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ABSTRACT This article presents an effective bearing fault diagnosis model based on multiple extraction and
selection techniques. In multiple feature extraction, the discrete wavelet transform, envelope analysis, and
fast Fourier transform are considered. While the combined binary particle swarm optimization with extended
memory is focusing on feature selection. The current signals are analyzed by discrete wavelet transform.
From there, the statistical features in the time and frequency domain are extracted by two techniques:
envelope analysis, fast Fourier transform. Subsequently, the binary particle swarm optimization is combined
with extended memory and two proposed position update mechanisms to eliminate redundant or irrelevant
features to achieve the optimal feature subset. Besides, three classifiers including naive Bayes, decision tree,
and linear discriminant analysis are applied and compared to select the best model to detect the bearing fault.

INDEX TERMS Fault diagnosis, feature extraction, feature selection, particle swarm optimization.

I. INTRODUCTION

Rotary machines are one of the most important equipment
in the manufacturing industry and other fields nowadays.
Many rotating machinery failures cause not only lead to
huge economic losses but also potentially serious casualties.
One of the most important components in rotating machinery
is bearings. According to Electric Power Research Institute
research, the failure rate of bearings accounts for 41% of the
faults in rotary machines [1]. Therefore, in recent years, bear-
ings fault diagnosis models have been getting more and more
attention from researchers. In this study, a high-performance
bearings fault diagnosis model is investigated based on a com-
bination of techniques to extract attributes from the current
signals of the induction motors. From there, an optimal fea-
ture subset is determined by the feature selection algorithm.
An appropriate classifier is used to identify bearing faults via
the optimal feature subset.

The technique of extracting signal attributes is also known
as feature extraction which applies signal analysis methods
to calculate characteristic features of signals statistics in
time domain, frequency domain and time-frequency domain.
The characteristic features are very important factors that
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contribute to the effectiveness of the classification model.
Some traditional signal analysis techniques are widely used
as envelope analysis (EA), fast Fourier transform (FFT).
There are also some techniques developed for non-linear
and non-stationary signals such as short-time Fourier trans-
form (STFT), wavelet transform (WT), local mean decom-
position (LMD), Hilbert-Huang transform (HHT). However,
the above techniques have their own limitations. EA is a
simple method and low computational cost but the signal
envelopes tend to overshoot and undershoot [2]. This will
likely affect the quality of the extracted features. FFT has
high resolution in the frequency domain but is not effective in
time domain. While STFT has a fixed resolution in both the
frequency and time domain [3]. WT overcame the problems
of STFT with high resolution in both the frequency and
time domain. This is done by working with different window
sizes. However, WT is not enough effective for nonlinear
signals [4]. Compared with WT, LMD is essentially self-
adaptive feature, and the endpoint effect of LMD involves
a certain degree of inhibition, simultaneously addressing the
problem of under-envelope and over-envelope [5]. Recently
HHT has attracted more attention from researchers. This tech-
nique combines the empirical mode decomposition (EMD)
and Hilbert transforms (HT) for analysis to analyze non-
linear and non-stationary time series. However, one problem
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that still exists for HHT is that it is particularly sensitive to
noise [6].

For these reasons, the combination of signal analysis tech-
niques is a better approach to feature extraction. Discrete
wavelet transform (DWT) is one alternative of WT. There-
fore, DWT has full advantages of WT. In addition, DWT also
has good noise reduction ability. To remove noise and extract
the potential features from the current signal, the combination
of DWT, FFT and EA has been investigated in this study.
First, DWT decomposed the original signal into components
with different frequencies. From there, the statistical charac-
teristics in the frequency and time domain are extracted from
these components by two techniques: FFT and EA.

However, among those features that are extracted by the
signal processing method, it is possible that redundant or
irrelevant features are included in the feature set [7]. That
affects the predicted accuracy. In order to solve this problem,
the feature selection technique is used to eliminate redundant
and irrelevant features, finding the most optimal feature set.
In recent years, evolutionary computational techniques (ECs)
have been implemented for feature selection problems such as
particle swarm optimization (PSO), genetic algorithm (GA),
grey wolf optimizer (GWO), differential evolution (DE).
However, each technique has its own shortcomings. The main
drawback of PSO is the premature convergence to find the
best solution and prone fall into a local optimum trap [8].
While GA owns crossover and mutation operations which
are relatively directionless operations in the search space,
that makes GA a high computational cost [8]. BWO also
encountered the same problems as PSO, it has tended to fall
into a local optimum [9]. DE also has the same shortcomings
as other evolutionary algorithms. In addition, DE is also
difficult to adjust control parameters for various issues [10].

The solutions presented in ECs for feature selection are
number sequences, whereby the dimensionality is equal to
the total number of features in the dataset [11]. The elements
in number sequence can be binary numbers in binary search
space or real numbers in continuous search space. In this
study, the ECs for feature selection in the binary search space
is considered. Therefore, the above techniques are also known
as binary-PSO (BPSO) [12], binary-GA (BGA) [13], binary-
GWO (BGWO) [9], [14], binary-DE (BDE) [15]. In which
the optimal solution is presented as a binary string, where ‘1’
shows the corresponding feature is selected and ‘0’ means
not selected. Almost no optimal techniques can guarantee the
perfect optimal feature set except when an exhaustive search
is performed. However, an exhaustive search often takes a
long time because a feature set with n features includes the
total number of 2" solutions [16]. Despite this, PSO and its
variants are still the optimal methods that researchers invest
the most [11], [17], [18].

Unlike PSO, the velocity in BPSO does not directly deter-
mine the new position of a particle. It is converted into the
binary value for the corresponding position by the transfer
function. In the binary search space, new solutions are cre-
ated by flipping their position entries [19]. Therefore, there

198344

is no guarantee that the new positions after going through
the update process do not coincide with the previous ones.
This can waste resources and increase computational costs.
To solve the above problem, the BPSO-based feature selec-
tion technique with extended memory is proposed, so-called
BPSO-EM. Extended memory is proposed to be used to store
all historical solutions. New solutions are compared with in-
memory solutions to ensure that there is no repetition and
maintain high diversity among the particles. In addition, two
new position update mechanisms are proposed to enhance the
ability to find promising areas around the best solution and
global exploration capabilities.

Besides the hard work of finding an optimal feature set,
feature classification is another important part of the fault
diagnosis model. The optimal feature subset from the feature
selection technique is the input of the classifier, which is
evaluated based on classification accuracy. Currently, neural
networks are widely applied in the field of intelligent diag-
nosis of machinery faults [20], [21]. However, it is a com-
plex system. Neural networks are also more computation-
ally expensive than traditional algorithms [22]. Meanwhile,
machine learning algorithms with simpler advantages but
high classification efficiency, suitable for small and medium
data sets. Therefore, in this study, three machine learning
algorithms naive Bayes (NB), decision tree (DT), linear dis-
criminant analysis (LDA) were applied and their classifica-
tion performance was compared to select the most effective
fault diagnosis model. Based on the strengths and weaknesses
of the methods analyzed above, they motivated us to propose
an intelligence bearing fault diagnosis model using multiple
feature extraction and binary particle swarm optimization
with extended memory for feature selection was created.

The key points of this study are summarized as follows:

1) Propose a feature extraction technique from a combina-
tion of three signal analysis methods (DWT, FFT, and
EA). The main advantage of this approach is simplic-
ity and low computational complexity. This approach
helps to reduce the size of raw data, extract potential
features to increase diagnostic efficiency.

2) Propose a feature selection technique using BPSO
with extended memory and incorporate two new posi-
tion update mechanisms to enhance exploration and
exploitation abilities, maintain a high diversity popu-
lation, and prevent premature convergence.

3) Propose an intelligent and efficient bearing fault
diagnosis model from the combination of the feature
extraction, feature selection, and feature classification
techniques.

Il. FEATURE EXTRACTION

The main task of this section is to extract potential features
from the current signal of the induction motor in the time
and frequency domain. For this purpose, the current signals
are first acquired from the test motors. The feature extrac-
tion process has a combination of three signal processing
techniques, where are DWT, EA, and FFT. Then, statistical
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FIGURE 1. Flowchart of n-level wavelet decomposition of x(t).

features are extracted as fault signatures from the time and
frequency domains of each decomposed signal.

A. DISCRETE WAVELET TRANSFORM
Wavelet transform is a powerful tool for analysing tran-
sient or non-stationary signals. It has been applied in many
fields [23]-[25]. In WT, the signal x(¢) is decomposed into
components with different frequency bands which are gener-
ated by scaling and translating a mother wavelet [26].

The continuous wavelet transform (CWT) of x(z) is
expressed as

CWT(a, b) = L /+°Ox () lﬂﬂdt Q)
U Vial J - a

where 1 (¢) denotes the mother wavelet function, a is the scale
factor and b is the translation or shifting factor.
The DWT is the discretization version of CWT, defined by

DWI(. k) = — /+Oox(t)w<t_2jk> )
) ) >

where a, b are replaced by 2/ and 2k
DWT is often used to improve computational efficiency
[26]. Fig. 1 shows a decomposition tree structure of DWT for
n levels. The original signal x(¢) is passed through the low
pass (LP) and high pass (HP) filter resulting in two vectors
called approximate a and detailed d coefficients, respec-
tively. The symbol |2 indicating down-sampling means that
itignores the odd-indexed elements of the filtered signal [27].

B. ENVELOPE ANALYSIS AND FFT
Envelope analysis is a simple method performed as follows:
First, determine all the local extrema of the input data. Then,
connect all the local maxima by a cubic spline line as shown
in the upper envelope. Repeat the procedure for the local
minima to produce the lower envelope. The upper and lower
envelopes should cover all the data between them [4], [28].

FFT is a very efficient algorithm to calculate the discrete
Fourier transform (DFT). FFT converts the signal x(#) with ¢
samples from the time domain to frequency domain on a finite
number of frequency lines k, where the distance between each
line is the frequency resolution [29]. The expression of FFT
is shown in (3)

N-1
Y(k) =) x(t)e >IN 3)

n=0

C. FEATURE EXTRACTION PROCESS
When a failure occurs in the rotating machinery, the current
signal is affected by a bearing fault. This leads to changes in
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TABLE 1. Definition for seven statistic parameters in time domain.

Feature Equation
N
(1) Mean value X _ Y= X(1)
mean N
N 2
(2) Standard deviation o= 21 () Ximean)”
std N-1

(3) Root mean square s

_ (z:Y] J |x(n>|>2
N

Max value Xmax = max(x(n
4 1 )
5) Min value Xmin= Min(x(n
in val in(x(n)
N _ 4
(6) Kurtosis X = anl (x(n) )jmean)
(N-1)xy
N " 3
(7) Skewness Xeke = Zn:l (x(n) xmean)

(N-1)dy

Note: x(n) is a signal series forn =1, 2, ..., N, where N is the number
of data points.

amplitude and distribution in the time domain and frequency

of the signal. In this work, the feature extraction process is

performed as follows:

Step 1: DWT is first used for signal decomposition. In this
article, the wavelet decomposition of the signal analyzed
at level 4 is adopted. Fig. 2a illustrates the wavelet
decomposition of the healthy signal at level 4. The
output decomposition structure consists of the wavelet
decomposition vectors: the detail coefficients dy, d3, d3,
dy, and approximation coefficient a4. Four detail coefti-
cients are treated as input of EA and FFT techniques.

Step 2: EA is applied for each detail coefficient. The seven
statistical feature parameters in time domain are cal-
culated from the upper envelope and do the same for
the lower envelope. A total of 56 features (4*2*7) are
extracted from the time domain using EA technique.
Fig. 2b illustrates the EA technique applied to d3 and
14 features obtained from the upper envelope and the
lower envelope.

Step 3: Similar to Step 2, FFT is also applied to each detailed
coefficient. The five statistical feature parameters in
frequency domain are calculated from the frequency
spectrum of the detail coefficient. A total of 20 features
(4*5) are extracted from the frequency domain by the
FFT technique. Fig. 2c illustrates five features obtained
from the frequency spectrum of d3.

Thus, the feature dataset of each signature contains 76 fea-
tures. Table 1 and Table 2 presents the mathematical expres-
sions of these statistical feature parameters in time domain
and frequency domain [30], [31]. The order and denoted of
the features are arranged in Fig. 3.
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FIGURE 2. The illustration of the feature extraction process.

TABLE 2. Definition for five statistic parameters in frequency domain.

Feature Equation
Y (k)
(1) Mean frequency — &kl
mf K
k
(2) Frequency centre o= Zlﬂf"y( )
Zlﬂ y(k)

(3) Root variance

_[ZE ) v
Xpy X
I Z/ﬂfz (k)
N DY ST

_ leél(ﬂ(-xfc)l/zﬂk)

rmsr
K /x

(4) Root mean square
frequency

(5) Root mean square ratio

Note: y(k) is spectrum of the signal for k=1, 2, ..., K, where X is the
number of the spectrum lines, and f; is the frequency value of the ith
spectrum line.

lIl. BINARY PARTICLE SWARM OPTIMIZATION WITH
EXTENDED MEMORY (BPSO-EM) FOR FEATURE
SELECTION

This section starts by introducing the basic BPSO algorithm
for feature selection. It then explains two mechanisms of
position updating: 1) Updating the particle position based on
feature weights; 2) Updating the particle position based on
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FIGURE 3. The order and denoted of features in the feature.

crossover operation. The operation of these two mechanisms
combines with extended memory to create a potential solu-
tion. Finally, it presents the overall algorithm of BPSO-EM.

A. BINARY PARTICLE SWARM OPTIMIZATION

The standard BPSO was introduced by Kennedy and Eberhart
in 1997 [12]. In BPSO, each particle is considered a solution
in binary search space (i.e., each feature subset) is represented
as a bit string, in which each position of a particle with value
‘1’ means the corresponding feature is selected and ‘0’ means
unselected. Unlike continuous PSO, the position of a particle
in BPSO is updated by flipping each position bit from the
value 0 to 1 or vice versa by converting its velocity to the
probability value s(viq) performed by the transfer function.
The most widely used transfer function is the sigmoid func-
tion in (4). The position bit value xjq is updated as (5).

1

e @

s(vid) =
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1, ifrand < s(viq)
Xid = . )
0, otherwise

where rand is a random number uniformly distributed within
the interval of [0, 1] and the dth bit of the ith particle.

For each particle (solution), the velocity vig is updated
as (6) [32]:

Vid = Wvid + c171(Pid — Xia) + c272(8d — Xid) (6)

where w is the inertia weight, pjq is dth bit of the per-
sonal best position of the ith particle, gq denotes the dth
bit of the global best position (i.e., the best position of
the personal best in the swarm), ¢; and ¢ are the accel-
eration coefficients, r; and r, are random variables in the
range [0, 1].

According to [19], the inertia weight value plays an impor-
tant role in balancing exploration and exploration in search
space. The linear time-varying inertia weight is applied in
this study as shown in (7), its value decreases from 0.9 to
0.4 according to the number of iteration [33].

) @)

W = Wmax — (Wmax — Wmin)(
Tmax
where wpin and wpax are the minimum and maximum values
of inertia weight which set at 0.4 and 0.9, respectively, ¢ is
the number of iterations and Tyax 1s the maximum number of
iterations.

Each particle is updated its position to find the best solu-
tion of personal is called personal best (pbest) and the best
solution of the swarm is called global best (gbest). In this
article, the position of particles (solutions) assessed by the
fitness value is the maximum classification accuracy of k-NN
classifier.

In addition, a feature selection method using evolutionary
algorithms is a wrapper method that uses a learning algorithm
performance accuracy as a feature evaluation criterion [7].
Besides, the number of selected features is also considered
to compare the effectiveness of the methods. Therefore,
the update procedure pbest and gbest select classification
performance as first priority in this study as proposed in [34].
First, the pbest is updated if the classification accuracy of a
particle’s new position is better than its pbest value. In this
case, the number of selected features will not be considered
as in the traditional update procedure. Second, if the fitness
value of a particle’s new position is equal to pbest and the
number of selected features selected is smaller then the pbest
will be updated by the particle’s new position. This guaran-
tees a better solution with the same fitness value but fewer
numbers of selected features. The update procedure gbest
is similar to pbest by comparing pbest value of particles.
The update procedure is expressed as pseudocode 1 where
X; = (X1, . . ., Xin) (nis the dimension) and p; = (pi1, . . - ,Pin)
are the current position and personal best position of the ith
particle, respectively. g = (g1,...,8,) is the global best
position.
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B. UPDATING THE PARTICLE’S POSITION BASED ON
FEATURE WEIGHTS

While the particles in the swarm have not yet found the most
optimal solution, the space near the best current position of
the swarm is considered a potential region [35]. Therefore,
exploring solutions around this region is worth considering.
This article proposed the particle’s position updating mech-
anism based on feature weights. Each weight of a feature is
calculated by ReliefF algorithm which is one of the widely
used and effective methods to evaluate features [36]. The
condition for implementing this mechanism is the Hamming
distance S between the particle’s current position and the best
solution of the swarm is calculated. If half this distance does
not exceed a difference threshold 6, this update mechanism is
executed. The 6 threshold is often set to D /4 (with D being the
feature set length) [37]. The Hamming distance between two
binary vectors of the same length is the number of positions at
which the corresponding bit values are different. Calculating
the Hamming distance between two binary vectors includes
two steps: 1) Using binary XOR operator for two binary
vectors and 2) Counting the number of 1s in the resulting
vector [38].

Thus, if condition S/2 < 6 (where & = D/4) is satisfied,
it means that the current position of the particle is close
to gbest, then different bit positions of the particle will be
considered for adjustment based on their weights, so-called
fine-tuning process. In addition, roulette wheel selection is
applied as an effective tool to select a feature proportional
to its probability. Thus, if a feature has a higher weight, its
probability of getting selected is higher. However, in roulette
wheel selection there may be cases where a higher feature
weight may not be selected. This is to ensure the diversity of
the population.

Details of the update mechanism are described as follows:

Step 1: The weighted vector of the feature set w is calculated
by ReleifF algorithm.

Step 2: Find the difference between gbest and particle’s cur-
rent position x; using the binary XOR operator.

Step 3: A sub-vector u extracted from the original feature
weight vector w corresponding to the different positions
between gbest and x;. Note that this mechanism only
considers the position bits of x; different from gbest. The
rest of x; remains the same.

Step 4: Calculate the probability of selection to the feature
weight sub-vector. If ; is the weight of ith feature in
the feature weight sub-vector u, then its probability q of
being selected is:

Ui
% Doisy i
where m is the number of elements in the sub-vector.

Step 5: Apply the roulette wheel selection process for select-
ing potentially useful features based on their weights.
The features are selected as the wheel is spun many
times and each time selecting a value of the weighted
probability vector. The number of spins is the number

®)
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FIGURE 4. The example of the particl’s position updating mechanism
based on feature weights.

5th

4th oth

of different bits between two particles gbest and x; to
the difference between their positions.

Step 6: The positions selected from the roulette wheel selec-
tion process are re-mapped to the corresponding posi-
tions of x; creating a particle’s new position Xpey -

An example of this update mechanism is illustrated in the
Fig. 4. Assume that a feature weight vector of a feature set w
calculated using a ReliefF method consists of 13 elements.
gbest and the particle’s current position x; are a 13-bits
binary bit string the same to the length of the feature set.
In Step 2, values ‘1’ of the result vector gbest @ x; indicates
that there are differences between gpest and X. In Step 3,
a feature weight sub-vector feature u was extracted from w
corresponding to 6 different positions (1,4, 6,7, 9, 11). Then,
the probability of each element in u is then calculated by (8).
Step 5 is to make a roulette wheel and spin 6 times. As aresult,
features in positions 6, 11, 1,4, 1 and 1 are selected for 6 times
spinning where 3rd 5th gth gelect the same feature. Finally,
Xnew 18 restructured based on the selected feature indexes (1,
4, 6, 11). Other positions are retained their original values.

C. UPDATING THE PARTICLE’S POSITION BASED ON
CROSSOVER OPERATION

Inspired by genetic algorithms: The good parents were much
more likely than ordinary parents to produce offspring of
ability. Indeed, the combination of two good solutions highly
possible to create more effective solutions. Crossover opera-
tion is a powerful tool for doing that. This operation is capable
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FIGURE 5. The illustration of the three-points crossover.

of exploring new areas in the search space, enhancing global
search capabilities, ensuring population diversity, and pre-
venting premature convergence. The three-points crossover
operation is applied in this article, wherein a pair of personal
best solutions selected randomly from the set of personal
best positions of the particles by the roulette wheel selection
technique based on their fitness values. Three-point crossover
proceeds by cutting the pair of personal best solutions at three
random points and swapping the segments to create two new
solutions (positions). Then one of two is chosen to replace the
particle’s current position. Fig. 5 illustrates the three-points
CTOSSOVer.

D. THE PROPOSED BPSO-EM METHOD
The proposed extended memory used in BPSO-EM, which
has arole to store all positions (solutions) that have been eval-
uated by the fitness function. Position update mechanisms are
executed which means the particle moved to a new position.
The new position of the particle will be compared with each
position stored in the extended memory. If the new position of
the particle matches the solutions in memory, position update
mechanisms will work to update the new position that reaches
more promising areas in the search space. New solutions
are always checked with extended memory to ensure new
positions are not the same as those previously evaluated. This
process avoids adding a noticeable amount of computation
because evaluating solutions is a time-consuming operation
to calculate [39]. On the other hand, combining BPSO with
EM helps solve the local trap problem and further improves
its performance. Therefore, BPSO-EM is a new approach for
feature selection proposed in this article. However, the size
of the extended memory EM will depend on the size of
the data set and the maximum number of iterations of the
algorithm. That may increase the model’s computation cost.
The procedure of the proposed method to identify the best
solution (the optimal feature subset) is shown in Fig. 6.
Pseudocode 2 shows the process of checking and updating
positions according to the two mechanisms described in the
previous subsection.

A p threshold is set to optimize the algorithm, preventing it
from falling into an infinite loop. Especially low-dimensional
datasets, because if a feature dataset has only a few features,

VOLUME 8, 2020



C.-Y. Lee, T.-A. Le: Intelligence Bearing Fault Diagnosis Model Using Multiple Feature Extraction and BPSO-EM

IEEE Access

Set parameters
Input particles:i = 1,2,.., N
€56, T, in

A4
Initialize population
X; = (X5 Xi250005X;,)
Set the velocity for each particle
Vi = VisVigseo Vi

| Construct extended memory E I

| Evaluate the fitness for each particle I

Find pbest P, = (P15 Pi2s---sPia)
gbest E=P;
2
Calculate inertia weight
2
Update particle velocity v
Update particle position X,

The process of checking
and updating positions

Update particle position X,
based on feature weights

Isx ., the same with
elements in extended

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: Isx,.,the same with
| elements in extended
|

|

|

Update extended memory

> Evaluate the fitness for the new position
of particle
v
| Update P;»8 I
A Yes
| Optimal feature subset I

FIGURE 6. The flowchart of the proposed BPSO-EM method.

the total number of solutions is very small. Therefore, it will
take a long time to check and find the satisfying position
provided that it is not the same as the positions in the extended
memory. The selection of p threshold is user-defined. Note
that this threshold value will affect the computation time of
the algorithm. In this study, p = 100 is used for all data sets
used to evaluate the effectiveness of this algorithm.

In BPSO-EM, the traditional updating mechanism of
BPSO is maintained if the new position has a Hamming
distance with gbest that does not satisfy condition S/2 < 6
and is not the same as in-memory solutions (see subsection
III.B). The direction of the red arrow in Fig. 6 shows the
process of checking and updating positions is ignored.
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Pseudocode 1 The Update Procedure pbest and gbest With
Classification Performance as First Priority

Lif f(xi) > f(pi)

2:  pi = Xi; /lupdate pbest

3. elseif f(x)) ==f(pi)and |xi| < [pil

Pi = Xi; //update pbest

4:

5: end

6: end

70 f (pi) >f(g)

8: g =pi; /lupdate gbest

9: elseif f(p;) ==f(g)and |pi| < Ig|
10: g =pi; /lupdate gbest

11: end

12: end

A simple classifier, k-NN, is used with the number of near-
est neighbor k = 1 and 10-folds cross-validation to evaluate
each particle. Euclidean distance is used to compute k closest
neighbors. The fitness function is based on the classification
accuracy of k-NN classifier, which is defined as follows [40]:

N-
Te o 100% )

True + NFalse

Fitness =

where N 1s the number of true predicted instances, Npaise
is the number of false predicted instances.

IV. INTELLIGENCE MODEL FOR BEARING

FAULT DIAGNOSIS

This section proposes an intelligence model for bearing fault
diagnosis based on the current signals of the induction motor.
It is proposed based on a combination of three processing
signal techniques DWT, EA, and FFT for feature extraction,
binary particle swarm optimization with extended memory
for feature selection, and a suitable classier. This model is
depicted in Fig. 7 and consists of three important stages as
follows:

Stage 1: The current signals are acquired from test motors,
which are decomposed by DWT. The wavelet decompo-
sition of the current signals at level 4 using the order
4 Symlets wavelet [41], [42]. Four detail coefficients
from the decomposition are considered as inputs for
EA and FFT techniques. Each detail coefficient obtains
14 features in time domain from the upper envelope and
the lower envelope and 5 features in frequency domain
from its spectrum. A total of 76 features were extracted
during this approach.

Stage 2: The process of optimizing the feature set obtained
from Stage 1 is done through an efficient stochastic
optimization algorithm based on a combination of BPSO
and extended memory. As a result, redundant and irrele-
vant features are eliminated. The optimal feature subset
will improve the accuracy of the diagnostic model.

Stage 3: The optimal feature subset is the input data, which
is provided separately for three well-known classifiers:
NB, DT, and LDA. The accuracy classifications are used
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Pseudocode 2 The Process of Checking and Updating Posi-
tions
input: Current position of particle x
Global best position g
Extended memory E
output: New position of particle Xpey
1: § <« calculate Hamming distance between x and g;
2:if S/2 < 0 /lwhere 0 = D/4 (D being the feature set

length).

3: X <« position update mechanism based on feature

weights;

4: end

5: L < the size of extended memory E;

6: whilei < L

7: i=i+1;

8: if x is the same with e; of extended memory
/lcompare x to each value in the extended
memory.

9: X < position update mechanism based on

crossover operation;

10: times = times + 1;

11: i = 0; //reset i to check the changed position

with the first value in extended memory.

12: end

13: if times > p

14: times = 0; break; //to avoid an infinite loop.

15: end

16: end

17: E < x; /lupdate x to extended memory.
18: Xpew <— X; /update Xpew-

TABLE 3. Description of 6 benchmark datasets.

Datasets Features Instances Classes
Wine 13 178 3
Vehicle 18 94 4
Segmentation 19 2310 7
BreastEW 30 569 2
Tonosphere 34 351 2
Sonar 60 208 2

to evaluate the efficiency and compatibility of classifiers
with bearings data to select an optimal model for detect-
ing bearings faults.

V. EXPERIMENT RESULTS
In this section, the experiments are divided into two case
studies.

Case study 1: To examine the effectiveness of the proposed
feature selection algorithm and evaluate its applicability
not only in the bearing fault diagnosis model but also
in the pattern recognition field. It presents the results of
evaluating the BPSO-EM algorithm for feature selection
based on benchmark datasets. Its results are compared
with well-known evolutionary computation paradigms
for feature selection and also compared with state-of-art
feature selection algorithms.
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FIGURE 7. Intelligence model for bearing fault diagnosis.

Case study 2: The effectiveness of the proposed bearing
fault diagnosis model is evaluated and analyzed based on
the dataset acquired from test motors including healthy
motor and bearing failure motors. This real dataset has
named the bearings dataset.

A. CASE STUDY 1: BENCHMARK DATASETS

1) DATA DESCRIPTION

Usually, the datasets used in fault motor diagnostic mod-
els are low-dimensional data sets [40], [43]. Therefore, six
benchmark datasets with small sizes were selected from the
UCI Machine Learning Repository [44] to perform in this
study including Wine Sonar, Vehicle, Segmentation Iono-
sphere, BreastEW, Ionosphere, and Sonar. The description of
the 6 benchmark datasets is shown in Table 3.

2) PARAMETER SETTING AND EVALUATION CRITERION

In this subsection, parameters are assigned values for all our
experiments. All parameters used in the proposed BPSO-
EM algorithm are presented as follow: number of particles:
10, maximum number of iterations: 100, ¢; = ¢, = 2.05,
Wmin = 0.4, wmax = 0.9, p = 100 (see subsection II1.D).
In addition, the parameters of four evolutionary computation
algorithms used for comparison including binary particle
swarm optimization (BPSO), genetic algorithm (GA), binary
grey wolf optimizer (BGWO), binary differential evolution
(BDE), which are presented in Table 4.

Currently, feature selection methods are categorized into
two groups: 1) Wrappers; 2) Filter approach [11]. The wrap-
per approaches use a classifier to evaluate the selected feature.
In contrast, a filter feature selection approach is independent
of any classification algorithm. In this study, BPSO-EM is
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FIGURE 8. Convergence curves for BPSO-EM and well-known evolutionary computation paradigms.
TABLE 4. Parameter setting of four evolutionary computation algorithms.
BPSO GA BGWO BDE
Number of particles:10 Number of chromosomes: 10 Number of wolves: 10 Number of vectors:10
Maximum number of Maximum number of iterations: 100 Maximum number of iterations: Maximum number of iterations:
iterations: 100 Crossover rate: 0.8 100 100
c1=c=2.05 Mutation rate: 0.01 Crossover rate: 0.9
Wmin = 0.4
Wnax = 0.9

TABLE 5. Comparison between BPSO-EM and the well-known evolutionary computation paradigms.

BPSO GA BGWO BDE BPSO-EM

Datasets Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg

Acc No.F Acc No.F Acc No.F Acc No.F Acc No.F
Wine 99.4 6.8 99.4 8.7 99.1 9.4 99.4 9.4 99.8 8.4
Vehicle 75.0 8.7 76.8 8.8 74.6 12.4 74.7 12.8 79.5 8.0
Segmentation 98.0 8.5 98.1 10.4 97.6 13.7 97.7 13.8 98.4 9.3
BreastEW 97.6 15.9 98.0 15.1 97.5 21.9 97.6 222 98.3 16.2
Ionosphere 933 12.7 94.2 14.5 92.6 20.8 92.7 21.2 95.5 13.9
Sonar 93.1 29.6 95.4 304 93.5 41.9 93.4 45.6 94.9 304

Avg Acc: The average classification accuracy (%).

Avg No.F: the average number of selected features.

considered as a wrapper feature selection method, which
uses k-NN classifier in the feature subset evaluation step via
the best classification performance. There are usually two
criteria used to evaluate the effectiveness of a feature selec-
tion method, such as 1) Maximize classification accuracy;
2) Minimize the number of selected features [11]. In this
study, the classification accuracy criterion is our first priority.
This criterion also conforms to the requirements of the high-
accuracy fault diagnosis model. Equation (9) presents the
fitness value of BPSO-EM, which is also the classification
accuracy criterion.
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3) COMPARISON WITH THE WELL-KNOWN EVOLUTIONARY
COMPUTATION PARADIGMS

The experimental datasets are simulated by a personal
computer (PC) with Intel Core i3-7100 3.9Ghz (4CPUs),
16GB RAM, and Matlab 2017a. In this subsection, four
the algorithms for feature selection are adopted to compare
and evaluate the effectiveness of the proposed BPSO-EM
algorithm. They represent categories of ECs including BPSO,
BGWO as popular algorithms in swarm intelligence, GA as

a typical algorithm in evolutionary algorithms, and another
algorithm as BDE.
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FIGURE 9. The average computational time of five algorithms for six
datasets.

The results of algorithms are quantitatively compared

using the following metrics:
« Convergence curves of the best-so-far solutions.

o The average classification accuracy and the average
number of selected features are calculated for the
30 independence runs.

o The average computational time is calculated for the
30 independence runs, where the maximum number of

iterations is 100 for 1 run.
Observe the convergence curves of the best solutions so

far in Fig. 8, the BPSO-EM has a higher classification accu-
racy than 4 other algorithms on 4 of 6 benchmark datasets
including Segmentation, BreastEW, Ionosphere, and Sonar.
In particular, the proposed algorithm is much more efficient
than BDE on Ionosphere and Sonar with the differences
of 4.2% and 2.4%, respectively. While GA has reached the
highest classification accuracy on Vehicle dataset. All five
algorithms achieve 100% classification accuracy on Wine
dataset.

The average classification accuracy (Avg Acc) and the
average number of selected features (Avg No.F) are presented
in Table 5. The results of the better algorithm for each data are
made bold. The results show that BPSO-EM achieves better
average classification accuracy than the four compared algo-
rithms on 5 of 6 benchmark datasets including Wine, Vehi-
cle, Segmentation, BreastEW, and Ionosphere. Especially on
Vehicles and Tonosphere, BPSO-EM is significantly better
than BGWO with the differences of 4.9% and 2.6%, respec-
tively. Considering the average number of selected features,
BPSO achieved the smallest average number of selected fea-
tures on 4 of 6 data sets. While BPSO-EM is most effective on
Vehicle dataset. The above results show that the two criteria
for average classification accuracy and the average number of
selected features are often contradictory. However, the ability
to select the optimal feature subset of the proposed method is
better than the comparison algorithms based on the average
classification accuracy.

The average computational time of each algorithm is
shown in Fig. 9. It’s easy to realize that GA is the most
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time-consuming algorithm of all the datasets. When BPSO-
EM took more time than the other three algorithms (BPSO,
BGWO, BDE) on the three datasets as Vehicle, BreastEW,
and Ionosphere. On the Wine, Segmentation, and Sonar
datasets, the computational times of the algorithms are simi-
lar, except for GA.

In general, with significant classification performance, the
proposed approach highly possible to compete with other
state-of-art algorithms for feature selection. This is satisfied
with our priority criteria (classification performance) set in
this study.

4) COMPARISON WITH THE STATE-OF-ART FEATURE
SELECTION ALGORITHMS

In order to an objective assessment of the ability of the pro-
posed approach in the feature selection problem, a compari-
son between BPSO-EM and the results cited from the state-
of-art feature selection algorithms which represent recent
research directions on this problem has been carried out.
Brief description of state-of-art feature subset selection algo-
rithms is as follows: 1) A hybrid feature selection method is
proposed seagull optimization algorithm (SOA) and thermal
exchange optimization (TEO) is named SOA-TEO3 [45];
2) An approach to improve the PSO algorithm on the update
mechanism and in conjunction with the spiral mechanism
to enhance local search around the optimal solution called
HPSO-SSM [46]; 3) BGOA-M proposed in [47] is based
on a combination of grasshopper optimization algorithm and
mutation operator to enhance the exploration ability of the
algorithm; 4) A binary variant of the butterfly optimization
algorithm (BOA) proposed in [48] to improve the explo-
ration ability in the feature search space, which is called
S-bBOA; 5) A hybrid algorithm based on a combination of
the whale optimization algorithm (WOA) and the simulated
annealing algorithm (SA) called WOASAT-2, which is pro-
posed to enhance exploitation ability by searching the opti-
mal solution in a promising area [49]. All five optimization
algorithms are categorized as swarm intelligent algorithms.
The two indicators are used in this comparison including
the average classification accuracy and the average number
of the selected features. Table 6 presents the comparison
result of the proposed approach with SOA-TEO3, HPSO-
SSM, BGOA-M, S-bBOA, and WOASAT-2. The results of
the better algorithm for each data are made bold. Com-
pared with other feature selection algorithms, it can be eas-
ily deduced from the results in Table 6 that the proposed
approach achieved better classification accuracy than the
other comparison algorithms on the Wine, Segmentation, and
BreastEW datasets. On the Sonar and Ionosphere datasets,
the proposed approach reached better classification accuracy
than the other algorithms but slightly worse than WOASAT-2.
However, the proposed approach did not really excel in the
lowest number of selected feature criteria. In summary, based
on the classification performance of the proposed algorithm
which is worth considering for the feature selection problem.
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TABLE 6. Comparison between BPSO-EM and the state-of-art feature
selection algorithms.

Datasets Algorithms AcAcV(% %) gng
Wine SOA-TEO3[45] 90.94 3.81
HPSO-SSM [46] 99.38 443

BGOA-M [47] 98.88 4.40

S-bBOA [48] 98.43 6.20

WOASAT-2 [49] 99.00 6.40

BPSO-EM 99.80 8.40

Vehicle SOA-TEO3[45] 91.71 6.07
BGOA-M [47] 77.04 9.60

BPSO-EM 79.50 8.00

Segmentation HPSO-SSM [46] 97.56 8.07
BPSO-EM 98.40 9.30
BreastEW SOA-TEO3[45] 94.55 9.11
HPSO-SSM [46] 94.89 6.76

BGOA-M [47] 96.97 12.50

S-bBOA [48] 97.09 16.80

WOASAT-2 [49] 98.00 11.60

BPSO-EM 98.30 16.20
Ionosphere SOA-TEO3[45] 90.53 7.58
HPSO-SSM [46] 92.57 7.10

BGOA-M [47] 94.58 11.46

S-bBOA [48] 90.70 16.20

WOASAT-2 [49] 96.00 12.80

BPSO-EM 95.50 13.90

Sonar SOA-TEO3[45] 93.97 27.17

BGOA-M [47] 91.47 26.80

S-bBOA [48] 93.62 32.80

WOASAT-2 [49] 97.00 26.40

BPSO-EM 94.90 30.40

Avg Acc: The average classification accuracy (%).
Avg No.F: the average number of selected features.

A hole is made with 0.53
different sizes in inner ring

@1 4

1.96

||_0.53

(©

FIGURE 10. Bearing artificial fault with different dimensions. a) square
hole with a height x width (0.53mm x 0.53mm) b) square hole with a
height x width (0.53mm x 1.24mm) c) square hole with a height x width
(0.53mm x 1.96mm).

B. CASE STUDY 2: BEARING DATASET

1) EXPERIMENTAL SETUP AND DATA ACQUISITION

This work focuses on detecting the bearing fault of the
induction motor. Bearings of the test motors are artificially
made a square hole on the inner ring with different dimen-
sions as shown in Fig. 10. The stator current signals are
measured from a healthy motor and three types of bearings
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Induction motor

FIGURE 11. The experimental hardware architecture model.

TABLE 7. Results of the feature selection algorithms on bearings dataset.

Algorithms Avg Acc Avg No.F
(o)

BPSO 96.5 30.3

GA 98.0 315

BGWO 94.4 48.8

BDE 94.4 48.9

BPSO-EM 99.7 27.8

Avg Acc: The average classification accuracy (%).
Avg No.F: the average number of selected features.

fault motors. The experimental hardware architecture model
is shown in Fig. 11 including AC motors (3 phase induction
motor, 4 poles, 2 HP, 380VAC, 60Hz), data acquisition equip-
ment (NI PXI-1033), dynamometer (69Hz, 11kW, 2000rpm)
and PC. Besides, there are also power supply systems and
dynamometer control cabinet. There are 200 instances col-
lected corresponding to four cases (a healthy motor and three
faulty motors). Each instance contained 2000 data points that
are sampled within 2 seconds.

2) TECHNIQUES IMPLEMENTATION

This subsection is presented based on the 3 stages of the
intelligent bearing fault diagnosis model proposed in section
IV. In stage 1, the 200 instances from test motors are analyzed
by DWT, EA, and FFT techniques. There are 76 potential
features that are extracted by the feature extraction process as
presented in section II. A bearing fault dataset from 4 types of
testing motors is established with 76 features, 200 instances,
and 4 classes. The size of this dataset is similar to the
benchmark datasets used above.

In stage 2, the proposed feature selection algorithm is
applied to the bearing dataset. In addition, four other feature
selection algorithms (BPSO, GA, BGWO, BDE) are also
calculated and compared effectively on this dataset. The
results shown in Table 7 include two criteria to evaluate
the performance of feature selection algorithms where aver-
age classification accuracy as first priority. The proposed
approach reached average classification accuracy higher than
the other algorithms with 30 independence runs. In particular,
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TABLE 8. Details of the best optimal feature subset on the bearings dataset.

Algorithms Features Feature indicators (F)
BPSO 28 2,3,5,6,8,9,10, 12, 15, 20, 22, 23, 29, 30, 33, 35, 36, 37, 38, 41, 42, 43, 44, 45, 50, 57, 64, 66.
GA 31 2,3,4,8,9,10, 11, 15, 19, 22, 23, 24, 25, 28, 30, 31, 33, 34, 35, 43, 44, 45, 51, 52, 57, 58, 60, 62, 64,
66, 71.
BGWO 51 1,2,3,5,7,8,9,10, 11, 13, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37,
38, 40,41, 42,43, 44, 50, 51, 52, 53, 54, 57, 60, 61, 63, 64, 66, 67, 74,75, 76.
BDE 41 1,2,3,4,6,7,8,9,10, 11, 15, 17, 18, 19, 22, 23, 24, 26, 28, 33, 34, 38, 40, 41, 42, 43, 44, 45, 46, 47,
50, 51, 52, 53, 56, 57, 59, 60, 62, 64, 72.
BPSO-EM 13 1,2,3,8,10, 15, 17, 23, 44, 52, 56, 69, 71.
Convergence curve octh g7th TABLE 9. Average classification accuracy using NB classifier.
100
. Avg Acc %
FS algorithms NoF ©dB____40dB___ 30dB__ 20dB
o8 Without FS 76 89.9 845 802 611
BPSO 28 92.7 88.5 81.9 58.7
96 GA 31 94.1 90.3 82.7 59.5
3\? BGWO 51 95.0 90.8 83.8 60.1
T 9%4r BDE 41 97.2 92.1 84.6 63.4
= The proposed 13 99.7 98.4 92.3 66.0
; 92 Avg Acc: The average classification accuracy (%).
g No.F: The number of selected features.
Z 90 -
- Algorithms Best Acc (%) TABLE 10. Average classification accuracy using DT classifier.
BPSO 98.5
88 —— GA 99.5 e Aco "
—— BGWO 97.0 . vg Acc %
g6 | e RDE 965 FS algorithms No.F B 20dB 30dB 20dB
~ —>— BPSO-EM 100 Without FS 76 98.6 97.5 85.5 67.5
‘ . . s ‘ ) ! ‘ | ) BPSO 28 98.6 97.3 86.3 67.1
0 10 20 30 40 50 60 70 80 90 100 GA 31 98.9 97.7 85.0 67.4
#lterations BGWO 51 99.0 97.7 86.1 69.0
. BDE 41 99.1 97.7 86.5 64.8
FIGURE 12. The convergence curve of the best solution. The proposed 13 9.4 98.1 88.9 702

the proposed algorithm is much more efficient than BGWO
and BDE with the differences of 5.3%. The convergence
curve of the best solution is shown in Fig. 12. The optimal
feature subset of the best solution is detailed in Table 8. Based
on classification performance criteria, BPSO-EM achieves
100% accuracy. It is obviously better than the other algo-
rithms are compared. Based on the number of selected feature
of the optimal feature subset, BPSO-EM has achieved 13
features. In other words, the proposed approach can eliminate
83% of non-essential (redundant and irrelevant) features
compared to the original feature set. In addition, Fig. 12 also
presents the convergence rate of the algorithms. In which
BGWO, BPSO converge at the 24% and 331 jteration, respec-
tively. This shows that the weaknesses of BGWO and BPSO
algorithms as presented in the literature are premature con-
vergence and at risk of falling into local optimal traps. Mean-
while, BPSO-EM converges at the 97 iteration, showing
its global exploration capabilities and preventing premature
convergence based on two proposed position update
mechanisms.

The third stage of the bearing fault diagnosis model is to
use the best feature (optimal set of features) to provide three
classifiers (NB, DT, LDA). Five optimal feature subsets of
the proposed feature selection approach, BPSO, GA, BGWO,
BDE and the original feature set (without feature selec-
tion) that was classified and evaluated in this experiment.
The robustness of the NB, DT and LDA classifiers is also
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Avg Acc: The average classification accuracy (%).
No.F: The number of selected features.

TABLE 11. Average classification accuracy using LDA classifier.

. Avg Acc %
FS algorithms NoF «dB____40dB___ 30dB__ 20dB
Without FS 76 98.6 98.4 91.1 73.7
BPSO 28 98.9 98.5 94.6 78.7
GA 31 98.9 98.6 94.0 77.6
BGWO 51 99.2 98.8 93.6 76.6
BDE 41 99.3 98.0 92.7 71.7
The proposed 13 100.0 98.9 94.8 78.9

Avg Acc: The average classification accuracy (%).
No.F: The number of selected features.

considered in the noise condition. Environmental interfer-
ences are simulated by adding Gaussian white noise to the
input signals at different levels. Noise level is indicated by
signal to noise ratio (SNR). That means the smaller the SNR
value, the greater the effect of noise. The average classifi-
cation accuracy is calculated after 100 training times. The
classification results using NB, DT and LDA are presented
in Tables 9, 10 and 11, respectively. The proposed approach
reached higher classification accuracy than other algorithms
in all three DT, NB and LDA classifiers. Under normal con-
ditions (SNR = o0dB), the accuracy performance of the
original feature set (Without FS) is the lowest in all three
classifiers. This proves that the feature selection algorithms
used are necessary. The LDA classifier achieved a better clas-
sification performance than NB, DT but the differences are
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not too much. As the noise level increases, the performance
of three classifiers decreases. However, under higher noise
levels, the robustness of the LDA classifier has been remark-
ably effective compared to NB and DT. The most obvious is
in the case of SNR = 20dB, the classification accuracy of all
algorithms is more than 73.7% using LDA while the accuracy
is lower than 66% and 70.2% using NB and DT, respectively.
The same case to occur with SNR = 30dB. Therefore, BPSO-
EM combined with LDA is the best option with the bearing
fault diagnosis model. From the above analysis, it can be
concluded that the combination of feature extraction solution,
feature selection and feature classification proposed in this
study created a high effective detecting bearing fault model.

VI. CONCLUSION

Among rotary machine problems, bearings failure accounts
for the largest proportion [1]. Therefore, a highly effec-
tive fault diagnosis model is introduced in this study. The
model adopts simple but effective feature extraction tech-
niques including DWT, EA, FFT, and an algorithm selects
important features from the BPSO algorithm combined with
the extended memory to improve classification efficiency.
The experiment results showed that a feature dataset with
76 features was extracted from the original dataset using
proposed feature extraction techniques. The optimal feature
subset achieved 13 features based on the proposed BPSO-EM
feature selection algorithm. The best fault diagnosis model
achieved 100% classification efficiency by using the LDA
classifier. In addition, the performance of the proposed fea-
ture selection algorithm is compared and the results are better
than the well-known evolutionary computation paradigms.
In general, proven effectiveness allows the proposed model to
be applied not only in the diagnosis of bearing faults but also
in the pattern recognition field. However, the computational
time is still a problem that needs improvement in this study.
Besides that, a growing trend applying various deep learning
algorithms and automatic feature extraction to bearing fault
classification should be considered in the future.
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