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ABSTRACT In order to ensure the performance of burst signal demodulation, forward symbol timing offset
estimation algorithm is usually used for symbol timing recovery. Aiming at the shortcomings of common
forward symbol timing estimation algorithms, a new algorithm based on maximum likelihood estimation
joint trigonometric polynomial interpolation is proposed in this article, which is suitable for the data of four
samples per symbol and can resist large frequency offset. Hereafter, in order to make it more suitable for
engineering practice, optimize it into an improved data-aided (DA) forward symbol timing offset estimation
algorithm with multiple characteristics, e.g., moderate frequency offset capture range, insensitive to shaping
coefficient, relatively low complexity, excellent estimation performance, flexible algorithm structure and
less sample data required for calculation. The simulation results show that the performance of the improved
algorithm in this article can approach the modified cramer-rao bound (MCRB) within the frequency offset
capture range, under the conditions of low signal to noise ratio (SNR) and small shaping coefficient.

INDEX TERMS Maximum likelihood estimation, data aided, frequency offset, forward symbol timing.

I. INTRODUCTION
Burst signals arewidely used in various communication fields
such as satellite communication and shortwave communica-
tion due to its high transmission rate, strong anti-interception
ability and high identification difficulty. The common phase-
locked structure timing offset estimation algorithm has the
‘‘Hangup effect’’ [1], which makes the loop lock-in time
uncertain. Therefore, in burst communication, although the
phase-locked algorithm has very high timing estimation accu-
racy [2] after lock-in, the receiver generally still uses the
forward symbol timing estimation algorithm with slightly
worse estimation accuracy but faster estimation speed for
timing offset recovery. The current common forward timing
offset estimation algorithms can be roughly divided into two
categories [3]: data-aided (DA) algorithms and non-data-
aided (NDA) algorithms.

Among them, the NDA algorithm has received widespread
attention due to its simple algorithm structure and no need
to insert auxiliary information into the transmission data to
assist timing offset estimation. The current common NDA
algorithms include the square algorithm [4] which is very
influential and suitable for the data of four samples per
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symbol. Then, a variety of nonlinear algorithms obtained
by further expansion of the square algorithm [5], including
absolute-value nonlinearity (AVN ), fourth-law nonlinearity
(FLN ), square-law nonlinearity (SLN ), logarithmic nonlin-
earity (LOGN ) algorithms, etc. More specifically, SLN and
FLN have relatively poor performance, AVN and LOGN
have comparatively high estimation accuracy and are rela-
tively stable, but LOGN needs to know the signal to noise
ratio (SNR) of data samples, which has high limi-tations in
actual use. Therefore, in comparison, AVN has the relatively
high practicality. The common NDA algorithms that are suit-
able for the data of two samples per symbol include Lee [6],
Wang et al. [7], and Zhu et al. [8] algorithms, etc. Among
them, Lee is a biased estimation, Wang is an optimized
derivation which improves Lee into an unbiased estimation.
Though Zhu has slightly better performance at low SNR,
but the received signal needs to be further processed before
calculation and the structure of Zhu is more complicated
than the previous two algorithms. Therefore, in comparison,
Wang has the relatively high practicality. However, the above
NDA algorithms all have the following defects: (i) In the
case of low SNR and small shaping coefficient, the estimation
performance is always very poor; (ii) A large data sample size
is required to obtain high-precision timing offset estimation
results.
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FIGURE 1. Common burst signal structure.

Although the current common DA algorithms have
relatively excellent estimation performance than NDA algo-
rithms, they receive little attention due to their complex struc-
ture, no resistance to frequency offset interference and need
to insert auxiliary information into the transmission data to
assist timing estimation. However, in burst communication,
the sender generally inserts pilot sequence of known structure
into the data, so that the receiver can distinguish burst signal
by burst detection.

Therefore, the DA algorithm can also use the pilot
sequence as auxiliary information for timing offset estimate
without consuming additional bandwidth to insert auxiliary
information. The current common DA algorithms are always
based on the idea of searching the maximum value of the
likelihood function [9], but the computational complexity of
the search process to obtain high-precision estimation results
will be very high. Although there is already a simplified DA
timing algorithm (hereafter, it’s abbreviated as SML) with
lower computational complexity [10], but its shortcoming of
inability to resist the influence of frequency offset leads to
excessively high requirements on the frequency offset pre-
estimation capability of the signal receiver, which will lead
to great restrictions on the use of engineering practice.

Therefore, aiming at the various shortcomings of the afore-
mentioned current common forward symbol timing estima-
tion algorithms, this article proposes a new forward symbol
timing estimation algorithm based on maximum likelihood
estimation joint triangular polynomial interpolation Further-
more, in order to make it more suitable for engineering prac-
tice, improve it into a new form which is the final algorithm
in this article (the ‘‘IML3’’ described below).
The simulation results show that the final algorithm has the

following performance advantages:
1) Appropriate frequency offset adaptability. High-

performance symbol timing estimation can be per-
formed within the frequency offset capture range;

2) Relatively low algorithm complexity. Under the
premise of only a small loss of timing offset estima-
tion ac-curacy, the likelihood function and trigonomet-
ric polynomial interpolation function are simplified in
multiple stages, which significantly reduces the com-
putational complexity of the algorithm;

3) Excellent estimation performance. Under the con-
ditions of low SNR and small shaping coefficient,
it has performance characteristics close to the modified
cramer-rao bound (MCRB) [11]. Even if the self-noise
influencemakes the performance curve graduallymove
away from MCRB at high SNR, it already has a high
estimation accuracy at this time. Therefore, the algo-
rithm performance is very consistent with the current

development trend of high-speed and low-power trans-
mission of burst signals;

4) Flexible algorithm structure. The algorithm complexity
is proportional to the frequency offset capture range.
In actual use, it can be flexible choose whether to use
a structure with lower computational complexity or a
structure with a broader frequency offset capture range;

5) Burst detection joint symbol timing estimation. The
likelihood function can be regarded as an improved
burst detection algorithm, and the timing estimation
result is obtained by trigonometric polynomial interpo-
lation using this value. That is to say, the algorithm can
complete burst detection and symbol timing estimation
during the estimation process;

6) Small data sample size required for calculation. It only
required thirty-two symbols or even shorter length of
the pilot sequence to have the above-mentioned multi-
ple performance advantages.

II. ALGORITHM MODEL
A. MAXIMUM LIKELIHOOD ESTIMATION
Suppose the expression of the baseband signal received by
the receiver is:

r(t) = ej(2πvt+θ )
∑
i

cih(t − iT − τ )+ nc(t) (1)

where {ci} is an independent and identically distributed data
symbol sequence, v, θ and τ are respectively the frequency
offset, phase offset and symbol timing offset to be estimated,
T is the symbol period, nc(t) is the additive white gaussian
noise, h(t) is the baseband shaping function that satisfies
the first criterion of Nyquist, such as the ‘‘Better Than’’
shaping function with excellent anti intersymbol interference
characteristics [12] and other excellent methods. But in fact,
the square root raised cosine rolloff function is still the most
commonly used. The joint log-likelihood function of fre-
quency offset, phase offset and timing offset can be expressed
as:

3(r|ṽ, θ̃ , τ̃ ) = −
N−1∑
k=0

∣∣∣∣r(kT + τ̃ )− ej[2π ṽ(kT+τ̃ )+θ̃ ]
·

∑
i

cih(kT + τ̃ − iT − τ )

∣∣∣∣2 (2)

Herein, N is the total length of the pilot sequence. For
solving the maximum likelihood estimation, (3) and (2) have
the same and unique solution. Therefore, when solving the
maximum likelihood estimation, (2) can be rewritten as (3)
without affecting the estimation result.

In a nutshell, assuming that αk,n = r((k − n)T + τ̃ ) −
ej[2π ṽ((k−n)T+τ̃ )+θ̃ ]

∑
i−n ci−nh((k − n)T + τ̃ − (i− n)T − τ ),

then the likelihood function can be expressed as:

3(r|ṽ, θ̃ , τ̃ ) = −
N−1∑
k=n

{
|αk,0|

2
|α∗k,n|

2
}

(3)
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where 1 6 n 6 N − 1. However, owing to the structure of the
above formula is too complex and difficult to solve, it needs
to be simplified. Ignore the influence of teeny interference
terms and constant terms on the likelihood function, then the
above formula can be simplified to:

3(r|ṽ, τ̃ ) ≈ Re
{
e−j(2πnṽT )

·

N−1∑
k=n

c∗kr(kT + τ̃ )ck−nr
∗((k − n)T + τ̃ )

}
(4)

Herein, Re(x) is the real part of x. Eliminate the influence
of frequency offset on search the maximum value of likeli-
hood function, then the following formula can be obtained:

3(r|τ̃ ) ≈

∣∣∣∣N−1∑
k=n

c∗kr(kT + τ̃ )ck−nr
∗((k − n)T + τ̃ )

∣∣∣∣ (5)

Since the above formula is only a simple accumulation
of the conjugate differential correlation results, therefore the
above formula has weak anti-interference ability. So that
if it is used for timing recovery, the algorithm’s anti-noise
performance will also be poor. Therefore, in order to enhance
the channel adaptability of (5), author chooses to optimize the
algorithm by ‘‘multi-level overlay smoothing’’, the improved
maximum likelihood function can finally be expressed as
follows [13] (hereafter, it’s abbreviated as IML1), which is
actually an improved burst detection algorithm based on the
principle of conjugate differential correlation that can resist
large frequency offset.

3(r|ṽ) ≈
N−1∑
n=1

{∣∣∣∣N−1∑
k=n

c∗kr(kT + τ̃ )ck−nr
∗((k − n)T + τ̃ )

∣∣∣∣}
(6)

In theory, finding the maximum value of the log-likelihood
function shown in the above formula will correspondingly
obtain accurate timing offset information. And because the
above formula is insensitive to frequency offset, therefore,
it can estimate the timing offset with high-performance for
signals with large frequency offset. However, the frequency
offset range of engineering practice data usually not very
broad. Thus, in actual practice, many complex calculations
performed by the above formula to resist large frequency
offset are often wasted. In order to simplify the calculation,
one strategy is to convert the correlation calculations into
discrete fourier transformation (DFT) and inverse discrete
fourier transform (IDFT) calculations [14], but this method
is only suitable for orthogonal frequency division multiplex-
ing (OFDM) signals.

Another strategy is to use the idea of packet delay con-
jugate differential correlation to simplify (5) to a general
algorithm with moderate frequency offset capture range, rel-
atively low complexity and acceptable accuracy loss com-
pared with the above formula within the frequency offset
capture range. The idea of improvement is the same as rewrite
(2) to (3), as long as the maximum likelihood estimation

is guaranteed to have the same and unique solution as (3).
Divide the leading sequence intoN/L groups, i.e., each group
contains L data samples, then (3) can be rewritten as follows:

3(r|ṽ, θ̃ , τ̃ ) = −

N
L −1∑
m=n

{L−1∑
k=0

|αk,−mL |
2
L−1∑
k=0

|α∗k,(n−m)L |
2
}
(7)

Herein, 1 6 n 6 N
L − 1, α is consistent with that shown

in (3). The above formula is also complicated and difficult to
solve, it’s needs to be simplified and the simplification idea
is consistent with (4). Assuming that uk,m = c∗(k+mL)r((k +
mL)T + τ̃ ), then the likelihood function can be expressed as:

3(r|ṽ, θ̃ , τ̃ )

= Re
{N

L −1∑
m=n

{L−1∑
k=0

(e−j(2π ṽ((k+mL)T+τ̃ )+θ̃ )uk,m)

·

L−1∑
k=0

(ej(2π ṽ((k+(m−n)L)T+τ̃ )+θ̃)u∗k,m−n)
}}

= Re
{
e−j(2πnLṽT )

N
L −1∑
m=n

{L−1∑
k=0

(e−j(2π ṽkT )uk,m)

·

L−1∑
k=0

(ej(2π ṽkT )u∗k,m−n)
}}

(8)

It can be seen that when L = 1, (8) has the same
structure as (4), otherwise, when Lṽ is in the proper range,∑N

L −1
m=n

∑L−1
k=0 uk,m is insensitive to frequency offset ṽ, and the

influence of frequency offset can be temporarily ignored, then
(8) can be simplified to the following form:

3(r|ṽ, τ̃ ) ≈ Re
{
e−j(2πnLṽT )

1− cos(2πLṽT )
(1− cos(2π ṽT ))L2

·

N
L −1∑
m=n

{L−1∑
k=0

uk,m
L−1∑
k=0

u∗k,m−n

}}
(9)

Obviously, frequency offset capture range of (9) is
inversely proportional to L and, the smaller the L, the less
sensitive it is to the influence of frequency offset.

When L and the frequency offset v are both small, as shown
in Fig.2, assuming that γ = 1−cos(2πLṽT )

(1−cos(2π ṽT ))L2
(γ is symmetric

about ṽ = 0 and the normalization standard of v is the signal
bandwidth in this article), then γ can be ignored due to it
can be approximated as a constant. Therefore, eliminate the
influence of frequency offset on likelihood function, then the
formula can be expressed as below:

3(r|τ̃ ) ≈

∣∣∣∣
N
L −1∑
m=n

{L−1∑
k=0

uk,m
L−1∑
k=0

u∗k,m−n

}∣∣∣∣ (10)

To expand the capture range of the frequency offset algo-
rithm and enhance the channel adaptability of the algorithm,
as proformed in (6), use ‘‘multi-level overlay smoothing’’ to
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FIGURE 2. The influence of L size and frequency offset on the value of γ .

improve it. Then (10) can be extended to (11) (hereafter, it’s
abbreviated as IML2), which is actually an improved burst
detection algorithm based on the principle of packet delay
conjugate differential correlation [15].

3(r|τ̃ ) ≈

N
L −1∑
n=1

∣∣∣∣
N
L −1∑
m=n

{L−1∑
k=0

uk,m
L−1∑
k=0

u∗k,m−n

}∣∣∣∣ (11)

Suppose that ψ =
∑N

L −1
m=n

{∑L−1
k=0 uk,m

∑L−1
k=0 u

∗
k,m−n

}
.

Consider the data range required for subsequent interpolation,
here only use 0 6 η0 6 2 as the range constraint for theoreti-
cal derivation. Within the range of [τ − η0 T/2, τ + η0 T/2]
(τ is the timing offset which has declared in (1)), the solution
of (11) has the characteristics of that ψ = |ψ | ej(2πnvT ),
which has shown in (12). And η0 increases with the increase
of SNR and pilot sequence length, and for the general case
η0 ≥ 1/2. Even if ψ is outside the range, this property will
gradually become distorted rather than rapidly deteriorate.
Moreover, the frequency offset v has slow change character-
istics for the particular signal, within the observation interval
N , v can be regarded as a fixed value and n also has only
N
L − 1 fixed values.
Therefore, in the range of [τ − η0 T/2, τ + η0 T/2], use
{|ψRe|+|ψIm|} instead of |ψ | is only equivalent to the overall
linear amplification of the likelihood function in the range
of [τ − η0 T/2, τ + η0 T/2]. It won’t affect the maximum
value of timing offset estimation result based on search
likelihood function.

|ψRe| + |ψIm|

|ψ |
= | cos(2πnvT )| + | sin(2πnvT )| (12)

where ψRe is the real part of ψ and ψIm is the imaginary part
of ψ , and the minimum value of (12) is 1.
As shown in Fig.3, the result of (11) has the function value

similar to the ‘‘sinc’’ function, that is why it is very suit-
able as a burst detection algorithm. Therefore, if (11) within
the range of (τ − η1 T/2, τ + η1 T/2) (η0 6 η1 6 2), due
to the reduced correlation between signal and pilot sequence,
the peak value of burst detection has decayed sharply to a

FIGURE 3. Peak characteristics of IML2 algorithm.

TABLE 1. Algorithm real number operation complexity comparison.

pretty small value. The self-noise effect caused by taking
the value produced by the above replacement operation into
the subsequent trigonometric polynomial interpolation [16]
to estimate the timing offset may be counteract with the self-
noise effect, which is caused by the simplification of the like-
lihood function and the simplification of the trigonometric
polynomial. In addition, this feature is also reflected in the
subsequent performance simulations of this article. As a con-
sequence, (11) can be simplified as follows without basically
losing the accuracy of timing offset estimation (hereafter,
it’s abbreviated as IML3). To sum up, the function value
still similar to the ‘‘sinc’’ function and, as shown in Table.1,
the complexity of the algorithm is reduced again.

3(r|ṽ, τ̃ ) ≈

N
L −1∑
n=1

|ψRe| + |ψIm|

| cos(2πnvT )| + | sin(2πnvT )|

≈

N
L −1∑
n=1

{|ψRe| + |ψIm|} (13)

B. TRIGONOMETRIC POLYNOMIAL INTERPOLATION
As mentioned in the previous section, when the likelihood
function achieves maximum value, the maximum burst detec-
tion peak value and the accurate estimation value of τ̃ will be
obtained. However, by observe the likelihood function derive
from the signal that is four samples per symbol, the maximum
detection peak corresponding to the signal cannot be directly
obtained. Moreover, if the maximum value of the likelihood
function is obtained by point-by-point search, the computa-
tional complexity is extremely high. Therefore, in order to
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reduce the computational complexity, an efficient mode is
to use the idea of interpolation to determine the maximum
value of likelihood function. There are various interpolation
methods such as Farrow interpolation, Newton interpolation,
trigonometric polynomial interpolation, etc. Trigonometric
polynomial interpolation is suitable for the new algorithm,
because it has been demonstrated that this approach can
produces a simple implementation structure, reduces com-
putational delay and, for practical signals, can improve the
interpolation performance.

Although the algorithm structure of using four samples to
assist to perform trigonometric polynomial interpolation to
estimate the timing offset is relatively simple, the estimation
performance can still be optimized properly. However, for
a signal with four samples per symbol, compared with four
samples auxiliary interpolation, the computational comple-
xity of the sixteen samples auxiliary interpolation increases
more, and the reduction of the correlation between the farther
symbol and the pilot sequence will lead to the reduction of
the reliability of its interpolation. Therefore, the algorithm
in this article chooses to use eight samples auxiliary timing
offset estimation. Compared with the common interpolation
method based on four samples, it can significantly improve
the precision of timing offset estimation and the channel
adaptability in the case of only waste few computational
complexity. The specific formula is as follows:

0(µT/P) =
1
N0
Re
(
c0 + 2

N0
2 −1∑
k=1

ckW
−kµ
N0
+ cN0/2e

jπµ
)
(14)

where 0 ≤ µ < 1, T is the symbol period, N0 is the number
of interpolation symbols, P is the oversampling multiple of
signal, 0 (µT/P) is the value of likelihood function, which is
actually the burst detection peak value corresponding to each
sample in engineering practice, W kn

N0
= e−j2πkn/N0 , and the

coefficient ck is actually the DFT of N0 points:

ck =

N0
2∑

n=−N0
2 +1

0(nT/P)W kn
N0

(15)

Herein, k = −N0
2 + 1, · · · , N0

2 . According to the spec-
tral characteristic of ‘‘sinc’’ function, the influence of direct
current component and harmonics above second order on the
result can be ignored. Hence, (14) can be rewritten as:

0(µT/P) ≈
1
N0
Re(c1ej2πµ/N0 ) (16)

It can be seen from the above analysis that the algorithm in
this article chooses to use eight samples to assist interpolation
for data with four samples per symbol after weighing the
limits of algorithm performance and complexity, i.e. N0 = 8,
P = 4. Therefore, the final timing offset estimation formula
can be expressed as (using the result of IML1 as an interpola-
tion sample for symbol timing estimation, then the estimation

FIGURE 4. Performance comparison of different stages of the algorithm
in this article.

process can be abbreviated as IMLT1. Similarly, the corre-
sponding estimation process of IML2 can be abbreviated as
IMLT2 and the corresponding estimation process of IML3 can
be abbreviated as IMLT3):

τ̂ = −
4T
πP

arg(c1) = −
T
π
arg

( 4∑
n=−3

0(
n
4
T )e−j

nπ
4

)
(17)

III. SIMULATION EXPERIMENTS
Owing to the frequency offset is positive or negative won’t
affect the performance of the algorithms that are mentioned
above. Therefore, the following simulation diagrams are
obtained by using data with frequency offset ṽ ≥ 0 for
simulation.

Simulation 1: Performance comparison of IMLT1, IMLT2
and IMLT3. The ‘‘simulation environment’’ of Si-mulation
1 is to perform 10, 000 times Monte Carlo simulation using
the data of four samples per symbol, quadrature phase shift
keying (QPSK) modulation, multiple frequency offsets, arbi-
trary phase offset, rolloff coefficient of 0.15, timing offset
of 0.1875T , total pilot sequence length of sixty-four symbols
which is divided into thirty-two groups, etc.
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FIGURE 5. Estimation performance of IMLT3 under different timing offset.

As the simulation shown in Fig.4(a) and Fig.4(b), the sim-
ulation results show that, compared with IMLT1, although
IMLT2 and IMLT3 have a moderate frequency offset sensitiv-
ity, but their computational complexity is rela-tively lower (as
shown in Table.1) and they have sufficiently high estimation
accuracy in the frequency offset capture range which can
meet the actual use requirements. Among them, IMLT3 is a
further simplification of IMLT2. It has a symbol timing esti-
mation accuracy similar to that of IMLT2 while significantly
reducing the computational complexity. Moreover, under the
conditions of in the frequency offset capture range, small
shaping coefficient and low SNR, both of IMLT2 and IMLT3
can achieve performance close to MCRB. Although multiple
simplifications in the derivation of the likelihood function and
the interpolation of the trigonometric polynomial have lead to
the effect of self-noise, this effect is only gradually significant
under the condition of high SNR. But when the SNR is high,
even if the timing offset estimation performance is partly lost,
there is still a high estimation accuracy. Therefore, for the
receiver, IML3 can be used to efficiently replace IMLT1 and
IMLT2 in most cases.

Simulation 2: Performance comparison of IMLT3 under
different timing offset. As shown in Fig.5, it is a perfor-
mance simulation that is using multiple pieces of data with
no frequency offset, various different timing offset and other
conditions consistent with the ‘‘simulation environment’’ of
Simulation 1.

Obviously, under the condition of fixed SNR, IMLT3 has
basically the same high-performance timing offset estima-
tion results for different timing offset and it can achieve
performance close to MCRB when the SNR is low. As the
mentioned above, although in the case of high SNR, the influ-
ence of self-noise becomes more pronounced as the SNR
increases, but the estimation accuracy still slowly improves
with the increase of the SNR. Therefore, regardless of the
SNR, IMLT3 is always a high-performance timing offset
estimation algorithm that can satisfy engineering practice.

Simulation 3: Simulation to verify the anti-frequency off-
set performance of IMLT3. The simulation conditions of Sim-
ulation 3 are consistent with the ‘‘simulation environment’’

FIGURE 6. The influence of the pilot sequence and the number of groups
on the ability of IMLT3 to resist frequency offset.

of Simulation 1, except that the length of the pilot sequence
and the number of groups are indeterminate.

As shown in Fig.6(a) and Fig.6(b), the number of groups
are sixteen but the total length of the pilot sequence are
thirty-two symbols and sixty-four symbols respectively. It is
observed that although both of them have the same number
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FIGURE 7. Performance comparison of different algorithms under different frequency offsets and shaping coefficients.

of groups, but each group contains two and four symbols
respectively, resulting in the former’s anti-frequency offset
performance almost twice that of the latter. The former can
has high-performance timing offset estimation results when
the normalized frequency offset is less than about 0.12, while
the latter can only has high-performance timing offset esti-
mation results when the normalized frequency offset is less
than about 0.06. It can also see that although in the above
frequency offset capture range, both of them are less affected
by frequency offset, but when the normalized frequency offset
exceeds the capture range, the estimation accuracy of the two
are gradually affected by the frequency offset.

Compare Fig.6(a) and Fig.6(c), although each group con-
tains only two symbols, but due to the longer observation
length of the latter and the latter has more series (number of
groups) when using ‘‘multi-level overlay smoothing’’, so that
the latter’s anti-frequency offset performance is slightly better
than the former. In short, ‘‘multi-level overlay smoothing’’
can enhance the anti-frequency offset performance and chan-
nel adaptability of the algorithm, and the more the series,
the more obvious the optimization effect. But overall, fre-
quency offset sensitivity of IMLT3 is still proportional to L

(the number of samples in each group). The less elements in
each group, the stronger of ability to resist frequency offset
and the higher the algorithm complexity. Constrained by the
optimal receiver bandwidth, the performance of IMLT3 can
already meet the requirements of engineering practice for the
accuracy of timing offset estimation in most cases.

Simulation 4: Performance analysis and comparison of
various forward timing offset estimation algorithms. The
following results are obtained from simulation using mul-
tiple pieces of data whose other conditions are consistent
with the ‘‘simulation environment’’ of Simulation 1, except
that AVN and Wang use 256 samples for calculation and
the rolloff coefficient is indefinite. The difference between
IMLT3, IMLTf and IMLTs shown in Fig.7 is only that when
performing trigonometric polynomial interpolation, IMLT3
uses eight samples assist interpolation, while IMLTf only
uses four samples assist interpolation and IMLTs uses sixteen
samples assist interpolation.

The performance comparison of various algorithms is
shown in Fig.7. When there is no frequency offset interfe-
rence, the performance of SML is better than that of IMLTf ,
mainly because of the self-noise of IMLTf is larger than the
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self-noise of SML. And because IMLT3 uses eight samples
assist interpolation to reduce the influence of self-noise, thus
IMLT3 has slightly better timing offset estimation accuracy
than SML. And when there is a slightly larger frequency
offset interference, the disadvantage of SML’s inability to
resist frequency offset makes it unable to estimate timing
offset. However, IMLT3 can still perform high-performance
timing offset estimation results within the frequency offset
capture range, and due to self-noise is tiny, so that IMLT3
still has a much higher estimation accuracy than IMLTf .
On the contrary, although IMLTs uses sixteen samples to
assist interpolation, but the performance of the algorithm is
worse than that of IMLT3 due to the decrease of interpolation
reliability.

Compared with IMLT3, the two NDA algorithms, AVN and
Wang, have relatively poor estimation performance. Even if
the samples of 256 symbols are used for estimation, the esti-
mation performances ofAVN andWang are still far away from
MCRB in the case of low SNR and small shaping coefficient.
Moreover, their estimated performance deteriorates sharply
with the decrease of the shaping coeffi-cient, which is very
unsuitable for the current high-speed and low-power trans-
mission communication requirements. Oppositely, IMLT3 is
insensitive to the shaping coefficient, therefore, the perfor-
mance of IMLT3 can be close to MCRB in the case of
low SNR and small shaping coefficient within the frequency
offset capture range.

IV. CONCLUSION
An improved DA forward symbol timing offset estimation
algorithm for the data of four samples per symbol is proposed
in this article, and in order to make it more suitable for engi-
neering practice, it has been simplified and improved in mul-
tiple stages. The new algorithm uses the idea of maxi-mum
likelihood estimation joint trigonometric polynomial interpo-
lation to easily realize high-performance estimation of timing
offset and overcomes some shortcomings of common forward
symbol timing offset estimation algorithms. When there is no
frequency offset interference, it can obtain the performance
close to MCRB under the conditions of low SNR and small
shaping coefficient. Moreover, when the frequency offset is
in the frequency offset capture range, the performance of
the new algorithm has only acceptable loss compared to the
case of no frequency offset. These algorithm characteristics
make the new algorithm very suitable for applications in the
current common burst communication with high-speed and
low-power transmission characteristics.
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