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ABSTRACT A Knowledge Graph (KG) is a directed graph with nodes as entities and edges as rela-
tions. KG representation learning (KGRL) aims to embed entities and relations in a KG into continuous
low-dimensional vector spaces, so as to simplify the manipulation while preserving the inherent structure
of the KG. In this paper, we propose a KG embedding framework, namely MCapsEED (Multi-Scale
Capsule-based EmbeddingModel Incorporating Entity Descriptions). MCapsEED employs a Transformer in
combination with a relation attention mechanism to identify the relation-specific part of an entity description
and obtain the description representation of an entity. The structured and description representations of
an entity are integrated into a synthetic representation. A 3-column matrix with each column a synthetic
representation of an element of a triple is fed into a Multi-Scale Capsule-based Embedding model to produce
final representations of the head entity, the tail entity and the relation. Experiments show that MCapsEED
achieves better performance than state-of-the-art embedding models for the task of link prediction on four
benchmark datasets. Our code can be found at https://github.com/1780041410/McapsEED.

INDEX TERMS Knowledge graph representation learning, capsule network, link prediction, knowledge
graph embedding.

I. INTRODUCTION
A Knowledge Graph (KG) is a graph of data intended to
accumulate and convey knowledge of the real world, whose
nodes represent entities of interest and whose edges represent
relations between these entities [1]. KGs, such as Freebase
[2], Yago [3] and WordNet [4], express precise and effective
structured information and have become an important data
source for knowledge-driven applications such as information
retrieval [5], recommendation systems [6], intelligent ques-
tion answering systems [7], [8], language representation [9],
and semantic similarity searching [10], [11].

KGs evolved from the Semantic Web [12], [13],
the essence of which is a directed graph composed of
entities connected by relations. Each edge is a triple of
the fact (head entity, relation, tail entity) (denoted as
(h, r, t)). An example triple from Freebase looks like this:
(Hamlet, story_by, William_Shakespeare).
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Although effective in representing structured data, two chal-
lenges arise when manipulating KGs, the computational
complexity problem and the data sparsity problem [14].

To tackle these issues, KG representation learning
(KGRL), which aims to map entities and relations in KGs
into continuous low-dimensional vector spaces, has been pro-
posed and attracted considerable research interests [15], [16].
Various methods have been proposed on KGRL, which are
roughly categorized into two groups: translation-based mod-
els and semantic matching models [17], [18]. Among them,
the translation-based models are most widely used given
their simplicity and effectiveness [19]. However, the inherent
shortcoming of translation-based models still exists, as shal-
low networks cannot adequately extract relevant features of
entities and relations.

In view of this, ConvE [20] and ConvKB [21] utilize
deep convolution network to model entities and relations.
Capsule-based Embedding (CapsE) [22] extends ConvKB by
introducing the capsule network [23] after the convolution
layer. Multi-Scale Capsule-based Embedding (MCapsE) [24]
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further extends CapsEwithmulti-scale convolution kernels in
the convolution layer to extract features at different abstract
levels.

To further improve the performance of KGRL, there have
been substantial works on incorporating additional informa-
tion, e.g., entity types, relation paths, and entity descriptions.
Among them, entity descriptions are deemed to contain the
richest semantic information and are widely used in KGRL as
an important supplement. Most existing methods [25]–[28]
manage to incorporate entity descriptions on the basis of
translation-based models. However, the inherent simple
structure of translation-based models makes themselves hard
to model complex relationships [29], which in turn leads to
the inability to cope with entity descriptions well. Therefore,
we propose a novel KGRL framework, which takes advan-
tage of both structured information and entity descriptions.
We name it as Multi-Scale Capsule-based Embedding model
incorporating Entity Descriptions (MCapsEED).

We summarize our main contributions in this paper as
follows:

• We propose a novel KG embedding framework
MCapsEED which exploits both structured and entity
description information. We use a Transformer encoder
to obtain entity description representations, and a rela-
tion attention mechanism to extract the relation-specific
entity description features. We employ a dynamic gate
mechanism to integrate the entity description represen-
tation and the entity structured representation. We adopt
multi-scale capsule network to better capture global
semantic features between entities and the relation in
a triple.

• We evaluate MCapsEED for the task of link prediction.
MCapsEED obtains better performance than existing
Capsule-based KGRL models. Comparing with KGRL
models incorporating entity descriptions on FB15k and
WN18 datasets, MCapsEED performs better on the MR
and Hits@10 metrics. MCapsEED shows a better com-
plex relation modeling capability on Hits@10 metrics
for N-1 and N-M complex relations.

The rest of the paper is organized as follows. Section II intro-
duces the basic concept of Capsule networks. We describe
related works in Section III and explain the proposed method
in Section IV. We conduct experiments in Section V and then
add summary and discussion in Section VI.

II. CAPSULE NETWORKS
Convolutional Neural Networks (CNNs) are adept in identi-
fying features but are not effective in exploring spatial rela-
tionships between features, for example, the relative position,
the relative size, and the orientation. In face recognition, if we
rotate a part of a human face, CNNs will still consider it to be
a human face. CNNs are insensitive to relative orientations
and spatial relationships of components. In another word,
CNNs only care about whether there are features, and do not
care the relative location information of features. Another

problem is the pooling layer of CNNs. The design purpose
of pooling layers is to solve the translation invariance in an
image and reduce the amount of parameters. However, a lot
of valuable information will lose through the pooling layer,
and the correlation between local features extracted from
the convolutional layer and the overall features are ignored.
Therefore, CNNs fail to learn the spatial correlation of the
features extracted by the convolutional layer.

Capsule Networks (CapsNets) [23] extend CNNs
by replacing the scalar output feature detectors with
vector-output capsules and max-pooling with routing-by-
agreement, whereas retain the characteristics of replicating
learned knowledge across space. Capsule networks are able
to capture the intrinsic spatial part-whole relationship con-
stituting domain invariant knowledge that bridges the knowl-
edge gap between the source and target domains or tasks,
such as cross-domain text classification [30]. A Capsule
network contains both convolution layers and capsule layers.
A dynamic routing algorithm is used to achieve connections
between layers.

A capsule layer consists of capsules that replace CNN
neurons to produce vector outputs. A capsule is composed
of a group of neurons, each of which represents an attribute
feature of a specific class. An example of two capsule layers
is shown in Figure 1.

FIGURE 1. An example of two capsule layers.

From bottom to top, the first capsule layer contains two
capsules, each of which has a vector output ui. Vector outputs
ui are multiplied by weight matrices Wij to produce ûj|i,
the position output vectors for extracting high-level features
from ui. The position output vectors ûj|i are multiplied by the
coupling coefficients cij, which is determined by a dynamic
routing algorithm, to obtain a weighted sum sj, the vector
inputs to capsules in the second layer. The length of the output
of a capsule represents the probability of the existence of the
class, which is a real number between 0 and 1. To compress
the modulus of the output vector of a capsule to between
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0 and 1, a nonlinear squash function is employed to obtain
the output vector vj of the second capsule layer.

ûj|i = Wijui (1)

sj =
∑
i

cijûj|i (2)

vj =
||sj||2

1+ ||sj||2
sj
||sj||

(3)

where vj is the output vector of capsule j.
For further details of Capsule Networks, one can refer the

original paper [23] and an excellent illustration [31].

III. RELATED WORK
A. TRANSLATION-BASED MODELS
TransE [15], the earliest translation-based model, was
inspired by the fact that the algebraic operation of word
vectors in word2vec model is still meaningful. It regards the
relation as a translation operation from the head entity to the
tail entity. TransE has attracted wide attentions because of its
effectiveness and simplicity. However, TransE also has some
obvious shortcomings. It fails in modeling complex relations
well such as 1-N, N-1 and N-M.

To overcome shortcomings of TransE, TransH [32]
assumes entity vectors and relation vectors lie in differ-
ent hyperplanes. TransH maps the head entity vector and
the tail entity vector to the hyperplane where the relation
is located to perform a translation operation. TransR [33]
introduces relation-specific spaces, rather than hyperplanes.
TransR thus maps the head entity vector and tail entity vec-
tor to the relation-specific space through a transformation
matrix. TransD [34] argues that entities and relations are
diverse, so the transformation matrices should be related not
only to relations, but also to entities. The only difference
between TransD and TransR is that the transformation matrix
of TransD model is obtained dynamically from entity vectors
and relation vectors. TransSparse [35] uses sparse matrices
instead of dense matrices in TransR to solve the problem of
heterogeneity of relations, and uses different sparse projec-
tionmatrices tomap head and tail entities to solve the problem
of imbalance of relations. These models solve the limitations
of TransE in complex relation modeling to a certain extent,
and improve the learning of semantic information of entities
and relations in KGs.

B. DEEP NEURAL NETWORK MODEL
Translation-based models are mostly shallow neural network
models, which are incapable of extracting correlation features
between entities and relations.

The application of deep neural network architecture in
KGRL dates back to NTN [36]. The embedding layer of
NTN embeds entities into vectors. Then, the embeddings of
the head and tail entities are combined by a relation-specific
tensor and mapped to a non-linear hidden layer. Finally,
a score indicates the plausibility of the triple is obtained by
a relation-specific linear output layer. The model is trained

to maximize this plausibility. SME [37] is another neural
network architecture. The embedding layer of SME embeds
both entities and relations into vectors, whereas the hidden
layer characterizes the interactions of the head entity to the
relation, and the tail entity to the relation, respectively. The
model is trained to maximize the semantic similarity of these
two interactions.

ConvE [20] and ConvKB [21] utilize deep convolution
network to model entities and relations. CapsE [22] extends
ConvKB by introducing the capsule network [23] after the
convolution layer and achieves the state-of-the-art results
for the task of KG completion on two benchmark datasets
WN18RR and FB15k-237. However, as the convolution layer
in the capsule network uses a single window size convolution
kernel, the feature map obtained after a convolution operation
contains only partial features represented by the head and tail
entities and partial interaction features represented by rela-
tions. CapS-QuaR [38] uses the capsule network to replace
the traditional neural network and uses the quaternion as the
input of the model to encode semantics of factual triples.
QuaR model defines each relation as a rotation from the head
entity to the tail entity in the hyper-complex vector space,
which could be used to infer and model diverse relation pat-
terns, including: symmetry/antisymmetry, reversal and com-
bination. To obtain interactive features of larger context,
and to obtain more entity features, MCapsE [24] employs
multi-scale convolution kernels, i.e., convolution kernels of
different windows sizes, in the convolution layer to extract
features at different abstract levels. The semantic features of
entities and relations are then expressed as continuous vectors
through an improved routing process algorithm to form final
representations. Experiments on the task of KG completion
show that the proposed model is more competitive than state-
of-the-art methods, especially in relation classification tasks.

C. INCORPORATING ENTITY DESCRIPTIONS
Early models, such as NTN [36], model entity descriptions
separately from KG triples and fail to model interaction
between them. Until recently, entity descriptions, as a supple-
ment to the structured information of triples, are incorporated
into KGRL models to improve the performance.

DKRL [25] treats entity descriptions as an important
component of entity representations, and employs CBOW
(Continuous Bag-of-Words) [39] and CNN to encode entity
descriptions. DKRL does not consider relation-specific entity
description information, and thus fails to integrate entity
structured representations and entity description represen-
tations effectively. TEKE_H [40] utilizes entity contextual
information in KGRL by adopting word2vec and TransH
to embed the textual context and entities/relations respec-
tively. The BiLSTM-based joint KGRLmodel, named Jointly
[26], uses BiLSTM to extract entity description informa-
tion related to relations and achieves significant performance
improvement. Jointly has two versions: Jointly(LSTM)
and Jointly(A-LSTM), which represent jointly encoding
models with LSTM and LSTM+Attention text encoders.
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SSP [27] learns entity description representations through
topic modelling and restricts the structured representations
within the same subspace, but does not fully exploit the
semantic relevance of entities and entity descriptions. In [41]
entity description information and entity structured informa-
tion are integrated, under the complete attention mechanism,
which consider attentions of the head entity, the tail entity
and their relation. An entity is thus supposed to have dif-
ferent representations of corresponding semantics in differ-
ent triples. In [42], a Multiple Interaction Attention (MIA)
mechanism is utilized to model the interactions between the
head entity description, the head entity name, the relation
name, and candidate tail entity descriptions, to form enriched
representations. Besides triple and text descriptions, TDN
[43] additionally integrates network structure of a KG in
KGRL.

In order to extract the entity description features related
to the relations more efficiently, we adopt Transformer in
combination of the relation attention mechanism. We use the
dynamic gate mechanism to integrate entity description rep-
resentations and entity structured representations to improve
the effect of KGRL.

IV. MULTI-SCALE CAPSULE EMBEDDING MODEL
INCORPORATING ENTITY DESCRIPTIONS
The problem of sparseness in KGs still exists. For entities
occurring in a small number of triples, when learning their
representations based on only triples, the obtained vector
representations are difficult to contain rich semantic infor-
mation. In fact, almost every entity in a KG has a descrip-
tion on Wikipedia that describes its specific meaning and
contains rich semantic information. Therefore, incorporating
entity descriptions is conducive to enhancing the effect of
knowledge representation learning and helps alleviating the
sparseness of entity representation in a KG.

Some parts of the entity description are important for an
entity in a given relation, whereas others are irrelevant. There-
fore, how to accurately learn the entity description informa-
tion related to the relation and ignore the irrelevant informa-
tion is of great importance, which is also a key component of
this study. For example, in Figure 2, the red text shows the
description of an entity William_Shakespeare related
to the relation /film/film/story_by in FreeBase.

A. ACQUIRING AND PREPROCESSING ENTITY
DESCRIPTIONS
Obtaining entity descriptions is not a hard nut to crack.
In KGs such as Freebase and WordNet, most entities have

FIGURE 2. An example of an entity description in Freebase.

related description information. For a small number of enti-
ties that have no description, we align them to Wikipedia
resources to obtain the entity description information and
store them in json format.

We preprocess entity descriptions by removing non-textual
symbols and special characters, converting uppercase char-
acters to lowercase, and performing word segmentation.
After preprocessing, in Freebase, the average length of entity
descriptions is 69, and the maximal length of entity descrip-
tions is 343. In WordNet, the average length and the maximal
length are 13 and 96 respectively.

The preprocessed result is denoted as desc =

{w1,w2, . . . ,wn} and is fed into an entity-description-aware
KGRL model.

B. FRAMEWORK
As is shown in Figure 3, the framework of Multi-Scale
Capsule Embedding model incorporating Entity Descrip-
tions (MCapsEED) consists of threemodules: Entity Descrip-
tion Embedding Learning, Integration of Structured and
Description Information, and Multi-Scale Capsule-based
Embedding (MCapsE) Learning.

The preprocessed entity descriptions are fed into the frame-
work as the input of the Entity Description Encoder, where
Transformer in combination with relation attention mech-
anism is used to encode head and tail entity descriptions
into vector representations hd and td . Through dynamic gate
mechanism, hd and td are integrated with structured repre-
sentations of head and tail entities from TransE model, hs
and ts, to obtain the synthetic representations of the head
and tail entities, vh and vt . MCapsE perform representation
learning on vh and vt , and the structured representation vr
of the relation to obtain the final representations of the head
entity, the tail entity and the relation. We will detail the three
modules in the following.

C. ENTITY DESCRIPTION EMBEDDING LEARNING
Entity descriptions contain abundant semantic features of
related entities. As we will show in Section V, efficiently and
accurately extracting important semantic features entailed
in entity descriptions will substantially improve the perfor-
mance of a KGRL model.

Given a triple (h, r, t), we use Transformer encoder and
relation Attention mechanism to obtain adequate semantic
information related to the relation r contained in the entity
description of h or t . As the processes of obtaining represen-
tations of descriptions for the head entity and the tail entity
are the same, we use the head entity as an example. The
model for entity description embedding learning is shown
in Figure 4, which consists of three layers: input layer, Trans-
former Encoder layer, and relational attention layer.

1) INPUT LAYER
In the input layer, word embeddings and position embeddings
of an entity description are concatenated to form the sentence
embedding, which serve as model input information. Due to
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FIGURE 3. Framework of multi-scale capsule embedding model incorporating entity descriptions.

its simplicity and effectiveness [44], we choose Skip-gram
to train the word embeddings from large amounts of entity
descriptions. We set the size of skip window to 5, and the
dimension of word embeddings d = 100. After training,
we obtain the word embedding matrix WordVec ∈ Rk×d ,
where k is the vocabulary size of entity descriptions.

Through a lookup in the obtained word embedding matrix,
we can obtain an embedding xi for each word wi in an entity
description desc = {w1,w2, . . . ,wn}, and in turn obtain a
word embedding matrix X = (x1, x2, . . . , xn} of the entity
description, where xi ∈ Rd×1 is the embedding of the i-th
word of the entity description, and n is the length of the entity
description.

To capture sequence ordering of entity descriptions,
we make use of position embeddings obtained by looking up
a randomly initialized position embedding matrix PosVec ∈
Rk×d , which is updated during training. After each position
index is converted to a position embedding, we obtain the
position embedding matrix P = (p1, p2, . . . , pn), where
pi ∈ Rd×1 is the position embedding of the i-th word in the
description, and n is the length of the entity description.

We concatenate the word embedding and the position
embedding to obtain the output vector S = (s1, s2, . . . , sn)
of input layer, where si ∈ R2d×1 is the concatenation of wi
and pi.

2) TRANSFORMER ENCODER LAYER
To obtain more semantic features in a entity description,
and to learn the dependency relationship of words in the

description, we adopt a Transformer Encoder with the
multi-head self-attention mechanism. The encoder is com-
posed of a stack of N = 6 identical layers. Each layer
has two sub-layers, a multi-head self-attention layer and a
simple position-wise fully connected feed-forward network.
We employ a residual connection around each of the two sub-
layers, followed by layer normalization.

We denote Query/Key/Value vectors as Q, K and V . For
a given entity description embedding S, the self attention
mechanism demands Q = K = V = S. Here we adopt
dot product, as is shown in (4), for simplicity and more
complicated aggregation strategies are left for future work.

Attention(Q,K ,V ) = softmax(
QKT
√
d

)V (4)

where d is the dimension of Q and K .
For each head, we have a set of randomly initialized

Query/Key/Value weight matrices, through which we mapQ,
K and V to different matrices.

headi = Attention(QWQ
i ,KW

K
i ,VW

V
i ) (5)

After calculating attentions separately on multiple atten-
tion heads, we concatenate and condense them into a single
matrix.

Y = MultiHead(Q,K ,V )

= Concat(head1, head2, . . . , headn)W o (6)

Then, we use two layers of residual connection followed
by a layer-normalization step (see (7) and (9)), and two linear
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FIGURE 4. Entity description embedding learning.

layers with a ReLU activation between them (see (8)).

L = LayerNorm(S + Y ) (7)

FFN (L) = ReLU(LW1 + b1)W2 + b2 (8)

H = LayerNorm(L + FFN (L)) (9)

whereW1 andW2 are weight parameter matrices, and b1 and
b2 are bias vectors.

Finally, the output of the Transformer encoder layer is
the representation of each word with its contextual semantic
information H = (h1, h2, . . . , hn), which serves as the input
of the relation attention layer.

3) RELATION ATTENTION LAYER
To obtain a global vector representation of the entity descrip-
tion, a simple and direct way is to average vector repre-
sentations of words in the entity description. However, this
approach treats each word in the entity description indiscrim-
inately, without considering the importance of words related
to the relation in a triple. We thus employ a relation attention
mechanism to calculate the weight of each word in the entity

description, and come up with the global representation of the
entity description as the weighted sum of representations of
words in the entity description.

To identify, in a entity description, which words are closely
related to the entity and the relation in a triple, we calculate
the weight of each word in the entity description using a
simple fully connected neural network, the input of which are
the head entity representation hs and the relation representa-
tion hr pre-trained by TransE model, and the contextual fea-
ture representation hi of each word. We calculate the weight
in (10).

fi = Wa[hi; hs]+ Vhr

αi =
exp(fi)∑N
j=1 exp(fj)

hd =
N∑
i=1

αihi (10)

where Wa is the weight matrix, V ∈ Rd×1 is the param-
eter vector, and hd is the representation of the head entity
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FIGURE 5. Framework of MCapsE with k = 4, N = 2, and d = 2.

description. In the sameway, we can obtain the representation
td of the tail entity description.

D. INTEGRATION OF ENTITY DESCRIPTION
REPRESENTATION AND STRUCTURED REPRESENTATION
Entity descriptions contain rich semantic information, which
can be used as a supplement to structured triple informa-
tion. To make full use of the entity description informa-
tion, we integrate representations of the head and tail entity
descriptions, and structured representations of the head and
tail entities, to obtain the synthetic representations of the
head and tail entities. We explore two different integration
methods, the direct concatenation and the dynamic gate
mechanism.

1) DIRECT CONCATENATION
The representation of head entity description and the struc-
tured representation of head entity are concatenated on their
last dimension to obtain the intermediate representation,
which is fed into a fully connected layer followed by a
ReLU activation to output their integration result. In the same
way, the integration result for tail entity is obtained. The
calculations for the head and the tail entity are shown in (11)
and (12).

vh = ReLU(We[hd ; hs]+ be) (11)

vt = ReLU(We[td ; ts]+ be) (12)

whereWe is a shared parameter for both head and tail entities.

2) DYNAMIC GATE MECHANISM
First, we use the head entity description representation and
the head entity structured representation, hd and hs, to cal-
culate a weight gate vector g, and then use g to integrate hd
and hs to form the synthetic representation vh. The calculation
process for the synthetic representation of the tail entity vt is
in a same way. The calculations for the head and tail entity
are shown in (13) and (14).

g = Softmax(W1[hd ; hs]+ b1)

vh = g� hd + (1− g)� hs (13)

g = Softmax(W1[td ; hs]+ b1)

vt = g� td + (1− g)� ts (14)

where � is called Hadamard product or element-wise prod-
uct, and W1 and b1 are shared parameters.

Comparative experiments and the result analysis of the two
integration methods will be given in Section V.

E. MULTI-SCALE CAPSULE-BASED EMBEDDING
MODEL
Figure 5 shows the framework of MCapsE. The function of
each layer of the model is elaborated as follows.

1) EMBEDDING LAYER
We treat each embedding triple (vh, vr , vt ) as a matrix A =
[vh, vr , vt ] ∈ Rk×3, where Ai,: ∈ R1×3 is the i-th row of A.
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2) CONVOLUTION LAYER
The input of the convolution layer is the embedding matrix
A. We use three different window sizes j × 3, where j ∈
{1, 2, 3}. For each window size, we employ N convolution
kernels ωj ∈ Rj×3. As is shown in (15), a convolutional
operation is executed on each row of the matrix A by using
N convolution kernels to produce feature maps. We thus have
3N k-dimensional feature maps, for which each feature map
can capture one single characteristic among entries at the
same dimension. For each convolution kernel, we have

cj,i = ReLU
(
ωj · Ai,: + b

)
(15)

qj =
[
cj1, cj2, . . . , cjk

]
∈ Rk (16)

q = [q1, q2, q3] (17)

where · is the dot product operation, b ∈ R is the offset vector.
Feature maps generated by convolution kernels of the same

size form a feature map list. We thus have three feature map
lists as the input of the first capsule layer.

3) CAPSULE LAYERS
We use two capsule layers in MCapsE. In the first layer,
we construct k capsules for each feature map list. We encap-
sulate features in the same dimension in the feature map list
into a same capsule to capture features at different positions
in the triple embedding. For each capsule, we thus have a
corresponding vector uji ∈ RN×1. Vector uji of each capsule
i ∈ {1, 2, . . . , k} are multiplied by weight matrixWji ∈ Rd×N

to obtain vector ûji ∈ Rd×1. Vectors ûji are weighted summed
to obtain an input vector sj ∈ Rd×1 of the second capsule
layer. A nonlinear compression function is executed on sj to
generate a vector output ej ∈ Rd×1. Vectors e1, e2, e3 are
weighted summed to obtain e, the length of which represents
the score of the triple. The process is specified in (18).

ej = squash
(
sj
)
, sj =

∑
i

ciûji, ûji = Wjiuji

e =
∑

j∈{1,2,3}

ej (18)

In (19), we change the number in the denominator of the
squash function from 1 to 0.5, so that the vector features
are enlarged before the modulus length reaches 0, which is
beneficial to capture the correlation between features.

squash (si) =
‖si‖2

0.5+ ‖si‖2
si
‖si‖

(19)

F. MODEL TRAINING
We use the AdamOptimizer [45] to train the proposed KGRL
model by minimizing the cross entropy loss function in (20).

L = −
∑

(h,r,t)∈{S∪S ′}

(
t(h,r,t) log f (h, r, t)

+
(
1− t(h,r,t)

)
log f (h, r, t)

)
(20)

where the scoring function f in defined in (21),

f (h, r, t) = ‖MCapsE (g ([vh, vr , vt ] ∗�)) ‖ (21)

TABLE 1. Hyper-parameters for different datasets.

where MCapsE denotes aMCapsE network operator,� is the
shared parameter in the convolutional layer, and * represents
the convolution operator.

t(h,r,t) is defined as t(h,r,t) =
{
1, if (h, r, t) ∈ S
−1, if (h, r, t) ∈ S ′

, where

S is the positive triple set, and S ′ is the negative triple set.
In addition, as too many network layers in the Transformer

Encoder may result in a shift in data distribution. To prevent
this phenomena from occurring and accelerate convergence
and improve the generalization ability of the model, we add
a Batch Normalization layer [46] and a SpatialDropout [47]
before and after the Transformer Encoder layer. As we will
show in Section V, these methods significantly improve the
performance of the representation model.

V. EXPERIMENT AND ANALYSIS
A. EXPERIMENTAL DESIGN
The experiment contain two parts:

(1) Comparison ofMCapsEEDwith existingCapsule-based
KGRL models, CapsE and MCapsE, to verify whether incor-
porating entity description information improves the per-
formance of KGRL models. The experimental datasets are
consistent with that of inMCapsE andCapsE, namely FB15k-
237 and WN18RR.

(2) Comparison with existing KGRLmodels incorporating
entity description information to prove the effectiveness and
generalization of the proposed model. As existing models of
this kind use FB15k and WN18 as benchmarks, we compare
with them on these two datasets.

In the process of implementing of MCapsEED, we con-
duct comparative analysis experiments on whether the entity
description feature extraction, dynamic gate mechanism,
and multi-scale capsule network representation method have
improved the model. To obtain the best experimental hyper-
parameters, we use a Grid Search strategy. As we use four
different datasets for comparative analysis, there are four
optimal hyperparameter lists, which is shown in Table 1.

B. EXPERIMENTAL DATA AND EVALUATION METRICS
TaskWe evaluate MCapsEED on the task of link prediction,
the goal of which is to predict a missing entity given a relation
and another entity in a triple.
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TABLE 2. Statistics of datasets.

TABLE 3. Comparison of MCapsEED with CapsE and MCapsE.

Datasets We use commonly used datasets, FB15k-237,
WN18RR, FB15k, and WN18. Table 2 lists the detailed
information of four datasets.

Metrics After representations of entities and relationships
in a KG is learned, the link prediction task is transformed
into a ranking procedure. Taking the task of predicting the
head entity as an example, i.e., (?, r, t), each entity h in the
KG is a candidate answer. For each candidate triple (h, r, t),
the score is calculated by a scoring function, e.g. (21) in our
case of MCapsEED. Sorting these scores in descending order
will produce a ranked list of candidate answers.

For evaluation, it is common to record ranks of correct
answers in such a ranked list to see if correct answers rank
before incorrect ones. Various evaluation metrics have been
designed based on such ranks. The evaluation metrics used
in this paper are, under the ‘‘filter’’ mode, the Mean Rank
(MR, the average of predicted ranks), the Mean Reciprocal
Rank (MRR, the average of reciprocal ranks), and Hits@n
(the proportion of ranks no larger than n). Lower MR, higher
MRR, and higher Hits@n indicate better performance. The
‘‘filter’’ mode [15] means not taking any negative triples that
appear in the KG into accounts. To facilitate comparison,
we employ the commonBernoulli strategy [32] used in CapsE
and MCapsE when sampling negative triples.

C. ANALYSIS OF RESULTS
1) COMPARISON WITH CapsE AND MCapsE
Wefirst compare withMCapsE and CapsEmodels that do not
consider entity description information, the result of which is
listed in Table 3. It can be drawn that, by incorporating entity
description information, the performance of the MCapsEED
is significantly better than MCapsE and CapsE, especially
in the metrics of Hits@10, which indicates that MCapsEED
further improve the discrimination of entity representation.
On the other hand, it can also be derived from the results on
MRmetrics that, incorporating entity description information
makes the correct entities rank higher among the candidate
entities, which greatly reduces the sparsity of entity repre-
sentations.

We also compare the performance of these three mod-
els on relations of different categories, which is shown

TABLE 4. Model performance on different category relations in
FB15k-237 dataset.

TABLE 5. Model performance of different integration methods and
optimization strategies on FB15k-237 dataset.

in Table 4. We divide the relations into four categories,
i.e., 1-1, 1-N, N-1, and N-M.

It can be seen from Table 4 that in terms of different
relation types, MCapsEED shows comparable performance
with MCapsE and CapsE models. MCapsEED has a good
effect on Hits@10 metrics, especially for N-1 and N-M com-
plex relations. Therefore, MCapsEED can make full use of
entity descriptions as an important supplement of structured
representations, so as to better deal with complex relation
modeling.

2) DIFFERENT INTEGRATION METHODS AND
OPTIMIZATION STRATEGIES
In addition, we explore the performance ofMCapsEED under
different integration methods and optimization strategies,
the result of which is shown in Table 5.

As is introduced in Section IV-D, we adopt two different
ways of integrating the entity description representation and
the entity structured representation, where concat repre-
sents direct concatenation of two representations, whereas
gate represents the dynamic gate mechanism. The dynamic
gate mechanism improves the @Hits@10 metrics by nearly
one percent, which proves its effectiveness.

MCapsEED consists of three modules: Entity Descrip-
tion Embedding Learning, Integration of Structured and
Description Information, andMCapsE Learning. In the Entity
Description Embedding Learning module, we use a Trans-
former encoder to obtain entity description representations,
and a relation attentionmechanism to extract relation-specific
entity description features. We add a Batch-Normalization
layer and a SpatialDropout layer before and after the Trans-
former Encoder layer to prevent the shift of data distribution.
In the Integration of Structured and Description Information
module, we employ a dynamic gate mechanism to integrate
the entity description representation and the entity structured
representation. In the MCapsE Learning module, we adopt
multi-scale capsule network to better capture global semantic
features of between entities and the relation in a triple.
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TABLE 6. Comparison with knowledge representation models
incorporating entity descriptions.

We conduct ablation studies on these three modules.
To fully exploit the entity description information related
to the relation, MCapsEED using dynamic gate mechanism
is augmented with a relation attention mechanism, denoted
by att, which also improves the knowledge representa-
tion effect by 0.3%. To prevent the risk of overfitting and
enhance the robustness of the model, Batch-Normalization
(denoted by bn) is introduced and results in a performance
improvement of additional 0.3%. When integrating addition-
ally SpatialDropout (denoted by sd), we achieve an overall
performance improvement of 1.2%.

3) COMPARISON WITH EXISTING KGRL MODELS
INCORPORATING ENTITY DESCRIPTIONS
We compare MCapsEED with existing KGRL models
incorporating entity descriptions, including Jointly(LSTM),
Jointly(A-LSTM), DKRL, TEKE_H, SSP, and use TransE
model as baseline.

It can be seen from Table 6 that MCapsEED performs bet-
ter than existing KGRL models incorporating entity descrip-
tions on the MR and Hits@10 metrics. The main reason is
that MCapsEED uses the relation attention mechanism to
extract relation-specific features in the entity description. Fur-
thermore, MCapsEED integrates the feature representation of
entity descriptions and the structured representation learned
from triples through a dynamic gate mechanism, which
greatly improves the performance. On WN18, MCapsEED is
slightly worse than Jointly(LSTM), which may caused by the
limited number of relations in WN18. The attention mecha-
nism thus has no obvious advantage. On FB15K,MCapsEED
achieves the best performance and is significantly higher than
other models.

VI. CONCLUSION
We propose a KGRL framework which consists of three
modules: Entity Description Embedding Learning, Inte-
gration of Structured and Description Information, and
Multi-Scale Capsule-based Embedding Learning. We use a
Transformer encoder to obtain the entity description repre-
sentations, and the relation attention mechanism to extract
the relation-specific entity description features. We employ
the dynamic gate mechanism to integrate the entity descrip-
tion representation and the entity structured representation.
We adopt multi-scale capsule network to better capture global
semantic features between entities and the relation in a triple.

Experiment results are consistent with our design intention.
Incorporating entity descriptions improves the performance,
especially in the metrics of Hits@10, which indicates that
MCapsEED further improve the discrimination of entity rep-
resentation and greatly reduces the sparsity of entity rep-
resentations. MCapsEED shows a better complex relation
modeling capability on Hits@10 metrics for N-1 and N-M
complex relations. MCapsEED also performs better than
existing KGRL models incorporating entity descriptions on
the MR and Hits@10 metrics.

In the future, we will consider to extend our method to
uncertain KGs, i.e., KGs that model the inherent uncertainty
of relations facts with a confidence score. The represen-
tation of uncertain knowledge will provide more natural
characterization of the knowledge and benefit downstream
applications such as question answering and semantic search
[48]. Another research direction concerns the security of
MCapsEED and other KGRL models, i.e., designing adver-
sarial attacks against them, improving their adversarial
robustness, and evaluating the effect of proposed improve-
ment on their interpretability [49].
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