysis
method needs more terms in the series to achieve the same
accuracy. It is also shown in [15] that Adomian’s method may
be interpreted as a homotopy perturbation method. It seems
that the transformation method in [16] gives solution differs
from the numerical solutions for the polytropic gas sphere
problem with polytropic indices m = 2 and 3. One of the
shortcomings of the analytical methods is that many terms
of complex forms which are hard to deduce are needed to be
included into the series expansion to increase the accuracy
and it is difficult to find approximated formulae for large
domains.

With regard to numerical methods, Runge-Kutta method [4],
[17], wavelet method [18]-[20], collocation method [21]-[24],
operational matrix of differentiation method [25]-[28],
squared remainder minimization method [29], variational
iteration method [30] and Finite Difference Method are
designed [2]. Runge-Kutta method is one of the classical
methods for solving differential equations. The standard
Runge-Kutta method fails to start integration because of the
singularity at the origin. One way to circumvent this problem
is to integrate the problem from some point a little more right
from origin, which is very efficient in practice. An improve-
ment was made in [17] to cope with the singularity at the ori-
gin. In [18]-[20], the Lane-Emden equation was transformed
into an integral form, and Legendre wavelets, ultraspheri-
cal wavelets and Haar wavelets were used to approximate
the solution, respectively. In [21]-[24], transformed Her-
mite functions, Lagrange interpolation polynomials, modi-
fied generalized Laguerre polynomials and Legendre scaling
functions were employed to approximate the solution and lin-
ear algebraic systems at a number of collocation points were
formed to obtain the expansion coefficients, respectively.
In [25]-[28], Bernstein polynomials, Legendre polynomials,
second kind Chebyshev polynomials and shifted ultraspheri-
cal were used to approximate the solution, respectively, and
linear algebraic systems were formed by Petrov-Galerkin
method. In [29], polynomials were used to approximate the
solution and the squared reminder minimization method was
proposed to obtain the coefficients. In [30], the error function
of the equation was used to construct a variational iteration
scheme and it was proven that the iterative solution tends to
the true solution as the number of iteration goes to infinity.

There are some combinations of the forgoing methods.
Roul hybrided Adomian decomposition method and collo-
cation method [31]. Singh and Verma combined variational
iteration method and homotopy method [32]. Maheshwar
and Pratibha merged Green function approach and Adomian
decomposition method [33].
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In addition to these foregoing deterministic approaches,
several stochastic ones using artificial neural networks (ANN)
have been brought forward. The advantages of the ANN
methods are that it does not need to discretize the differential
operator as does the numerical methods; it gives the solution
in closed analytic form and the obtained solution is differen-
tiable in the entire domain. Hadian-Rasanan et al. proposed
to use fractional order of Legendre polynomials as activation
function to construct orthogonal Neural Network [34]. Verma
and Kumar used sigmoid function to design network [35].
Sabir et al. employed Morlet function as activation function
to engineer wavelet neural network [36]. All these works use a
linear combination of basis functions and have demonstrated
promising competence of artificial networks in solving Lane-
Emden type equation in a domain of length L = 1. However,
there are some drawbacks. Firstly, their adoption of single
hidden layer could lead to an insufficient approximation
ability when the domain is large. Increasing the width might
be a choice, but essentially it is still using a linear combination
of basis functions to approximate the solution to Lane-Emden
type equation. Instead, we propose to increase the depth of
network in this article. This is in fact utilizing a composition
of basis functions to approximate the solution. Besides, Lane-
Emden equations of large domains are frequently encoun-
tered in practical applications, and in these cases, function
values might be larger than 100 at some subdomains. This
cannot be handled by the forgoing networks since it is a
common practice that it is hard for networks of three layers
(namely one input layer, one hidden layer and one output
layer) to approximate functions having values much larger
than the order of 1. Secondly, in [34], [35] trial solutions
that includes a neural network need to be carefully designed
according to the initial conditions. It means one has to change
the form of trial solution if the initial condition is modified,
which is inconvenient in practical uses. Thirdly, the training
data points are equidistance [35], [36] or specially chosen
according to the activation function [34]. These are strong
constraints on selecting training points, for in some cases
training data points should be dense in some regions.

In addition to the foregoing issues, there is one more issue
with the existent ANN-based methods. It is difficult to use
them to solve the white-dwarf problem in which the term
yz(x)—C could be less than O for these methods are stochastic,
making (y?(x)-C)>? be complex values. Here y(x) is the
solution and C is a given constant. This issue cannot be
directly handled by ANN and also complex y(x) is unphys-
ical. This might be the reason why no report on solving the
white-dwarf problem by the existent ANN-based methods
was seen in the literature yet.

We notice that deep learning has been successfully used
in image processing [37]-[39], natural language process-
ing [40], topology optimization [41], traffic control [42], and
many other fields with the help of the powerful approx-
imation ability. We also notice that deep learning has
been applied to solve partial differential equations including
Schrodinger equation [43], [45], Allen—Cahn equation [43],
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Navier-Stokes equation [43], Korteweg—de Vries equa-
tion [43], Hamilton—Jacobi—Bellman [44], Burgers’ equa-
tion [44] and Poisson’s equation [45].

The objective of this article is to apply deep neural net-
work into solving Lane-Emden type equation and demon-
strates its applicability and good performance in cases where
the single layer neural networks employed in the previous
works [34]—-[36] fail. A deep neural network with one a layer
functioning as a scale-controller is proposed. Similar to the
existent works, the Lane-Emden type equations and initial
conditions are used to form a loss function. But what different
is an adaptive training data sampling method is employed
to increase the accuracy. More importantly, a strategy to
cope with the issue with solving white-dwarf problem is put
forward to ensure the solution is physical. The proposed deep
neural network method is validated in three kinds of Lane-
Emden equations, including polytropic problem, isothermal
gas sphere problem and white-dwarf problem by numerical
experiments.

The contribution of this article is six-fold:

(1) The second-order Lane-Emden type equation is trans-
formed into a system of two differential equations of first
order, and a deep neural network is proposed to solve this sys-
tem. This is different from all foregoing ANN-based methods,
since they are directly using ANN to solving the Lane-Emden
type equation. Besides, our network is specially designed for
this type of system, as the output layer of this network has two
layers, the last one of which scaling up or down the outputs
of their neighbors.

(2) Activation functions in our network is user-defined
and the training data points are randomly chosen in the
domain. In addition, deep learning techniques such as tensor
computation and automatic differentiation technique are used
in the network training. These improvements have not been
reported in the previous works [34]-[36] focusing on solving
Lane-Emden equation.

(3) To increase the accuracy, an adaptive strategy is incor-
porated into the training data sampling method.

(4) A strategy to cope with the issue with solving white-
dwarf problem is proposed.

(5) The solutions over large domains are calculated by use
of our proposed method. These forgoing three improvements
have not been reported in aforementioned works.

(6) The superiority of the proposed deep neural network
over single layer neural network is demonstrated in some
cases.

Il. THE LANE-EMDEN EQUATIONS
The general form of nonlinear Lane-Emden type equations is
formulated as

{y” @) + 2y (1) +F (6, y () = g ()
x )

x>0, yO0)=c, YO0 =c2

where «, c¢1 and ¢; are constants; f(x, y) is a continuous real
valued function and g(x) € C [0,1] [27]. All of them are given
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by physical problems. For polytropic gas sphere problem,
we have [3]

2
y' () + )—Cy/ (xX)+y"(x)=0
y@ =1, y@©) =0

where m is the polytropic index. When m = 0, 1 and 5,
equation (2) has analytical solutions given as [3]

@

x>0,

1,
y(x):l—gx, m=20
sinx
y(x)=T, m=1 3)
m=>35

1
yx) = \/77/3,

For isothermal gas sphere problem, we have [3]

2 ,
Y )+ Y @+ =0
X
y(©0) =0,y ©0)=0
This equation does not have an analytical solution in the
whole domain, but an approximate analytical solution in
subdomains were found by Wazwaz [9]
o x? N x*t 8x6 N 122x%  4087x1°
X) R —— — —
Y 6  S5x4! 21x6! 81x8 495x 10!
)
which is valid in the interval [0, 2.2]. This interval is deter-
mined by using the numerical solutions given by Runge-Kutta

method as references.
For white-dwarf star problem, we have [3]

“

x =0,

1 2 / 2 3/2
Y @+ 0+ (P @-c) =0
yO =1, Yy (©0) =0

where C is constant and 0 < C < 1. This equation does not
have an analytical solution in the whole domain either, and an

approximate analytical solution in subdomains were found by
Chandrasekhar [3]

(6)

x>0,

~ L, 143 1 si 6
y(x)wl—gqx +4—qu—%q(5q+l4)x

1 6 2 8
3597 (339q + 280) x

+ q (1425q4 + 1143647 + 4256) X0 7)
5% 111

where ¢ = +/1 — C and which is valid in the interval [0, 1.2].

Ill. DEEP NEURAL NETWORK METHOD FOR
LANE-EMDEN TYPE EQUATION

A. METHOD DESCRIPTION

To solve the Lane-Emden type equation, a calculation method
based on deep neural network is proposed. Firstly, the Lane-
Emden equation is transformed into a system of differential
equations of first order, which is given as

Y@ —y1(x)=0
Vi) + Sy ) +f (x,y(x) —g(x) =0 (8)
yO0)=c, 0)=c
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FIGURE 1. The structure of the deep neural network.

It is assumed that the solutions y(x) and y;(x) to equation (8)
can be expressed by a deep neural network N(x, @, b) where
® is a weight vector formed by all the weights in the network
and b is a bias vector consisting of all the biases in the
network. The network has one input layer, L hidden layers
and two output layers with two output terminals generating
approximate function values of y(x) and y;(x) respectively.
These two output terminals are denoted by N;(x, w, b) and
Ns(x, @, b) respectively. We have

y(x) ~# Ni (x, @, b) ®
y1(x) Ny (x, @, b) (10)

The network used in this article is a fully connected one. The
architecture of the network is presented in Figure 1. This
network consists of one input layer with one single input
terminal, L layers in the hidden layer with activation function
s and two layers in the output layer. All activation functions
are the same and user-defined. The width W of all layers in
the hidden layer are the flexible and user-controlled. In the
output layer, the two outputs from the hidden layer are scaled
by a scaling layer with scaling parameters a; and a given as

Ni(x,®,b) = a1y (x) Y
Ny (x, ,b) = azy1 (x) (12)

and they can be constants or functions of x to scale up or
down y (x) and y; (x). Introducing these two scale-controllers
a; and aj is to deal with the cases where the function values
of solutions are much less or larger than the order of 1. The
outputs of the output layer of the network Ni and N, are
transmitted to the terms feq1, feq2, fict and ficz in the loss
function fioss. The network parameters @ and b are found by
minimizing the fioss.

Similar to [36], substitute formulae (9) and (10) into equa-
tion (2) and convert solving the equation (2) into finding the
minimum of a optimization problem formulated as

{@, b} = arg min fioss (13)
{w.b}
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where fioss 15 the total loss function given as

Sioss =feql +feq2 + fiel +fic2 (14)

where feq1 is the deviation of the networks Ny and N>
approximating the first sub-equation in equation (8); feq2 is
the deviation of the networks Ni(x, w, b) and N>(x, w, b)
approximating the second sub-equation in equation (8); fici
is the deviation of the network Ni(x, @, b) approximating
the first initial condition in equation (8); fic2 is the deviation
of the networks N;(x, @, b) approximating the second initial
condition in equation (8). All these four losses are given as

K
1
foal = EZ IN] (xi, @, b) — N2 (x;, ®, b)|” (15)
i=1
K o 2
l N/ 1y ,b _N 1s 7b
fup = g 30| 2RV R e B g
io1 | H (i, N1 (xi, @, b)) — g (xi)
fiet = IN1 (0, 0,b) —c1? (17)
fix = IN2 (0, @, b) — 2 (18)

where x; are training data points sampled in the domain [0,
A], namely

K, <10, 4] (19)

and K is the number of training data points. All the training
data points can be user-defined. One can use uniform points
or random points or some specific data distributions as one
wishes to. To solve the optimization problem (13), Adam
solver and L-BFGS-B solver are combined. The Adam solver
is first used for a number of epochs and then L-BFGS-B
solver is employed.

To further increase the accuracy and mitigate manual inter-
vention in deciding the training data distribution, an adaptive
data point sampling strategy is devised. Assume there is
another data set which is different from {x; ,K= , and denote
it as

{g}, <10,4] (20)

where M is the number of data points in this set. Over this
data set, calculate the values of the following function

N () — Ny () 1)
Ny (xi) + %Nz ) +f (i Ny (x0) — g (x) (22)

and copy the data points on which the values of the two
functions are larger than a prescribed parameter § for example
0.01 from this data set to the training data set. After that,
re-train the network over the new training data set.

As mentioned above, there is an issue with using
ANN-based methods to solve white-dwarf problem. The root
cause for this issue is they are stochastic and this randomness
could make y?(x)-C in equation (6) less than 0. As a conse-
quence, (y*(x)-C)3/2 would be complex, which causes errors
in the training process since the training algorithm cannot
cope with complex values. To deal with this issue, we propose
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to use the absolute value of yz(x) — C and rewrite equation (6)
as

1/ 2/ 2 3/2
¥ () + (x)+\y (x)—C‘ —0
yO) =1, Y (©0) =0

for y(x) must be not less than C, otherwise the equation (6)
will produce complex y(x) which is unphysical. It should be
noted that equation (23) is only valid for problem (6) when

(23)

x>0,

y(x) = C 24)

which can be used to determine the domain length.

B. ALGORITHM DESCRIPTION
The algorithm of the proposed deep neural network for solv-
ing the nonlinear Lane-Emden equation is given below.

Step 1: Transform the nonlinear Lane-Emden equation into
a system of differential equation of first order;

Step 2: Construct the deep neural network given in Fig. 1;

Step 3: Sampling the training data points in the interval [0,
A] to obtain the training data set {xi}f: 1> sampling the data
points in the interval [0, A] to obtain the data set {x; },E] :

Step 4: Define the total loss function fioss in formula (14);

Step 5: Use Adam solver and L-BFGS-B solver to train
the deep neural network over the training data set {xi}{i 1 by
solving the optimization problem (13) and obtain the network
weights and biases;

Step 6: Over the data set {xj}].lil, compute the formu-
lae (21) and (22) and copy the data points on which the values
of the two functions in formulae (21) and (22) are larger
than a prescribed parameter § from the data set {xj }in | tothe
training data set {xi}lK= B

Step 7: Over the new training data set, execute the
steps 5 and 6 to re-train the network until the maximum of
the function values formulae (21) and (22) are less than the
parameter §.

All the training work can be done by using deep learning
framework such as Tensorflow and Pytorch in which Adam
solver and L-BFGS-B solver are incorporated and the differ-
entiation can be achieved by using automatic differentiation.
The formal description of the forgoing procudure is pre-
sented in Algorithm 1. The complexity of the proposed model
strongly depends on the hyper parameters of the network,
such as the depth and width of the hidden layers, and the
activation functions used in the network structure, the initial-
ization scheme of the weights and biases and so on. In prin-
ciple, they are not fixed and need to be adjusted problem by
problem. Ignore the benefits from using GPU and advanced
deep learning framework such as Tensorflow and Pytorch,
the complexity of the proposed model can be approximated
by that of fully-connected neural network which has been
studied in [46]-[48]. Denote the matrix by W which is a
matrix with j rows and i columns and contains the weights
going from layer i to layer j and one has K training data points.
Since there are L + 2 fully connected layers in the network
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Algorithm 1 Deep-Learning Based Method for Solving
Lane-Emden Type Equation With Adaptive Strategy

1 Preparation: transform the nonlinear Lane-
Emden equation into a system of differential
equation of first order.

2 Input: The domain [0, A], the differential equation
system, the precision parameter §.

3 Initialization: the network parameters L, W, @
and b; the numbers of the data sets K and M in
formulae (19) and (20); k = 0, ¢ =106.

4 Sample  datasets  {x}X lamd{xj}jﬂi1 in
formulae (19) and (20).

5 While ¢ > § do

6 use Adam solver and L-BFGS-B solver to train

the deep neural network over the training data
set {xl-}lK: | by solving the optimization problem
(13) for a number of epochs and obtain the
network weights @ and biases b.

7 calculate formulae (21) and (22), and
& = max{max{N; (x;,) — N2 (x)}X_|,
max{Ny (x;)+ <Ny (x)+f (6, N1(xi) —g () Yo}
and copy the data points on which the values of
the two formulae (21) and (22) are larger than §
from the data set {xj }jwl to the training data

set {x,-}f:].
8 k=k+1.
9 end while

10  Return: the network weights @ and biases b.

structure, one needs L + 1 matrices to represent weights
between these layers. Suppose the number of the iterations
for the whole training process in the while loop of the Algo-
rithm 1, namely the adaptive training algorithm, is n;; and
the while loop executes ny times, the total time complexity
L+1
is approximated to be O | ngnj; i
i=1,j=i+1
The space complexity is dominant by the memory stor-
age of the weight matrices and it can be approximated by
L+1
0 ( 5"
i=1,j=i+1
plexity can be reduced by using GPU and Tensorflow and
Pytorch.

Jjxix K ) [46]-[48].

j*i]. Note that the above-deduced time com-

IV. NUMERICAL EXPERIMENTS AND DISCUSSIONS

In this section, numerical experiments will be carried out in
the three types of Lane-Emden equations (2), (4) and (23) to
validate our proposed method.

A. EXPERIMENTAL SETUP

The workstation we use is equipped with two Intel Xeon E5-
2630v3 CPUs, 128G RAM, one Nvidia Quadro RTX4000
GPU with 8G graphic memory. The integrated development
environment we use is Spyder with Python 3.7 and Tensor-
flow 2.2.

VOLUME 8, 2020
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TABLE 1. Parameters of the experiment setup.

Problem A=1 A=10 A=100 K M
C-1) m=0,1,5 m=0,1,5 m=0,1,5 104 1004
C-2) / / / 104 1004
c3) C:0,0A91,0A5,0 C:0,0.91,045,0 C:0,0.91,045,0 104 1004

B. EXPERIMENTAL CONDITIONS

For small domain with interval length of 1, namely A = 1,
problems (2), (4) and (6) are solved and the results are com-
pared with numerical results given by Runge-Kutta of fourth
order and analytical or approximate analytical solutions if
they exist. In problem (2), the polytropic index m is chosen
to be 0, 1 and 5. The constant C in problem (6) is chosen to
be 0, 0.2, 0.5 and 1. For large domains with interval length
of 10 and 100, namely A = 10 and 100. Other conditions are
the same as that of small domain. The data sets {xi}{(= | and
{xj}j.\il are sampled in the domain randomly with K = 10A
and' M = 100A. Parameters of the experiment setup are listed
in Table 1.

The number of neurons in each layer of the hidden layer
is chosen to be W = 10 and the number of layers in the
hidden layer is chosen to be L = 5. There are 2 layers in
the output layer. In each layer, the number of neurons is 2.
Especially, in the scaling layer of the output layer, the neurons
are constants which are different case by case. The activation
function is chosen to be tanh. Glorot uniform distribution is
used to initialize of the weights and biases in the network. The
number of epochs for Adam optimizer in the Tensorflow is
chosen to be 10000. It should be noted that the values of these
parameters, activation functions and initialization scheme of
weights and biases are chosen for the sake of demonstration
of the applicability of our method and thus likely not optimal.

C. RESULTS AND DISCUSSIONS
1) POLYTROPIC GAS SPHERE PROBLEM (THE STANDARD
LANE-EMDEN EQUATION)
By use of the proposed deep-learning based method, the solu-
tions to polytropic gas sphere problems with the polytropic
index m = 0, 1 and 5 and domain length A = 1, 10 and 100
are shown in Figure 2, Figure 3 and Figure 4, respectively,
where the analytical solutions given by equation (3) are also
presented to validate the efficiency of our method. In Fig-
ure 4 the solution in the interval [10, 100] is nearly zero and
there is no point in calculating it. Hence it is not presented.
Also in Figure 4(a), the solutions given by single layer neural
network (SNN) is displayed. In this SNN, no adaptive training
data sampling strategy and output scaling strategy are used.
Overall, it can be seen from these figures that all the
calculated results y produced by our proposed deep neural
network (DNN) are in good agreement with the analytical
solutions given by equation (3). When A = 1, comparisons
between our results in Figure 3 and the results in [19], [27]
and [28] are made and all maximum absolute errors are listed
in Table 2. For m = 0, [19], [27] and [28] are able to exactly
reproduce the analytical solution given by (3). The maximum
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FIGURE 2. The comparisons between the deep neural network (DNN)
solutions and the analytical solutions when the polytropic index m=0, 1
and 5 and A=1; y being the solution to the equation and y, being the
derivate of y.

absolute error given by our method is around 1.9 x 1074,
For m = 1, the maximum absolute error given by [27]
and [28] are dependent on the number of basis function used
to approximate the solution, and the best error are 2.79 x 108
with 8 shifted ultraspherical polynomials and 7.48 x 10!
with 8 second kind Chebyshev polynomials, respectively.
The maximum absolute error given by our method is around
9.2 x 10~*. For m = 35, the best maximum absolute error
given by [27] is 2.43 x 10~3 with 5 shifted ultraspherical
polynomials and the maximum absolute error given by [19]
and our method are 1.02 x 10™% and 1.9 x 1074, respec-
tively. It can be inferred that they are comparable to those of
previous works in some cases. Our method still shows good
performance in large domains when A = 10 and 100 over
which previous works have not demonstrate their methods’
abilities. In particular, it can be seen from Figure 4(a) that
the solutions produced by SNN deviate from the analytical
solutions quite a lot, while those by DNN agree well with
the analytical solutions. This demonstrates that our proposed
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FIGURE 3. The comparisons between the deep neural network (DNN)
solutions and the analytical solutions when the polytropic index m=0, 1
and 5 and A=10; y being the solution to the equation and y; being the
derivate of y.

ANN works better in cases where the function values are
much larger than the order of 1.

In addition to the solutions y to the Lane-Emden equations,
their derivative functions y; are obtained accompanied with
y. They are presented in Figure 2, Figure 3 and Figure 4 and
compared with the derivatives of the analytical solutions. It
can also be observed from these figures that all the calcu-
lated results y; produced by our proposed deep neural net-
work (DNN) are in good agreement with the derivatives of the
analytical solutions given by equation (3). This agreement can
also confirm the reliability of the solutions y, since it reflects
that the local variations of y are also agrees well with those of
analytical solutions. The previous works do not calculate the
derivative functions. We are not able to compare our results
with those.

2) ISOTHERMAL GAS SPHERE PROBLEM

By use of the proposed deep-learning based method, the
solutions to isothermal gas sphere problems with domain
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FIGURE 4. The comparisons between the deep neural network (DNN)
solutions and the analytical solutions when the polytropic index m=0
and 5 and A=100, in (a) the solutions given by single lay neural

network (SNN) being displayed; y being the solution to the equation and
y; being the derivate of y.

TABLE 2. Comparison of maximum absolute errors of previous works and
our method for A=1.

m [19] [27] [28] This work
0 0 0 0 1.9¢-4
1 / 2.79¢-8 7.48e-11 9.2¢-4
5 1.02e-4 2.43e-3 / 1.9¢-4

length A = 1, 10 and 100 are shown in Fig. 5 where the
analytical solutions given by equation (5) for A = 1 and
the numerical solutions given by fourth order Runge-Kutta
method for A = 10 and 100 are also presented to validate the
efficiency of our method. On the whole, it can be seen from
Figure 5 that the solutions y; given by our DNN based method
are inconsistent with the analytical solutions and numeri-
cal solutions given by Runge-Kutta method, even in large
domains. This again demonstrates our method are capable
of giving correct solutions in large domain. The maximum
absolute errors of y by our method for A = 1, 10 and 100 are
listed in Table 3. It can be seen that all the maximum absolute
errors of y are less than 0.005. A further comparison between
our results in Figure 5 and the results in [19], [27] and [28] is
made when A = 1 and all maximum absolute errors are listed
in Table 4. The maximum absolute errors of previous works
are 3.2 x 1077, 6.8 x 1079 and 2.5 x 10719, respectively,
which are smaller than 2.9 x 10™* in our work. But the
maximum absolute errors of our results are acceptable. Since
no previous works report the results when A = 10 and 100,
we only presents the maximum absolute errors in this work
and they are 5.6 x 1073 and 5.8 x 1073, respectively.

In addition to the solutions y to the Lane-Emden equa-
tions, their derivative functions y; are obtained accompanied
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FIGURE 5. The comparisons between the deep neural network (DNN)
solutions and the analytical solutions when A=1 or the numerical
solutions given by Runge-Kutta (RK) method when A=10 and 100; y being
the solution to the equation and y; being the derivate of y.

TABLE 3. Maximum absolute errors of the solutions y given by our
method for A=1, 10 and 100.

A 1 10 100
error 2.9¢e-4 8.9e-4 3.9e-3

with y. They are presented in Figure 5 and compared with
the derivatives of the numerical solutions given by Runge-
Kutta method. It can also be observed from this figure that
all the calculated results y; produced by our method are in
good agreement with the derivatives of the numerical solu-
tions. This agreement can again confirm the reliability of the
solutions y for the same reason stated above. The previous
works do not calculate the derivative functions. We are not
able to compare our results with those.

3) WHITE-DWARF STAR PROBLEM

By use of the proposed deep-learning based method, the
solutions to isothermal gas sphere problems with different
values of C = 0, 0.1, 0.5 and 0.9 and different domain length
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FIGURE 6. The comparisons between the deep neural network (DNN)
solutions and the analytical solutions when A=1; y being the solution to
the equation and y,; being the derivate of y.

A = 1 and 10 are shown in Figure 6 and Figure 7, respectively,
where the analytical solutions given by equation (23) for
A = 1 and the numerical solutions given by fourth order
Runge-Kutta method for A = 10 are also presented to validate
the efficiency of our method. It should be noted that the max-
imum valid A is achieved for equation (23) and is calculated
to be around 7 by using equation (24) when C = 0. Hence the
domain length is set to be 10 and the critical y where y = v/C
is plotted in dotted line in Figure 7. In other word, the part

203681



IEEE Access

J. He et al.: Deep-Learning-Based Method for Solving Nonlinear Singular Lane-Emden Type Equation

120 0.05

100
Ll
0.80 P -

L i
JX @ DNNsolutiony

0.60 : : 0.1
= RK solution y =
040 -V N e y=sq1t(C) 015
i ®  DNN solution y1
0.20 \ = = = = RK solution y1 02
\
0.00 ...J....?! ......................... _0.25
hn
-0.20 03
0 2 4 v 6 8 10
(a) C=0
120 0.05

® DNN solutiony
RK solution v
....... v=sqit(C)

L00

\ LA .
\ ™ DNN solution y1
0.80 Y == = = RK solution y1 0.05
\ -

0.60 \ -0.1
-__ \) '~
0.40 s 0.15
...... ‘\

0.20 \\ " - 0.2
0.00 - -0.25
-0.20 -0.3
0 1 2 x 3 4 5
(b) C=0.1

105 0.05

® DNN solutiony

RX solution y

....... y=sqrt(C) 0
DNN solution y1

100

0.95

0.90 . = = == RK solution y1
-1 005
0.85 \.\ -
o, ~ =
0.80
N 01
0.75
470 [Emmeir e e & o
0.65
0.60 02
0 1 2 s *
X
(©) C=0.5
102 0.01

L0oo

0.98
-0.02
=, 0.96 '~
-0.03
0.94 ® DNNsolutiony
RKI solution y -0.04
002 Lttt y:sqﬂlC)
e ® DNN solution y1 -0.05
= = = = RK solution y1
0.90 -0.06
0 1 2 03 4 5
(d) C=0.9

FIGURE 7. The comparisons between the deep neural network (DNN)
solutions and the numerical solutions given by Runge-Kutta method
when A=10; y being the solution to the equation and y, being the
derivate of y; the dotted line representing the line y = +/C above which y
(x) is physically reasonable.

of curve being above this dotted line is valid and physically
reasonable. Only the physically reasonable part of the curves
are plotted in the Figure 7. It can be seen from Figure 6 and
Figure 7 that the solutions y given by our DNN based method
are inconsistent with the analytical solutions and numerical
solutions given by Runge-Kutta method, whether in physi-
cally reasonable domains or unphysical ones. The maximum
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TABLE 4. Comparison of maximum absolute errors of the solutions y
given by previous works and our method for A=1.

Reference [19] [27] [28]
error 3.2e-7 6.8e-5

This work
2.5e-10 2.9e-4

TABLE 5. Maximum absolute errors of the solution y given by our
method for A=1 and 10.

A C=0 C=0.1 C=0.5 Cc=09
1 3.4e-3 7.1e-5 2.4e-4 6.9¢-5
10 3.6e-4 8.1e-4 6.5¢-3 2.0e-3
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FIGURE 8. The comparisons between the deep neural network (DNN) and
Runge-Kutta method when A=10. The eq; and eq, denote the results of
formulae (21) and (22) calculated by using y and y; from Figure 7(c).

absolute errors of y by our method for A = 1 and 10 are
listed in Table 5. It can be seen that all the maximum absolute
errors of y are less than 0.007. In addition to the solutions
y to the Lane-Emden equations, their derivative functions
y1 are obtained accompanied with y. They are presented in
Figure 6 and Figure 7 and compared with the derivatives of
the analytical solutions. It can also be observed from these
figures that all the calculated results y; produced by the
deep neural network (DNN) are in good agreement with the
derivatives of the analytical solutions. This agreement can
again confirm the reliability of the solutions y for the same
reason stated above.

4) DISCUSSIONS

In this subsection, the benefits and tradeoffs of the proposed
solution approach over the baseline (Runge-Kutta (RK)). The
proposed solution approach does have some benefits over
RK. For example, it provides a closed-form representation of
the solution that is infinitely differentiable, and unlike RK
tabular solutions, the solution given by our method is valid
over the entire domain, eliminating the need for interpolation.
Our method are able to be extended to solve 2-D, 3-D and
4-D Lane-Emden type equations and lots of works have
shown that deep neural network has superiority in solving
high dimensional problems, while RK can only deal with
1-D problems. Here the 2-D, 3-D and 4-D problems can be
time and space dependent. It should be admitted that RK
has higher precision than our method in many cases. This
is partially due to using single precision in the computation
to utilize the superiority of GPU’s single precision com-
putability over its double precision computability and single
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precision computation is commonly used in field of deep
learning. But we can show that in some cases our method are
comparable or even better than RK. The results presented in
the Figure 8 is an example. The eq; and eq> denote the results
of formulae (21) and (22) calculated by using y and y; from
Figure 7(c). They are in fact the deviations of the right hand
side of the first two sub-equations in equation (8) from 0. As
can be seen from Figure 8 that, although the deviation of eq;
for DNN is larger than that for RK, the deviation of eg; for
DNN is clearly less than that for RK when x is close to 10.
This demonstrates that DNN solution can be better than RK
solution in some subset of the domain.

V. CONCLUSION

In this article, a deep-learning based calculation method is
proposed to solve the nonlinear Lane-Emden type equation.
The output layer of this network has two layers, the last
one of which scaling the outputs in order to deal with the
cases where the values of the functions approximated by
the network is much less or larger than the order of 1. The
Lane-Emden equation and its initial conditions are employed
to construct the loss function, and the problem of solving
Lane-Emden equation is transformed into an optimization
problem. There is no need for one to carefully design the
trial solution case by case. An adaptive data sampling strategy
is proposed to increase the accuracy. A reformulation of
the white-dwarf equation is proposed to allow ANN-based
methods to be employed to solve it. This reformulation is
useful for any stochastic methods designing for solving this
equation. The activation functions in our network and the
training data points are user-defined and the points are not
necessarily equidistant in the domain. Numerical experiments
demonstrate that the proposed method is effective in both
small domains and large ones where the existent ANN-based
methods sometimes fail to given promising results. More
future work can be done to improve our method, such as
conducting a rigorous mathematical proof of the proposed
method, applying the deep domain decomposition method
proposed in [45] to deal with large domain problems and
extending the method to high dimensional Lane-Emden type
equations.

NOTATION TABLE

A the length of the domain

ap the scale-controller in the equation (11)

a the scale-controller in the equation (12)

b the bias vector of deep neural network

C the constant in the white-dwarf star prob-
lem

c1 the constant in the equation (1)

c the constant in the equation (1)

fx,y) the function in the equation (1)

floss the loss function of deep neural network

Jeq1 the deviation of the network N;(x, w, b)

approximating the first sub-equation in
equation (8)

VOLUME 8, 2020

feq2 the deviation of the networks Np(x, @, b)
approximating the second sub-equation in
equation (8)

ficl the deviation of the network N;(x, w, b)
approximating the first initial condition in
equation (8)

fic2 the deviation of the networks N (x, @, b)
approximating the second initial condition
in equation (8)

g(x) the function in the equation (1)

K the number of training data points

L the depth of the hidden layer

M the number of data points in the dataset
given by formula (20)

m the polytroic index in the equation (2)

N(x, , b) Deep neural network with weight vector @
and bias vector b and two output terminals

Ni(x, w, b) the first output of N(x, , b)

N{ (x, w, b) the partial derivative of Ni(x, @, b) with
respect to x

No(x, @, b) the second output of N(x, @, b)

Ny(x, ®,b) the partial derivative of Na(x, w, b) with
respect to x

O(e) the order of complexity

q a constant given by (1 — C)!/2

s the activation function in the deep neural
network

w the width of the hidden layer

X the independent variable the Lane-Emden
type equation and the element in the
domain

{xi}{(: 1 the training data set

{xj}?il the dataset given by formula (20)

y the solution to the Lane-Emden type equa-
tion and the element in the range

y(x) the first output of the hidden layer

yi(x) the second output of the hidden layer

y the first order derivative of y with respect
tox

Y1 the first order derivative of y with respect
to x; the same as y’

y’ the second order derivative of y with
respect to x

o the constant in the equation (1)

8 the precision parameter for the adaptive
sampling

® the weight vector of deep neural network
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