
IEEE POWER & ENERGY SOCIETY SECTION

Received October 15, 2020, accepted October 26, 2020, date of publication November 2, 2020, date of current version November 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3035215

Event Sequence Model Application for
Prioritization and Detection of Pre-Fault
Waveforms on Power Distribution Lines
SANG KEUN MOON , (Member, IEEE), AND BYUNG-SUNG LEE
Korea Electric Power Corporation Research Institute, Daejeon 34056, South Korea

Corresponding author: Sang Keun Moon (sk.moon@kepco.co.kr)

ABSTRACT In this article, a conceptual approach is presented for pre-fault detection regarding thewaveform
analytic aspects of distribution monitoring and measuring devices. Also included are event patterns specifi-
cally arranged by feature and classificationmethods. Awaveform class patterning algorithm on time-series is
applied experimentally to field waveforms that were obtained for several years. The waveforms are processed
with consideration of waveform classification and event sequence processing because these detect fault-
related phenomena. This approach demonstrates that conspicuous patterns in fault-related sequences can be
discovered by the data-driven structure described in the paper by designing the event structure depending
on the network configuration. The application is applied in a pattern-learning and pattern-detection process
so that integrating both approaches provides a meaningful consolidation for detecting abnormal conditions
on distribution lines. This event-based fault prevention is employed using actual acquisition data from a
domestic-scale distribution system and a unique sequence model is constructed to determine normal and
abnormal conditions. Event index manipulation analysis on different risk levels defines the pattern and its
impact on monitoring results. The proposed model guides recognition of event patterns and waveforms that
can be pre-emptively detected in advance of distribution line failures.

INDEX TERMS Fault sequence detection, distribution system monitoring, pre-fault detection, power
waveform classification, condition monitoring.

I. INTRODUCTION
Distribution network monitoring and control infrastruc-
ture has grid operation capabilities with regard to system
automation and observation perspectives. However, their
performance is limited because they lose event signals with-
out managing recorded event logs on the system. Device
enhancement with advanced technologies provides numerous
possibilities for better system-condition monitoring. How-
ever, there have been no specific solutions yet when it comes
to preventive maintenance and operation.

The fault prevention approaches that have been proposed
before now for the distribution network have two parts:
monitoring and maintenance. First, there is system monitor-
ing and electrical measurement by means of sensor signals,
which are not for predictive maintenance. This is because
the monitoring devices adopted in distribution networks are
fundamentally implemented to measure fault and status using
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real-time detection for conventional post-processing oper-
ation. Although the current monitoring infrastructure has
provided major advantages and greatly enhanced system
security, protection, and even economic benefits, this mon-
itoring does not have the primary aim of fault prevention.
The correspondence of pre-emptive actions and prevention
of accidents and failures is highly questionable in this stage
of infrastructure and studies. Second, preventive maintenance
is conducted with asset management and reliability analysis
on the distribution network. Maintenance and replacement of
distribution components are regularly conducted by noticing
the current status of equipment, historical data related to
impending faults, or estimating degradation. Approaches for
condition analytic prevention show definite limitations due to
deficiencies of monitoring and of the data recorded from dis-
tribution components, as well as that the data are not verified
sufficiently for fault prevention. The data recorded on distri-
bution systems is repeatedly raising questions about accuracy
and consistency [1]. To address issues mentioned above,
research in preventive maintenance [2], [3] has suggested the
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use of event-prevention models by fault association analysis.
Based on numerous historical fault data, this approach has
emerged as a promising method for solving the condition
problem. This method suggests the potential of revealing
inner connections among faults and shows great potential to
promote fault prevention techniques. Fortunately, the grow-
ing necessity for distribution network monitoring, data man-
agement, and data manipulation, means that new approaches
are becoming possible to overcome these limitations using
broad data domains, greater accuracy, and better techniques.
Therefore, in this article, time-series data patterns are consid-
ered for use in fault prevention. To this end, a new integrated
method is proposed by which to transformmonitoring signals
into event log structures. Numerous types of measurement
data on domestic-level operation systems have been recorded
over the last several years. However, the data have not been
managed with practical regard to taking preventive action
other than real-time operation and protection of the network.
Here, a procedure is proposed for analyzing the measured
signals that are already being used in operation. These signals
are converted to designed event patterns to assess network
health conditions, maintenance requirements before a fail-
ure, and inherent problems. Pre-fault analysis and predictive
maintenance are specific interests in the field of electrical
measurement because existing monitoring infrastructure is
predominantly based on waveform data.

Electrical waveforms in the distribution network are con-
sidered essential measured signals in this article. Their mea-
surement is recorded by feeder remote terminal units, digital
relays, and power quality (PQ) meters because these devices
are already installed. In waveform analytics, post-fault mea-
sures are commonly conducted in the field. The use of cause
identification of faults has been proposed [4], [5] to assist
restoration in case of momentary or temporary faults. This
would guide operators in deciding on mitigation actions,
and afterwards, in achieving optimized preparation and dis-
patching field engineers. Patterning the waveform itself is
also provided in waveform analytic research to identify the
system status at a given moment [6]–[8]. On the subject
of detection and classification of electrical line faults, stud-
ies have conducted for effective fault protection algorithm
using feature extraction and classification based on signal
processing approaches [9]–[11]. Operation and monitoring
based on the waveform signal provides status-event logs on
distribution lines (DLs). If specific patterns can be recog-
nized from a recorded dataset, advanced methodologies such
as pattern learning and feature extraction can be applied
to predict upcoming events. From the perspective of online
monitoring [12], research has described the investigation of
events by having a large number of measuring devices to
understand better the fault-degradation relationships from
electrical waveforms [13].

Fault events are a representative detection signal pro-
vided through several electrical measurement devices. There-
fore, if the event sequences are not important anymore
after detecting faults in the operation, then the event log is

generally neglected. However, the event-data-driven method
can be applied selectively to evolve knowledge-based fault
diagnosis into predictive systems [14], [15]. The dynamic
fault prediction is able to provide decision-making basis for
practical condition-based operation and maintenances [16].
The effectiveness of dynamic early warning and incipient
fault prediction in sub-health status of in-service power
transformers has been proved. Incipient faults are usually
detected on distribution system as a disturbance with a
comparatively less current and shorter time period of less
than 1/4th cycle to 4 cycles. These current changes are
not detectable by common protection devices due to its
instant time and less amplitude contrary to fault current
detection scheme [17]. Field results of incipient fault exam-
ples on distribution cable systems are described in [18] to
explain the incipient fault is common indicators of component
degradations.

Conditionmonitoring is also counted as an event-prediction
approach based upon the assumption that an individually
measured signals can form event patterns. In terms of the
condition of distribution equipment, electrical waveform
events taken as power quality measures, can be considered
for a predictive maintenance strategy to be implemented
in advance before complete failure occurs [19]. Due to the
nature of steady-state data, measuring devices on DLs are
to indicate long-term variations of various power system
conditions. Although, fairly little of the steady-state data have
been used efficiently to track the power system performance.
Extensive research on PQ disturbance analysis has shown
that electrical signatures in voltage and current waveforms
are suitable as non-invasive parameters for online-condition
monitoring [20].

This article describes pre-fault phenomena that can be
detected prior to the system failure using event pat-
terns. For examining massive measurement waveform data,
sequence-oriented signal feature extraction was conducted
in a prior stage, as was learning the data feature patterns
needed to obtain event classes. The method employs zero
sequence current signals to discover transient waveforms by
machine learning-based pattern classification models [21].
Distinct patterns of fault-related phenomena were discovered
by the data-driven model. The proposed model has sequence
structure and it constructs an event sequence model (ESM) by
analyzing field-measured waveforms. In practice, applying
generalized patterns to compare with distribution conditions,
the ESM time-series analysis is used to detect pre-event
patterns. The subjects addressed in this article cover condi-
tion monitoring and the detection of predictive patterns on
the distribution network as a fault-anticipation method. The
pre-fault duration and event characterization are also repre-
sented for timing the sequence of pattern detection.Moreover,
structural analysis was conducted to reflect the qualities of
various types of measurement devices, and their locational
dependencies, on connected distribution lines.

In consideration of power-system characteristics, a method
of structural pattern analysis is proposed here for a power
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distribution system. The remainder of the paper is organized
as follows:

1) Concept and methodology of the event structure
2) Datamanipulation of extracting fault signals by the ESM
3) Pre-fault pattern detection with risk value determination

II. DISTRIBUTION SYSTEM EVENT STRUCTURE
A. CLASSIFICATION OF MV WAVEFORM FEATURES
Waveform events are an essential indicator for recognizing
the status of DLs. In terms of a distribution disturbance and
the fault circuit status, waveform analysis is conventionally
applied to classify the event occurrence. The classification
for event waveforms has been applied to propose a practical
disturbance classifier for empirical distribution monitoring
devices [21]. The previous study correspondingly shows that
features of the waveforms and of the classifier could poten-
tially be implemented for waveform shape identification,
to be transformed to event classes.

Distribution system events are defined as waveform classes
and triggered conditions that contain a class of fault trans-
actions. Each event is a subset of combined classification
and triggered data as a consequence of determining mea-
sured waveforms. With this approach, functionalities of DL
monitoring devices are implemented by updating the essen-
tial parameters for feeder-device classification models. First,
after a device obtains event waveforms based on trigger
conditions, previously trained models classify the wave-
forms into event classes. Next, because the class is clearly
independent of time due to constrained recording cycles,
the event classes are arranged to construct the event structure
as the ESM.

B. EVENT AND CLASS SEQUENCE MODEL
In this section, subsequent to obtaining event classes from the
measurement devices installed in the field, the use of time-
sequence event processing is explained to employ additional
pattern-detection work. An event pattern is referred to a fault-
triggered database consisting of the network structure and
hierarchy. The application describes event classes not only
having the condition of the electrical-system status at the
moment an event occurs, but also identifying any discernible
sequence pattern using a timely arranged model. The fault
associated analysis in the model is designed as an online
detection model initially; however, manipulating intermittent
events to reveal a recognizable pattern is considered predic-
tive action so that the eventmodel detects sequence patterns in
the event model. For example, the fault-associated approach
returns results in the form of waveform disturbance classes
that have already been classified in the monitoring phase.
In addition, the voltage and current classes are separately
marked on the ESM along with triggered information of
binary values. Therefore, all events in the sequence construct
event patterns in chronological order, as shown in Fig. 1. This
illustrates a conceptual schematic diagram of the proposed
ESM upon which the classes with event signals and risk

values on the DL are based. The measured classes of CV
t and

CI
t are the classified voltage and current-disturbance vector,

respectively. The event vector E2
t of the fault and trigger

values, defines types of fault current as a lozenge shape
in Fig. 1, so that the model determines pre-event sequence
patterns prior to a fault. Accordingly, specified ranges of the
pattern interval can be stressed according to the DL pattern
importance based on the time period of the fault events then
provides the pattern duration for a preventive action. The
ESM is then implemented for preventive pattern-detection of
distribution faults, with revision of a fault pattern after a fault
occurs, and vice versa.

FIGURE 1. Schematic diagram of the distribution-waveform-event
process structure.

III. EVENT SEQUENCE MODELING PROCESS
A. STRUCTURE-BASED EVENT SEQUENCE MODEL
Distribution system structures in practical applications are
based on network design and planning criteria. In typical
radial feeder networks, the configuration is operated through
DLs connected to a certain supplying substation. Occasional
DL interconnections by switch gears are designed to allow
interacting electrical flows between DLs. The measurement
devices are installed depending on the location of sectional
operations. The event waveforms obtained from the devices
represent mutual relations between the configuration of DLs
and substations. In this article, to recognize the DL events
more precisely, the ESM was selectively adopted based on
the hierarchical structure of conventional DLs and on the
time-series sequences of the waveform classes.

B. WAVEFORM EVENT-STRUCTURE CATEGORIZATION
Primarily, class labels such as normal and abnormal are con-
textual according to what events are required to be classified
for a distribution system. For a normal event, the classifica-
tion model ignores the event and is triggered only sporadi-
cally, although the event may become abnormal afterward.
On the matter of event-state changing, the proposed method
focuses on time interval and configurational analysis by ana-
lyzing the event sequence occurring on the DLs. Finding
apparent symptoms before a fault and patterning for next
events is the purpose of this approach. Moreover, because
the waveform data generally provide a more complete pic-
ture than logical determination based on the field devices,
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themethod useswaveform-feature classification for proposed
conditions of a distribution network.

As illustrated in Fig. 2, the distribution system struc-
tures are depicted as a network hierarchy containing three
concept levels. The structure represents a substation with
several DLs, a DL including monitoring devices, and a
single-feeder device on the DL separately. All of the com-
ponents are included at the substation level in the proposed
event-structure model according to their hierarchical relation-
ship and these are divided into structure levels. The mon-
itoring of integrated distribution according to the proposed
disturbance classes is designed to detect disturbance events
in accordance with the network configuration.

FIGURE 2. Explanatory depictions of network categorization levels with
monitoring devices and the ESM class arrangement.

1) LEVEL-1: A FEEDER DEVICE
The ESM on level-1 has event structures consisting of clas-
sified labels of individual measurement devices on a time
scale. Because the label has classes of voltage and current,
the events on the ESM describe combined information at
the time of each event. Therefore, the sequence is depicted
subsequent to events, following the disturbance by several
moments. A device at the feeder can be drawn as a sin-
gle line that consists of classified multiple labels, as shown
in Fig. 2(c).

2) LEVEL-2: A DISTRIBUTION LINE
Monitoring devices are illustrated as being connected with
a DL on the same substation as a merged line with feeder
devices, as shown in Fig. 2(b) and Fig 3(b). Thus, all feeder
device events on the DL are integrated. For detailed event
analysis, expanding the merged classes to a class representa-
tion is applied to identify specific events on the DL (depicted
in Fig. 3c). Because most events are generally combined
in the model, the class-separation analysis assists in distin-
guishing the ESM pattern and recognizing the distribution
condition.

3) LEVEL-3: SUBSTATION
To broaden the viewpoint of the monitoring, the condition
structure integrates ESM level-2 with the substation structure
of ESM level-3, as illustrated in Fig. 3(a). Apart from all
connection and independent event cases, every event on the
network is observed by the ESM process. This includes inter-
connected events identified by loop operations and switching
between DLs.

FIGURE 3. ESM hierarchy illustration of DL integrated level-3 to level-2 of
detailed classes on a DL.

C. PRE-EVENT EXTRACTION ON ESM STRUCTURES
The event classes in the ESM have classified waveform
values along with time-stamp and event-types—disturbance,
fault, et cetera. Regarding the distribution power supply
and operation, structural identification elements such as DL,
switch number, and line-connection information are depen-
dently applied to the ESM analysis. The arranged event value
using the ESM structure is described in this section to con-
struct a time-sequential matrix of the classified events. Each
obtained and classified waveform is defined as a class C
having its own classification number based on the machine-
learning classifier [21]. Therefore, C is annotated with time
and DL indices to comprise a sequence matrix:

CL
i,j = classification( ) (1)

where the function ‘‘classification’’ represents the classified
labels of waveform disturbances; the index i is the time-based
sequence in order of occurrence (∀i ∈ {1, . . . , t} where t is
the overall time of the provided dataset). The DL index j rep-
resents and ∀j ∈ {1, . . . , d} from the interconnected substa-
tion. The identifier L indicates that L ∈ {V, I} where V and I
represent the voltage and current, respectively. Equation (1) is
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obtained by the class set in which CL
i,j ∈ {1, 2, 3, 4, 5, 6, 7, 8}

and the classes are defined as index numbers correspond-
ing to waveform labels (1: sag, 2: swell, 3: interruption,
4: flicker, 5: oscillation and impulse, 6: notch or transient,
7: spike, 8: harmonics). The class CL

i,j does not represent
exact distribution system phenomena, but instead indicates
waveform-shape patterns within the classification boundaries
that are determined by the classification model. For example,
the class notch covered shapes of most transients and very
short disturbances whereas the oscillation class is the shape
of short-time changes in magnitude following the nominal
frequency. The bipolar oscillating and impulse waveforms are
classified as representative types of the class.

Waveform data acquired from several distribution moni-
toring systems were used to build a substation scale event
matrix that has time-series sequences proposed as the ESM
level-3 matrix as follows:

ML3
t,d =



CV
1,1 CV

1,2 · · · CV
1,d−1 CV

1,d
...

...
. . .

...
...

CV
t,1 CV

t,2 · · · CV
t,d−1 CV

t,d

C I
1,1 C I

1,2 · · · C I
1,d−1 C I

1,d
...

...
. . .

...
...

C I
t,1

... C I
t,2 · · · C I

t,d−1 C I
t,d


(2)

where, L3 denotes ESM level-3. Equation (2) shows
DL divided columns having synchronized time by class
sequences on the ESM; therefore, every event on the DL is
simultaneously analyzed at the moment of fault and when the
disturbance occurs. Subsequently, the matrix is concatenated
to provide corresponding voltage and current sequences. The
ESM level-2 matrix is sequentially derived to apply the DL
select vector EA

d where EA
d = [EA

1 ,E
A
2 , · · ·E

A
d ]

T with T trans-
pose. The vector EA

d denotes selected binary fault values in the
DLs. Consequently, the extracted ESM level-2 is derived (as
follows) as the voltage and current matrix:

ML2
t,d =ML3,V

t,d · E
A
d |M

L3,I
t,d · E

A
d (3)

where L2 represents the ESM level-2 and (3) extracts events
on the DL level. The selected event is the instantaneous
and permanent fault in the time sequence from the dataset,
which is included in the M matrix. Accordingly, the event
moment is represented as the event vector EB

t , which contains
multiple fault events in sequence (EB

t = [EB
1 ,E

B
2 , · · ·E

B
t ]).

Hence, the vector EB
t indicates DL event occurrences where

more than a single fault event is detected on the DL. For the
purpose of identifying each event as a candidate of the pre-
fault pattern, the vector EB

t of the triggered time t is trans-
formed to the sequence vector EB

q (EB
q = [EB

1 ,E
B
2 , · · ·E

B
q ]).

The sequence q has indices of the event occurrence time;
thus, the calculation process can specify the pre-fault interval
through the calculation process. For instance, the fault index
EB
q = [1, 3, · · · 9] indicates that the first, third, and ninth

sequences have fault events. Furthermore, based on the EB
q

of the event sequence, the pre-fault pattern extractor EC
t,s of

the occurrence time t and the pre-fault interval s matrix for
each qevent can be derived as follows:

EC
t,s =

[
λi,k

]
t×s (4)

where, EC
t,s has the time t by the sequence s matrix of the

event extraction, which has the s diagonal expansion for the
pre-patterns—a reversed diagonal with q of EB

q by k order
columns where k = [1, . . . , s]. With respect to the observing
interval s, developing precursor events are determined by
analyzing the dataset and discovering how many pre-patterns
are considered essential. Around 4-10 consecutive events are
patterned in this model. The pre-event indicator λi,k is the s
shift tensor, which is obtained as:

λi,k =

{
1, i = EB

q − s+ k − 1
0, otherwise.

(5)

The sequence index i is derived with EB
q by subtracting the

previous s interval and shifting the k steps until the interval s
is reached. The indicator λi,k is obtained from every q event
pre-pattern of a sequence prior to the fault moment; thus,
each individual pre-pattern is extracted by the EC

t,s extractor.
Consequently, the extracted pre-fault pattern can be obtained
by multiplying the EC

t,s and the ESM matrix.

ML2
t,s = ML2

t,d · E
C
t,s (6)

ML1
t,s = ML1

t,d · E
C
t,s (7)

where,ML2
t,s andM

L1
t,s represent the pre-event extracted matri-

ces for a DL level event and a switch end-device level event,
respectively. The extraction process is iterated for the q event
set.

D. INDEX MANIPULATION FOR PRE-EMPT EVENTS
The proposed ESM has index values to emphasize the pre-
event importance in advance of actual failures of power lines.
The importance index, which can be interpreted as the pre-
empt value, is represented to indicate DL vulnerabilities by
means of converging event information regarding a system
fault. Thus, the index is determined to inform of anticipated
disturbances, associated with degrees of importance. The
proposed method evaluates two types of values from the
systematically obtained data patterns. The first is the class
characteristic index of the voltage and current values, which
counts events and collects specified classes in the DL. Hence,
the index reveals more credible fault relevant signals by
examining the ESM. Second is the pre-fault duration and the
span index, which are derived from the interval of the time
sequence on the assumption that an event indicated in the
interval has a considerable pattern regarding how closely the
pre-fault event is located by the fault.

1) CLASS CHARACTERISTIC INDEX
With this approach, the class characteristic index is proposed
to model the event-count value. Accordingly, voltage and cur-
rent indices are considered with respect to class importance
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to obtain the weight value. From the DL event manipulation,
the class index WA

q,VI is derived to explain class counts and
importance by the time sequence interval. After the pre-fault-
pattern extracting procedure, pattern events are generated
where n = [1, . . . , q] because the sequence q represents the
total number of events in the set. The types of certain repet-
itive events, classification classes, and occurring frequencies
are indexed as:

wA
q,VI = (

∑s

k=1
wc
k )

T
· wB

VI, ∀n (8)

where, wck is the specified class importance within the pattern
interval k where k = [1, . . . , s]. For example, the class
importance wck has the weights of w

c
s = [1, 2, 1, 2, 2, 3, 3, 1],

which correspond toCL
i,j. The class importance determined by

the classification label is empirically determined in advance.
On the other hand, the characteristic index WB

VI has signal
importance between the voltage and current measurement
from the local device. In this sense, the voltage and current
characteristics are applied in this article as wA

q,VI = [1, 1.5]
for the reason that a large amount of fault events are identified
experientially by the current measurement of short-circuit
currents. The class index wA

q,VI is obtained as an s-sequence
index by the individual n fault event of multiplying the row
vectors by each other.

The class index implies that occurring frequencies of
certain events indicate network instability and a potential
system fault in connection with past events. The combined
proportion typically has higher current values than voltage
values. The reason is that impulse waveforms are frequently
trigged by discharge-current phenomena in the ESM extrac-
tion procedure. In contrast with conventional PQ detection,
the class characteristic also shows that the current class is
more essential, for example, that a pre-fault has considerably
more impulse transient patterns than other waveforms, which
fact is applied to the class weight.

2) PRE-FAULT INTERVAL INDEX
On the other hand, the time-interval index is derived from
the sequence time calculation. The interval is exclusively
designed for a fault-event pattern to express the importance
of the time interval between the event and failure. Therefore,
the interval is emphasized by increase in the importance
of approaching the fault moment. This viewpoint is based
on the notion that fault-adjacent events have high potential
for failure to explain the fault condition; thus, certain event
classes have more importance than others with regard to fault
associations and exclusion of unrelated events. The consid-
ered duration weight wC

s of the pre-fault duration is obtained
as follows:

wC
s =

{
(rs)1+α, (rs)1+α ≥ 1
1, otherwise

(9)

where, rs is the step index vector according to the sequence of
the s interval. The additivity weight α is the interval gradient
parameter for the purpose of emphasizing the event-class

adjacent to a fault moment. Selecting a feasible α is highly
dependent on finding an event class related to the fault event,
and 0.5 was applied in this study after trial calculations using
the obtained dataset. In addition to the step index, the term
wC
s has a pending constant ‘‘1’’, which adjusts all values to

positive when applying integrations of several indices.
Despite the fact that the interval s is the variable that is

constantly changing, the index wC
s should consider the index

magnitude that is in a fixed range tomaintain a similar scale of
importance. This is because the importance is exponentially
weighted in the patterning process. Therefore, the step index
rs is proposed by the step variable k starting with 1 to the
interval s. The target constant σ of the ceiling value at the
fault moment where rs = { k · (σ · s)−1 }sk=1. The constant
value (σ = 2) is determined in accordance with the pre-empt
pattern interval of 4-7 sequences practically applied in this
study. Meanwhile, because the interval s has a different time
interval according to the difference in time of occurrence of
events in each s, another index is required to reflect variation
in time. The span index calculates time between initial signal
and failure in order to quantify the time duration. The index
wD
s,q is presented to the s as the same value, but different

indices are placed on each n fault event.

wD
s,q =

[
1τEB

n

]β
s×q

, ∀n (10)

1τs =

{
1

τEB
n
− τEB

n −k

}s
k=1

(11)

where, τ indicates the time stamp of the n of every event;
The event index EB

n specifies sequence indices at the τ where
n = [1, . . . , q]. The time interval 1τs under the interval
s is acquired by extracting the time between each event
and the moment of fault. The interval 1τs has a minimum
starting time interval necessarily longer than 50 ms where
∀1τ ≥ 50 ms, which is 3 cycles of the circuit-breaker-
operation time limit. Because the events occur repetitively
and simultaneously, the event labels tend to overlap for the
same event. For example, a phase disconnection or failure
might have a following ground-fault event that is not indi-
vidually considered, especially in conventional monitoring.

The graphical depiction in Fig. 4(a) illustrates that the
values chosen at the duration index wC

s do not indicate a fixed
value. The time importance is gradually increased depending
on the weight parameter α as the pre-empt pattern sequence
proceeds. Contrary to the constant sequence in Fig. 4(a),
the span index in Fig. 4(b) regards the amount of time.
In accordance with time intervals expanded from the moment
of the fault, the longer the interval is, the less importance
is applied in the event of EB

n . The weight β adjusts the
time index regarding the time-span differences. The time
relationship between events in the pattern interval is varying
and inconstant; thus, it is impossible to model the index
linearly. Moreover, with respect to events adjacent to faults,
their importance is related to an exponent and subordinate
importance is considered for distance from the event.
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FIGURE 4. Graphical depiction of event indices through the importance
value transfers: (a) Duration index and (b) Span weight.

Although the two proposed indices have different scales
of s and time, the model should treat the indices as having
importance as integrated sequences in order to find pre-empt
events in the ESM structure. Therefore, the wC

s and wD
s,q

indices are merged with q sequences in s duration. Conse-
quently, the combined pre-fault duration and span index is
obtained using element-wise multiplication of these indices.
The finalized integrated importance is derived as follows:

ws,q = wA
q ◦ w

C
s ◦ w

D
s,q (12)

The pre-pattern index is subject to discovery of features
among the patterns, and it extracts considerable waveforms
from the aspect of anticipating distribution line failures. The
indices will systematically be adjusted by detecting and ana-
lyzing event occurrences in the operational environment. The
preventive action is possibly implemented by the index with
accordance of the pre-patterns. Defined priorities guide target
patterns from the index then the pattern detection will alarm
the system operator for preventive actions.

IV. RESULTS ON EMPIRICAL SYSTEM DATA
A. SYSTEM CONFIGURATIONS
The proposed system configuration was based on conven-
tional measurement data frommonitoring devices in the field.
Among various types of measurement waveforms, the sys-
tem obtained triggered events of 3-phase voltage and current
waveforms from the installation to the present moment. The
trigger condition already implemented at the field device
was verified and the fundamental underlying IEEE standard
1159 and 181 [22], [23] of power quality and fault detection
under which the field-measured waveforms were recorded,
were based on the IEEE C37.111 standard [24]. Approxi-
mately 23,000 waveforms from 34 substations with 598 DLs

were acquired and processed. These contained 1316 fault
events in the interval from 2014-2018.

Furthermore, the event classification was performed in
regard to the triggeredwaveforms, which have types of abnor-
mal, fault, and voltage variation triggers, which monitoring
devices captured. The classified voltage and current classes
are shown in the results. Thus, a pair of classes between fault
events and classified waveforms were concurrently treated
to define the distribution system conditions. Once the events
were combined, the pre-fault pattern analysis was provided
for the detection process.

B. ESM PRE-PATTERN RECOGNITION CASE
After the classification of waveforms, the data developed
were utilized to build the ESM structure proposed in this arti-
cle. Because the obtained time-series event classes were not
arranged spatially and temporally, the model first organized
the data for structural analysis of the distribution system.
Common waveform types were determined as classes in the
classification process. In addition to these common types,
event data such as electrical fault currents (instantaneous and
permanent) were simultaneously applied to the dataset to
extract the event duration in the ESM.

The empirical results were derived by the proposed ESM
model using substation levels and distribution lines, respec-
tively. Among the datasets, representative ESM level-3 of the
ML3

t,s results are shown in Fig. 5. As illustrated in Fig. 5,
the events of a substation ‘‘Geumchon’’ were arranged in
horizontal time-sequences and vertical DL number segments.
In the ESM level-3, y-axis lines appeared as divided DLs
corresponding to synchronized time of class sequences. The
fault pre-patterns ML2

t,s were displayed as colored squares in
accordance with the class diversity. Extracted patterns based
on the fault and trigger values weremarked as colored squares
followed by lozenge-shaped fault events at the pattern end.
A pattern interval with a specified duration of 5 sequences
was applied to extract the pattern. In the sequence map of
Fig. 5, two separated sections are presented by a dotted line

FIGURE 5. Classified time-sequence events and extracted patterns with
the class histogram of ESM level-3.
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in the middle. The left and right sides display power-quality-
triggered classes and abnormal triggered classes, respec-
tively. Because the sections indicate pre-patterns caused by
the system fault, system malfunctions had more PQ-class
patterns than the abnormal triggered ones did. The class
histogram is also depicted on the right side in Fig. 5 to
express the frequency of event occurrence. The event count
showed thatmajority fluctuation classes were caused by small
deviations such as load changing and switching. Thus, class
selection was required to exclude unimportant classes and to
consider the crucial classes directly dependent on the system
failure according to the ESM pattern detected.

The pattern importance was predictable by means of event
classes and time intervals. The patterns in Fig. 5 illustrate that
long periods of time had less relation with the system fault.
Therefore, the importance index specified the pre-patterns
to signify considerable patterns, as shown in Fig. 6. Among
the extracted pre-patterns for the substation, 2-3 particular
sequences were distinguished from the ESMwith importance
indices. With the importance index, the order of priority

FIGURE 6. Pre-pattern index graphs of the pattern importance from the
Geumchon Substation.

through the pattern interval and the number of waveforms
were found. In general, a higher index indicates higher order
of precedence to explain the sequence of failure relevance.
As shown in Fig. 6, cross marks on the bar graph give the
order of the indices with event numbers followed by index
values in red. From thewaveform pattern, according to impor-
tance of the voltage and current in Fig. 6, representative pre-
pattern waveforms are illustrated with respect to the primary
and secondary current indices of 111 and 113 in Fig. 6(b). The
indications show that specific waveform events due to current
measurements have more expressive signals of system fail-
ures using the empirical approach. Although voltage indices
224 in Fig. 6(a) showed no particular abnormal conditions
according to the followed waveform analysis, as illustrated
in Fig. 7(a). In contrast, the pre-pattern waveforms of the cur-
rent event are illustrated as the voltage and current waveforms
in Fig. 8(a) and (b). The waveforms in the sequence contain
different pattern signals even though the class patterns have
been determined. The current pattern in Fig. 8(b) found two
abnormal impulse fault currents on the day of the three-phase

FIGURE 7. Additional waveform pattern representations with respect to
the extracted patterns.

FIGURE 8. Extracted pattern waveform illustrations of representative
pre-patterns (voltage, current).
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FIGURE 9. Post event pattern waveforms that result in system failures.

failure and displayed 13 and 16 hours of prior time intervals,
which made the current index higher. The event was recorded
on the fault report as a winding burning of the overhead trans-
former due to a lightning strike in stormy weather. Therefore,
the pattern is eventually applied to the prediction for future
events then provides more time margin for preventive actions
before the fault.

The index 113 waveform is followed by 111 and showed
the system fault two days later as 114 in Fig. 9(b). This repre-
sents recurring impulse and fault currents because the failure
had not been cleared properly in spite of continuous pre-fault
events. The cause of the three-fault event was recorded as
unidentified. Despite this fact, the pattern importance index
detected the pre-pattern as the highest index (25.7) from the
event sequence indicated in Fig. 6(b). Additionally, event
sequence 249 was discovered from the waveform patterns
shown in Fig. 7(b). This represented the harmonic distortion
that occurred repetitively a day prior to a phase fault. The
analysis was applied to adjust the class index of a harmonic
element having additional weight to identify the subsequent
waveform and pattern detection.

V. DISCUSSION AND CONCLUSION
This research work includes methods and empirical appli-
cations from a proposed model and method found using
actual field data from a domestic distribution operation and
management infrastructure. Because the suggested pattern
exploration model defined fundamental signal features of
actual event patterns from the field data, the model was ver-
ified by presenting how the model was able to handle phase
signals for condition recognition and pre-empt detection. The
model demonstrated that voltage and current waveformswere
appropriately classified into disturbance classes and that it
also provided waveform sequence patterns reflecting what
possibly happened in preceding system outages.

In this study, the proposed method was developed by clas-
sifying DL conditions of the disturbances in real networks
and the signals could provide unique patterns for recognition
of abnormal operations and fault conditions in the learning
mechanism of the classification model. The learned model
would necessarily replace the trigger and detection logic of
the field measuring devices. This affirms the research goal of
enabling the classification system to be updated by waveform
modeling and feature-set reconfiguration using the learning

process. The research also found that, in distribution system
networks, conditional and monitoring structures of the ESM
configurations are important for recognizing DL conditions.
Despite the method is required to be examined extensively
on the field, time-scale and hierarchical analysis are verified
to this patterning approach. Even though the experimental
results in this study showed limited examples of these pre-
patterns, a great amount of detection and extracted event data
is still in the process of discovery of particular features.

There are no other systems that have been applied in the
field because of insufficient data and validation difficulty.
The preventive maintenance based on waveform pattern anal-
ysis and time sequences is necessarily be expended the field
application to improve the recognition and restricted appli-
cations. However, despite that the proposed method is chal-
lenging, the approach is verified by this research and it now
provides the potential to implement themethodology to create
a pre-pattern detection system for distribution operation and
maintenance.
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