
Received September 21, 2020, accepted October 10, 2020, date of publication November 2, 2020,
date of current version November 12, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3035271

Monitoring File Integrity Using Blockchain
and Smart Contracts
ALEXANDRE PINHEIRO 1, (Member, IEEE), EDNA DIAS CANEDO 2, (Member, IEEE),
RAFAEL TIMÓTEO DE SOUSA, JR. ,1 (Senior Member, IEEE),
AND ROBSON DE OLIVEIRA ALBUQUERQUE 1
1Electrical Engineering Department, National Science and Technology Institute on Cybersecurity, University of Brasília (UnB), Brasília 70910-900, Brazil
2Department of Computer Science, University of Brasília (UnB), Brasília 70910-900, Brazil

Corresponding author: Alexandre Pinheiro (alexandre.pinheiro@redes.unb.br)

This work was supported in part by the Brazilian Higher Education Personnel Improvement Coordination (CAPES) under Grant PROAP
PPGEE/UnB, Grant 23038.007604/2014-69 FORTE, and Grant 88887.144009/2017-00 PROBRAL; in part by the Brazilian National
Research Council (CNPq) under Grant 312180/2019-5 PQ-2, Grant BRICS2017-591 LargEWiN, and Grant 465741/2014-2 INCT on
Cybersecurity; in part by the Brazilian Federal District Research Support Foundation (FAP-DF) under Grant 0193.001366/2016 UIoT and
Grant 0193.001365/2016 SSDDC; in part by the Brazilian Ministry of the Economy under Grant 005/2016 DIPLA and Grant
083/2016 ENAP; in part by the Institutional Security Office of the Presidency of Brazil under Grant ABIN 002/2017; in part by the
Administrative Council for Economic Defense under Grant CADE 08700.000047/2019-14; and in part by the General Attorney of the
Union under Grant AGU 697.935/2019.

ABSTRACT The adoption of cloud computing solutions is an established reality in government agencies and
in small, medium, and large companies due to procurement easiness and the variety of available services,
as well as its low cost compared to the acquisition and management of own infrastructures. Among the
most used services is cloud file storage, and the security of this storage has been an essential subject of
recent research, particularly customer data integrity. Thus, this article proposes a solution for the monitoring
of the integrity of files stored in the cloud, based on the use of smart contracts in Blockchain Networks,
symmetric encryption, and computational trust. The proposed solution consists of a protocol that provides
confidentiality, decentralization, audit availability, and the secure sharing of file integrity monitoring results,
without overloading the services involved, as well as an unabridged reference implementation which was
used to validate the proposal. The results obtained during the validation tests have shown that the solution
is feasible and faultless in detecting corrupted files. These tests also confirmed that the sharing of integrity
monitoring results, coupled with the application of computational trust techniques, significantly increased
the efficiency of the proposed solution.

INDEX TERMS Blockchain, cloud computing, data security, smart contracts, trust.

I. INTRODUCTION
Cloud Computing (CC) is an environment that provides
on-demand access, through the network, to computa-
tional resources such as storage, servers, applications, and
other services, which the customer can efficiently aggre-
gate or release [1]. Customers can rapidly create cloud ser-
vices in distributed cloud data centers where they can store
and process their data, and deploy and efficiently run their
applications [2]. CC services follow a business model that
charges the customer for the use of computing resources,
which the customer quickly contracts and manages through
standardized web services, without bureaucracy.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jing Bi .

Scalability, availability, and virtually unlimited storage
capacity can be highlighted among the advantages of CC.
Given the popularization of CC services, mainly due to their
reduced cost compared to traditional technologies and the
continuous appearance of new data storage service providers
in the cloud, many companies are choosing these services to
store their information [3]. CC relieves the customer from
being concerned with the complexity of managing the storage
infrastructure. However, the confidentiality, availability, and
integrity of the stored data depend on the quality of the service
provided. Because of structural or human flaws, the data may
be corrupted, leaked, or deliberately deleted.

Since CC comprises comprehensive technology under con-
tinuous evolution over the years, it still offers many study
opportunities in open research areas. Much research work

198548 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-9919-5001
https://orcid.org/0000-0002-2159-339X
https://orcid.org/0000-0003-1101-3029
https://orcid.org/0000-0002-6717-3374
https://orcid.org/0000-0002-4610-0141


A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

has been integrating different techniques and technologies
to both solve problems and improve the results of CC solu-
tions, including the following examples: i) Yuan et al. [4]
propose an algorithm, based on machine learning techniques,
to improve the distribution schedule of tasks from CC ser-
vices between geographically distributed data centers pow-
ered by green energy, aiming to optimize profit and reduce
task loss; ii) Bi et al. [2] propose a new framework, based
on mathematical modeling techniques, to provide dynamic
resource provisioning in virtualized cloud data centers, mini-
mizing energy costs by keeping unnecessary virtual machines
off while meeting the service-level agreed between the cus-
tomer and the cloud service provider; and, iii) Wilczyński
and Kołodziej [5] propose a new generic model for a secure
cloud scheduler, based onBlockchain technology, where each
neighbor node in the cloud cluster approves the proposed
task schedules by means of a novel ‘‘proof–of–schedule’’
consensus algorithm, obtaining an internal agreement before
offering the schedule to end-users.

As another example of this technology, Blockchain enables
the creation of a decentralized database, in which agents and
institutions can carry out verifiable transactions, without any
of the parties being able to control or impose market power.
One feature of Blockchain is that it enables the effective
maintenance of a consensus in the chronological order of
events and the state of affairs [6].

Blockchain implementations allow the creation of net-
works comprised of interested participants, among which
there is no requirement for mutual trust. The transactions
completed by these participants are recorded in small blocks
forming a chain of sequential blocks (Blockchain) that is
replicated to all participants in the respective network. The
transactions are carried out directly between the parties with-
out the need for a trusted third party. Once a new block
is inserted into the Blockchain, the registered transactions
cannot be changed or reversed [7].

A smart contract (SC) is a tamper-proof digital contract
that is often enforced through automated execution [6]. Each
SC is a small computer program stored and executed in
the Blockchain to fulfill the terms of an agreement between
parties that are not required to trust each other [7].

Information owners often need to keep information items
stored for an extended period, without necessarily having
to access them. And normally, due to their size, the owners
often do not keep other copies of it. Given the possible
damage caused by the loss of stored data, and for the users to
acquire the trust necessary to store data using cloud storage
services, these services must provide tools capable of allow-
ing the customers to continually verify the integrity of their
data.

The previous related study [8] proposed an architecture
that allows the periodic verification of the integrity of files
stored in the cloud by third parties, but without exposing the
content of these files. The referred architecture presents a pro-
tocol based on challenges that generate low and predictable
network bandwidth consumption. It also gives a mechanism,

based on concepts of computational trust, to balance the
load of checks that speed up or slow down according to the
storage service behavior. Notwithstanding its efficacy, this
architecture presents the following limitations: i) the require-
ment of complete trust in the third-party service responsible
for performing the integrity check of the files hosted in
the cloud; ii) the impossibility of carrying out any audit in
both processes and results; iii) the trust level assessment of
the services responsible for cloud file storage being verified
separately by each integrity check service, and based exclu-
sively on their observations regarding the behavior of each
storage service provider; and, iv) the requirement for storage
service providers to maintain a service available 24 hours a
day exclusively to receive the challenges submitted by the
integrity check services.

A. MAIN CONTRIBUTIONS OF THIS STUDY
This study proposes a solution based on the use of Blockchain
technology for the storage of files in a Cloud Storage Service
(CSS) that allows Clients to contract untrustworthy third
parties to carry out permanent and auditable monitoring of the
integrity of these files using challenges, without compromis-
ing the confidentiality of the stored information, through SCs.
In addition, this study proposes a shared process to classify
a CSS according to trust levels based on its behavior, this
task being performed autonomously by SCs. The proposed
solution improves previous work [8], minimizing its limi-
tations, and increasing its efficiency. The main differences
between this work and the one done previously [8] are the
following:
• the use of a storage infrastructure in a Blockchain Net-
work (BN) intended to record information on the file
stored in the cloud to verify its integrity, as well as
information related to the steps of the respective verifica-
tion process which, thanks to immutability, inviolability,
and resilience provided by the Blockchain technology,
guarantee transparency, security, and the possibility of
auditing all stages of the file storage and integrity check
processes;

• the automation and decentralization of the analysis pro-
cess of the results generated by monitoring the files
stored in the cloud, with the use of SCs stored in
a BN, enable the hiring of Integrity Check Services
(ICS) that do not have a previous relationship of trust
with the Client, and due to the SC characteristics,
the integrity verification process is predictable, transpar-
ent and auditable by any of the involved parties, making
collusion between the service contracted to verify the
integrity and the service liable for storage unfeasible;

• the decentralization and sharing of the calculation pro-
cess of the trust level assigned to each CSS through
an SC stored in a BN, without interference from other
roles (Client, ICS, and CSS), whenever requested by
other SCs which, in turn, autonomously evaluate the
responses from the CSS regarding challenges generated
by the integrity verification processes of one or more

VOLUME 8, 2020 198549



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

ICS, preventing ICS attacks against the reputation of
the CSS;

• the ability to allow the CSS to audit the file received
for storage, through the prior endorsement of the rules
implemented in the SC linked to the file and registered
at the BN, and to validate the information on the file
stored in that SC, which will be used check file integrity,
so that only those SCs previously approved by the CSS
will be allowed to contribute to the shared calculation of
the trust level assigned to CSS, a feature that reduces
the chances of success of Client attacks against the
reputation of the CSS;

• the automation (contracting and renewal) of the man-
agement contracts for the verification of the integrity of
files stored in the CSS, entered into between the Client
and the ICS, with the automatic and periodic submis-
sion of the information needed to execute the integrity
checks (submission of challenges) exclusively for the
contracted period, features which allow the replacement
of the ICS during the contracted file storage period,
without interfering with the security of the integrity
monitoring process;

• the proposal of a new protocol that establishes the
responsibility for each of the four roles stipulated in the
solution architecture (Client, CSS, ICS, and BN), with a
detailed definition of the actions performed by each part,
and the messages exchanged between them;

• the reference implementation of the proposed protocol,
covering the functionalities established for all roles,
compatible with networks that adopt the Blockchain
Ethereum platform, composed of the following compo-
nents: i) a SC responsible for calculating, storing, and
sharing the trust level assigned to each CSS; ii) a SC
responsible for storing the file validation information,
receiving challenges from the ICS, and receiving and
validating the CSS responses; iii) a desktop applica-
tion that implements the tasks established for the Client
role; iv) a web service application that implements the
expected duties of the CSS role; and, v) a web service
application that implements the tasks established for the
ICS role.

B. STUDY STRUCTURE
This article is structured as follows: Section II presents a
review of related works. Section III describes the proposal for
the new protocol and an analysis of the security aspects of the
proposed protocol. Section IV then defines a complete refer-
ence implementation of the proposed protocol. In Section V,
we show the protocol validation with the description of the
tests performed and the analysis of the achieved results.
Finally, section VI contains concluding remarks on central
aspects of the work and possible future steps.

II. BACKGROUND
This Section presents a brief description of research related to
the application of Blockchain, SC, and Computational Trust

technologies, mainly in the areas of auditing, integrity, and
reliability.

A. BLOCKCHAIN AND SMART CONTRACTS
Xue et al. [9] propose a scheme to conduct public audits based
on cloud storage system identities. The proposed scheme,
called IBPA, is based on nonces from a public Blockchain,
such as bitcoins, as a mechanism to randomize the chal-
lenges. This scheme allows an adequate, a posteriori and in
batch verification of the audits performed by third parties,
preventing the service user from being mislead with false
results. The IBPA also proposes using a public Blockchain
as a means of storing records of the results of conducted
audits, which makes the records, due to the characteristics of
Blockchain technology, traceable, verifiable and undeniable.
The proposed scheme bases its security on the mathematical
problem of Diffie-Hellman, and its operation involves four
entities: a fully trusted authority responsible for generating
the private keys, a user/client of the service, a cloud storage
service, and a third-party auditing service [9].

Yu et al. [10] propose a framework based on Blockchain
technology to perform audits of large databases (Big Data) in
a decentralized manner and without the need for a third party.
The framework uses an optimized Blockchain instance called
Data Auditing Blockchain (DAB), which collects evidence
from the audit performed instead of the financial transac-
tion records, and uses a variant of the Practical Byzantine
Fault Tolerance (PBFT) algorithm as a consensus algorithm.
Through the use of DAB, the scheme proposed in the frame-
work enables the traceability of the audit history and, at any
time, the validation of this history by any user. The framework
implements an algorithm that permits batch validation, which
reduces the consumption of computational resources required
to execute the process. It also supports dynamic data based
on a modified version of the dispersion tree, called modified
Merkle Hash Tree (mMHT), which is stored and managed by
the CSS [10].

Wang et al. [11] propose an auditable payment and delivery
protocol for physical assets based on SCs. The proposal
uses three types of SCs designed to obtain reliable payments
between merchants, consumers and logistics companies, and
all network members. The protocol requires the use of a
third party, called regulator, responsible for authenticating
users interested in participating in the network, and regis-
tering an SC with their data in the Blockchain. It is also
up to the regulator to destroy (render invalid) the referred
contract when the user chooses to leave the network. The
common characteristic of SCs between trader and consumer,
and of SCs between trader and logistics companies is the
reserving of the financial resources necessary to settle the
transaction in the form of a deposit. The deposit is only
released to the recipient after delivery completion, or it is
returned when requested by one of the parties. The use of
Blockchain technology by the protocol provides an effective
method to audit assets and to trace the data generated during
transport [11].

198550 VOLUME 8, 2020



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

Ahmad et al. [12] propose a multilayered Blockchain
architecture to provide higher processing capacity and
reduced delays than traditional Blockchain systems. Based on
this architecture, a solution for audit trail applications called
BlockTrail was proposed, which seeks to reduce the com-
plexity of space and time common in the Blockchain-based
audit applications. In the proposal, the authors mathemati-
cally demonstrate the advantages of multilayered architecture
concerning complexity in terms of time, space, and demand.
They also analyzed issues related to security, where they
determine the minimum limits on the number of both active
and honest Blockchain replicas, to prevent being vulnerable
to malicious replicas. Finally, they presented the counter-
measures that could be adopted, capable of detecting and
preventing an attack on a Blockchain network [12].

B. COMPUTATIONAL TRUST
Albuquerque et al. [13] propose an information security
architecture that connects elements that combine the treat-
ment of information in cyberspace with measures based on
computational trust, thus ensuring cybersecurity. This related
research evaluated the relations between computational trust
and information security, analyzing the development, appli-
cations, andmarket for exploits (tools used to exploit vulnera-
bilities in cyberspace). The cited paper also presented a study
on Advanced Persistent Threats (APTs), describing the APT
concept, the APT execution flow and the risks that APTs offer
to the cyber environment, discussing some leading examples
of APTs [13].

Mohammed and Omara [14] propose a ranking model for
cloud service providers (CSP) based on trust degrees and the
similarity between the service level agreement (SLA) param-
eters requested by consumers and the parameters offered
by service providers. The proposed model applies a process
divided into phases that include filtrating, trusting, similarity,
and ranking. The filtrating phase uses a Fuzzy Controller
System to reject an untrustworthy CSP. Next, the trusting
phase applies the Particle Swarm Optimization technique
to determine the CSP trust degrees. Then, the similarity
phase employs Cosine Similarity Measures to compute the
similarity percentage between requested and offered SLA
parameters. Finally, the ranking phase uses the trust degree
and similarity percentage combination to classify the CSP
according to the capacity of providing the service to the
customer.

C. INTEGRITY AUDITING OF FILES STORED IN
CLOUD STORAGE SERVICES
El Ghazouani et al. [15] propose using Blockchain technol-
ogy in conjunction with a system formed by multiple agents
to perform deduplication and auditing of files stored in the
CSS. On the CSS side, the proposed approach uses agents
to identify entire files or parts thereof that belong or not to
the same Client, which have already been stored, discarding
new copies and thus saving disk space. For this, an agent
divides the file into parts and stores the hashes of each region

in a dispersion tree of the Merkle Hash Tree (MHT) type and
a hash database. Regarding the audit, the authors propose the
delegation of this competence to an outsourced ICS whose
trust is limited, which is why the Client only receives the
information necessary to generate challenges to the CSS but
does not have access to the content of the audited files. The
integrity verification mechanism used is an adapted version
of the challenge/response protocol based on MHT, proposed
by Coelho [16].

The scheme for real-time auditing of images stored in
the cloud, proposed by Tang et al. [17], uses a reversible
and adaptable watermark algorithm that makes it possible to
incorporate authentication data without distortion or loss of
image quality. The scheme uses a new challenge-response
mechanism that guarantees privacy, and is resistant to replay
attacks based on the Diffie–Hellman key exchange proto-
col. The proposed scheme provides three entities: the client,
the cloud storage provider, and a third party who acts as
a trustworthy arbitrator between the other entities. Due to
the small capacity of the block generated by the watermark
(416 bits), and the need to insert at least two signatures,
the scheme adopts a short signature model called BLS [17].

Wei et al. [18] propose a Blockchain-based integrity pro-
tection framework to monitor files stored in distributed stor-
age servers. The framework adopts a mechanism based on
challenge-response that uses smart contracts distributed in
a Blockchain network whose nodes are the cloud storage
servers. These smart contracts cooperate to ensure data trust
verification, and each node is responsible for generating
challenges to verify whether the pieces of the file stored in
the other nodes are intact. The integrity verification protocol
proposed by the authors uses a unique file hash generated
by a MHT and an asynchronous cryptographic mechanism
to create the challenges and validate the answers.

The works described in Section II describe several
Blockchain technology applications that emphasize audit-
ing [9], [10], [17], integrity, and reliability techniques
[11], [14], [15]. This work adapts a large part of these tech-
niques that involve the use of Blockchain, but it differs from
related works and previous research [8], mainly by combin-
ing Computational Trust with Blockchain and SCs tomonitor,
in a safe and auditable way, the integrity of files stored in the
cloud and to share the experiences regarding the quality of
the provided storage services.

III. PROTOCOL FOR MONITORING THE INTEGRITY
OF FILES STORED IN THE CLOUD
We developed the protocol to operate in an architecture
comprised of the following four roles: i) Client; ii) Cloud
Storage Service (CSS), iii) Integrity Check Service (ICS), and
iv) Blockchain Network (BN), as shown in Figure 1. The
Client is the owner of the file, while the CSS is responsible
for receiving, storing, and maintaining the integrity of the
file during the contracted period. The ICS is responsible
for periodically submitting challenges to the CSS to check
the integrity of the file. Through the SCs, the BN stores

VOLUME 8, 2020 198551



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

FIGURE 1. Protocol overview.

the information established for the file integrity verification
generated by the Client, the challenges submitted by the ICS,
the responses recorded by the CSS, and verifies the correct-
ness of these responses. Finally, the BN calculates the trust
levels and stores them for each CSS.

Aiming to facilitate understanding, we divided the
proposed protocol description into three phases, each
described accordingly in a proper section. In Section III-A,
‘‘PREPARATION PHASE’’, we describe the preparation of
the BN for the operation of the proposed protocol by sub-
mitting a SC called the Storage Service Trust Management
Contract (SSTMC) to the BN. The SSTMC implements the
calculations to change the trust level assigned to the CSS,
enables the service registry and offering by the CSS and
ICS, stores the trust level calculated for each registered CSS,
and records the CSS acceptance of each file storage request
submitted by the Clients.

Next, in Section III-B, STORAGE PHASE, we describe
the processes the Client performs to prepare the file for
storage and to submit the file to the cloud. In this phase,
we provide a detailed explanation of the encryption process,
the generation of the information necessary for the monitor-
ing of the file during the storage period, the submission of
the encrypted file copy to the CSS, and the insertion of an
instance of the SC named Cloud File Storage and Monitoring
Contract (CFSMC) into the BN.

Then, in Section III-C, INTEGRITY CHECK PHASE,
we describe the processes of generation of challenges by
the ICS, of generation of responses by the CSS, analysis of
the responses carried out by the CFSMC in the BN, and the
calculation of the trust level assigned to the CSS performed
by the SSTMC in the BN. Finalizing the proposal proto-
col, in Section III-D, PROTOCOL SECURITY ANALYSIS,
we present an analysis of the security aspects of the proposed
protocol.

A. PREPARATION PHASE
The protocol begins with the insertion of an instance of the
SC SSTMC into the BN, whose implementation we described

in Section IV-B1. For the protocol to work, one or more active
SSTMC instances must be available in the BN, and it is up
to the ICS and CSS to choose which will offer their services.
Such a situationmay occur due to the availability of improved
versions of the SSTMC or to the need to implement cus-
tomized versions to meet a specific criteria or requirement.

Thus, to enable this protocol for use, at least one CSS
and one ICS must offer their services through an instance
of SSTMC inserted in the BN. The SSTMC implements
the method called ‘‘registerStakeholder’’, which allows any
participant of the BN to self-register as an ICS or a CSS,
becoming able to be selected by the Clients.

After processing the transaction of inserting each instance
of the SSTMC into the BN, the generated SSTMC access
address must be publicly available since the protocol does
not contain its self-disclosure mechanism. The Clients, ICS,
and CSS must register at least one of the SSTMC instance
addresses available in the BN directly in their respective
applications. The SSTMC is responsible for executing, in the
BN, the computational trust processes within the scope of
the proposed protocol. The standard implementation of the
SSTMC adopts a modified version of the trust level classifi-
cationmodel proposed by Pinheiro et al. [8], which is detailed
in Table 1.

TABLE 1. Trust Level Classification [Pinheiro et al. 2018 apud Marsh 1994,
adapted].

Due to the possibility of using multiple instances of the
SSTMC in the same BN and to how we implemented the
standard version of the SSTMC, it is easily feasible to create
customized versions of the SSTMC that change the behavior
of the adopted computational trust model. It is only nec-
essary to adjust the constants that represent the intervals
described in Table 1, without changing the implementation
of the routines responsible for calculating the trust value.
In Section III-C4, we describe these calculation routines.

B. STORAGE PHASE
In this phase, the Client begins the protocol with the file
preparation and submission to storage in the CSS, whose
process we describe in detail in Section III-B1. Then, the CSS
starts the process of auditing and accepting the received file,
which we present in Section III-B2. If the storage request

198552 VOLUME 8, 2020



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

FIGURE 2. Overview of the storage phase.

is accepted, the Client finalizes the protocol storage phase
contracting the ICS responsible for monitoring the integrity
of the file, and this process is described in Section III-B3.
To conclude the description of this phase, in Section III-B4
we show the complexity analysis of the proposed algorithms.
Figure 2 presents an overview of the processes performed by
each of the roles in this phase.

1) PREPARING AND SENDING FILES TO BE STORED
The process is initiated with the choice by the user of the file
to be stored, the cryptographic key to encrypt the file, the ran-
domness seed, the storage period, the instance of SSTMC,

the CSS, and the initial ICS. The SSTMC instance, through
the ‘‘stakeholders’’ method, provides the list of available CSS
and ICS. Then, the Client encrypts the selected file using a
symmetric cryptographic algorithm and the informed cryp-
tographic key (P1.1 of Figure 2). Next, the Client generates
a hash from the encrypted file content. This hash will serve
as the file identifier and integrity validator when the CSS
receives the chosen file. In sequence, the Client computes the
file’s fraction size dividing the referred file into 4096 portions
of equal dimensions (P1.2 of Figure 2).

The protocol proposes to use challenges to validate the
content of data blocks composed of 16 randomly chosen

VOLUME 8, 2020 198553



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

file fractions. There is a direct relation between the number of
generated data blocks and the number of challenges used to
verify the file integrity during its cloud storage period. As the
number of generated daily challenges will vary according to
the current trust level assigned to the CSS when generating
these challenges, the algorithm performs the calculation of
the total number of data blocks considering the worst case.
In the worst case, the CSS remains evaluated at the lowest
trust level, ‘‘Very high distrust’,’ throughout the file storage
period, as shown in Table 1. Thus, the algorithm computes
how many data blocks will be needed by multiplying the
established file storage period in days by the number of data
blocks that will be checked per day, as per Table 1.

Then, a CFSMC instance is submitted to the BN, using
the following parameters for its initialization: the file iden-
tification hash, the file’s fraction size, the storage deadline,
the total number of data blocks that will have their verification
hashes stored in the CFSMC, the credential addresses that
identify the chosen CSS and ICS in the BN, and the adopted
SSTMC instance address. After the BN processes the trans-
action generated by the CFSMC submission, the Client sends
the added CFSMC instance access address and the encrypted
file to the CSS. In Section IV-B2, we describe the CFSMC
implementation.

At the same time, using a seed of randomness the file
owner has assigned, the Client draws 16 numbers, between
0 and 4095, forming a set of numbers that represents the
addresses of 16 file fractions. The algorithm repeats this
drawing process 256 times, disregarding in the subsequent
draw the fraction addresses that were previously drawn so
that each fraction address in the file is part of a single fraction
address set (FAS). The algorithm will repeat this process
as a whole until it draws the number of necessary FASs to
generate all required data blocks (P2.1.1 of Figure 2). The
union of these 256 drawn FASs, which includes all 4096 file
fraction addresses, is called a ‘‘cycle’’. Listing 1 presents a
pseudo-code to demonstrate the process of drawing fraction
addresses for each data block and generating the necessary
cycles according to storage time.

For each FAS, the algorithm reads the contents of
the 16 fractions from the encrypted file and concatenates
these contents forming the respective data block (P2.1.3 of
Figure 2). After this, the Client generates a first hash from
the data block’s content and a second hash, called ‘‘challenge
password’’, from the result of the following content concate-
nation: i) the password informed by the Client user; ii) a
random value generated from the seed of randomness; and,
iii) the FAS that gave rise to the data block. Then, the Client
concatenates the data block hash with the ‘‘challenge pass-
word’’ hash and, from the resulting content, it generates a
new hash called ‘‘verification hash’’. For each data block
generated, the algorithm inserts a record containing the FAS,
the ‘‘challenge password’’, the ‘‘verification hash’’, and a
sequential integer that identifies the data block in the file
verification table (FVT) (P3.3.1 of Figure 2).

LISTING 1. Pseudo-code to draw fraction addresses and generate cycles.

At the same time, the Client begins the process of inserting
the data block verification hashes into the submitted file’s
CFSMC instance stored in the BN by executing its ‘‘insert-
Block’’ method. The hash insertions can be performed one-
by-one or grouped to obtain better performance. The maxi-
mum number of data block verification hashes to be inserted
in the CFSMC in a single execution of the ‘‘insertBlock’’
method depends on the maximum limit of bytes that a single
transaction can process. This condition varies according to
the characteristics of each BN.

2) AUDITING AND ACCEPTING THE FILE
STORAGE REQUESTS
After receiving the entire content of the file, the CSS verifies
its integrity. For this, the CSS generates a file content hash and
compares it with the file identifier previously registered at the
CFSMC instance stored in the BN and referred by the address
received together with the file. If the file integrity verification
fails, the CSS rejects its storage and informs the Client. Once
the file integrity is confirmed, the CSS awaits the completions
of the transactions generated in the BN when the verification
hashes were inserted in the file’s CFSMC instance. To do this,
the CSS periodically consults the CFSMC instance by exe-
cuting the CFSMC’s ‘‘isReady’’ method, which compares the
total number of data blocks reported in the referred instance
insertion in the BN with the number of verification hashes
already inserted.

After identifying the completion of the data block’s ver-
ification hash insertions in the CFSMC instance linked
to the file, the CSS draws some data blocks and, from
these, generates challenge requests to the Client for audit-
ing purposes. The CSS records these challenge requests
in the file’s CFSMC instance by executing the CFSMC’s

198554 VOLUME 8, 2020



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

‘‘requestChallenge’’ method. The total number of required
challenges will be equal to one-tenth of the number of cycles
generated by the Client. As each cycle has 256 FASs, and the
necessary information to build one challenge was produced
for each FAS, the audit process will use only one challenge
of each set of 2560 potential challenges.

As long as the CSS does not accept the file submitted
for storage or receives a message indicating its rejection,
the Client monitors the file’s CFSMC instance and waits
for the challenge requests for audit, a procedure performed
through the periodic execution of the CFSMC’s ‘‘getRequest-
edChallenges’’ method. After the CSS chooses and registers
the challenge requests, the Client reads these requests and
obtains the id, the FAS, and the ‘‘challenge password’’ of
all data blocks whose challenges were requested from the
FVT. From this information, the Client generates and submits
the challenges to file’s CFSMC instance through the ‘‘sub-
mitChallenge’’ method. When the CFSMC instance receives
the submission of a challenge from the list of challenges
requested by the CSS, it automatically removes it from this
list.

After requesting the audit challenges, the CSS starts mon-
itoring the file’s CFSMC instance awaiting the submis-
sion of these challenges by the Client. For this, the CSS
periodically performs the CFSMC ‘‘getPendingChallenges’’
method. When identifying the existence of pending chal-
lenges in the file’s CFSMC instance, the CSS generates a
response for each registered challenge and records it in the
referred CFSMC instance by executing the CFSMC ‘‘reply-
Challenge’’ method. We describe the process of generating
the response to the challenge in Section III-C.

Then, the CSS monitors the file’s CFSMC instance once
again, awaiting the completion of the response transactions.
After the BN has processed all transactions, the CSS verifies
whether there are either pending challenge requests or wrong
responses. This procedure is performed using both the
CFSMC ‘‘getRequestedChallenges’’ and ‘‘getTotalFailed-
Challenges’’ methods. The audit is successful if the first one
returns an empty set, indicating that the Client submitted all
requested challenges, and the second returns zero, indicating
that the file’s CFSMC instance successfully validated all
challenges responses.

Subsequently, if the audit process is successful, the CSS
saves the Client’s received file in its storage infrastructure
and records the acceptance of the respective storage contract
(the file’s CFSMC instance) in the Client’s chosen SSTMC
instance. For this, the CSS loads the SSTMC instance from
the access address received from the file’s CFSMC instance,
and executes the SSTMC ‘‘authorizeContract’’ method, using
the file’s CFSMC instance access address as a parameter.
The CSS obtains the Client’s chosen SSTMC instance access
address by executing the CFSMC ‘‘getTrustManagement-
Contract’’ method.

The registration of the CFSMC instance authorization
by the CSS in the SSTMC instance has two objectives:
i) it guarantees that the CSS accepted the file’s storage

SC (CFSMC instance) registered at the BN by the Client;
and, ii) it authorizes the SSTMC instance to accept the trust
level update requests attributed to the CSS from the referred
CFSMC instance.

3) CONTRACTING THE FILE INTEGRITY
MONITORING SERVICE
After the audit challenges required by the CSS are submitted,
the Client monitors the chosen SSTMC instance, awaiting
the registration of the authorization of the CFSMC instance
linked to its file. For this, the Client periodically executes the
SSTMC ‘‘isAuthorized’’ method. After approval, the Client
registers in its database that the CSS has accepted its file,
deletes the original file, and excludes its verification hashes
from the FVT (P5.1 of Figure 2).

The Client then sends the stored file’s CFSMC instance
access address, the monitoring contract deadline, and the
set of the necessary information to generate the challenges
during the contracted period to the chosen ICS. This infor-
mation is obtained from the FVT and is composed of the
FAS, the ‘‘challenge password’’, and the sequential number
that identifies the data block. The ICS stores all information
received in its local database (P5.3 of Figure 2).

At the end of the monitoring period that the Client con-
tracted with the ICS, the Client analyzes the records gener-
ated by the ICS integrity verification processes. If the Client
identifies an inconsistency in the protocol execution, for
example, if the ICS fails to inform the Client of an identified
failure or submits fewer challenges than expected for the
trust level assigned to the CSS, the Client then selects a new
ICS. Otherwise, the Client automatically renews the expired
contract. In both situations, the Client updates the file’s
CFSMC instance by executing its ‘‘changeIntegrityCheck-
Service’’ method. After defining the ICS for the next moni-
toring period, the Client records the new integrity verification
contract deadline in the file’s CFSMC instance by executing
the ‘‘setIntegrityCheckAgreementDue’’ method. Finalizing
this process, the Client sends enough information to the
ICS to generate the challenges to the CSS throughout the
new contracted period. This information (FAS, ‘‘challenge
password’’, and block identifier), originating from the FVT,
is excluded from the referred table, immediately after being
sent to the ICS.

4) ALGORITHM COMPLEXITY ANALYSIS
During the storage phase, we used two algorithms. The first
algorithm selected the file’s FAS used to assemble the data
blocks applied in preparing the challenges and in verifying
integrity. In addition, the algorithm groups the selected FAS
into cycles, so that each cycle contains all file fractions.
The algorithm input parameter is the number of cycles to be
generated, which is directly related to the number of years
established for storage in the cloud.

The complexity analysis of the algorithm begins by defin-
ing the number of operations performed according to its input
parameter. This number is equal to 16∗256∗n, where 16 is the

VOLUME 8, 2020 198555



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

number of fraction addresses that make up each FAS, 256 is
the number of FASs that make up each cycle, and n represents
the number of cycles to be generated. The n is the integer
value resulting from the calculation of 14∗366∗m/256, where
the 14 is the number of data blocks to be checked per day con-
sidering the worst-case, i.e., the CSS classified at the ‘‘Very
high distrust’’ level, 366 is the maximum number of days
in a year, m represents the number of years established for
file storage, and 256 is the number of generated data blocks
per cycle. Based on the analysis presented, it is possible to
infer that the complexity of this algorithm isO(n), even when
considering the number of years established for storing the
file as an input parameter.

The second algorithm processes the generated cycles and
assembles the data blocks with the concatenation of the con-
tent of 16 file fractions according to the addresses registered
in each of the 256 FASs in each cycle. Next, for each gener-
ated data block, the algorithm generates a verification hash.
In this algorithm, the input parameter is the number of cycles
generated by the first algorithm. Considering that the content
reading of the file fractions is the operation with the highest
number of repetitions, the maximum number of operations
performed by the algorithm is equal to 16∗256∗n, where 16
is the number of fraction addresses that make up each FAS,
256 is the number of FASs that make up each cycle, and n is
the total number of generated cycles. As in the first algorithm,
we can conclude that the complexity of the second algorithm
is also O(n). Based on the results shown, we can affirm that
both algorithms used in this study presented a linear growth
rate over the period of computation, according to the number
of years established for storing the file in the cloud.

C. INTEGRITY CHECK PHASE
This phase is executed in parallel by the ICS, which gener-
ates the challenges and records them in the BN. The CSS
periodically checks the pending challenges, processes them,
and records their responses in the BN. Both the ICS and CSS
interact with the BN through the CFSMC instance, which
updates the level of trust in the CSS through an SSTMC
instance. An overview of the processes performed by each
of the roles in this phase is presented in Figure 3.
The ICS reads its database daily, locating the active

integrity verification contracts, grouping the respective
CFSMC instances by the CSS, and by the SSTMC instance
used (P1 of Figure 3). Then, the ICS initializes two processes
in parallel. The first process, presented in Section III-C1,
selects the CFSMC instances by the CSS/SSTMC that will
receive challenges on that day, calculates the number of chal-
lenges to submit for each CFSMC instance according to the
CSS trust level registered at the SSTMC instance, generates
the challenges, and submits them to the selected CFSMC
instance. The second process, presented in Section III-C2,
verifies in each CFSMC instance if there are pending chal-
lenges and if there are flaw indications in the previously
submitted challenge records.

After the ICS submits challenges to the CFSMC instance,
the CSS reads them and begins the process of generating
and submitting challenge responses to the CFSMC instance,
according to the proceedings presented in Section III-C3.
Then, the CFSMC instance verifies these answers and,
according to the obtained results, it requires an update in the
trust level assigned to the CSS from the SSTMC instance.
Section III-C4 presents the calculations used to update the
trust level.

1) CHALLENGE GENERATION AND SUBMISSION PROCESS
The same CSS provider can store files from Clients using
CFSMCs linked to distinct SSTMC instances, and the same
ICS provider can monitor CFSMC instances of files stored
in different CSSs and linked to various SSTMC instances.
Each SSTMC instance will assign different values to the trust
level in each CSS, and theses values will define the number of
stored files verified by day and the number of challenges by
file. So, for calculating the total number of files, the protocol
only considers the CFSMC instances linked to the same CSS
and SSTMC instance (CSS/SSTMC). For each CSS/SSTMC,
the ICS performs the challenge generation process with its
active contracts.

From the selection of the CSS/SSTMC, the ICS executes
the SSTMC ‘‘getTrustLevel’’ method to obtain the updated
trust level assigned to the CSS (TL/CSS) (P3.1 and P3.2 of
Figure 3). Then, the ICS computes the number of files to
submit the challenges to, and the number of challenges to
submit for each file (P3.3 of Figure 3), both using the total
number of files linked to the CSSs/SSTMCs with active
contracts, and the percentages from Table 1.

The ICS selects which CFSMC instances will receive chal-
lenges on the day, in ascending order of date/time of the
last challenge submitted for each CFSMC instance (P3.4 of
Figure 3). Then, for each CFSMC instance selected, from
information on data blocks received from the Client, the ICS
selects the data blocks to generate the challenges from unused
data blocks in the last cycle. When there are no data blocks
available in the current cycle, the ICS draws a new cycle,
except in the first execution, when the ICS selects the cycle
zero (P3.5 of Figure 3). Then, the ICS submits a challenge
for each chosen data block by executing the CFSMC ‘‘sub-
mitChallenge’’ method, using the FAS, the ‘‘challenge pass-
word’’, and the data block identifier as parameters (P3.6 of
Figure 3). The CFSMC instance processes these transac-
tions and stores the received challenges, designating them as
‘‘PENDING’’, which means that the challenge is awaiting
the CSS response (P3.7 of Figure 3). Listing 2 presents a
pseudo-code to demonstrate the ICS process of generating
and submitting challenges to each CSS through the CFSMC
instance.

2) PREVIOUS CHALLENGE VERIFICATION PROCESS
For each active verification contract, the ICS runs the
CFSMC ‘‘getPendingChallenges’’ method, which returns a
list of the pending challenge identifiers (P2.1 of Figure 3).

198556 VOLUME 8, 2020



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

FIGURE 3. Overview of the integrity check phase.

This situation occurs when the CSS delays or chooses to
postpone the response indefinitely. Taking into account that
the protocol execution cycle occurs every 24 hours, asyn-
chronously and through a decentralized network, we con-
sidered the possibility of failures in the synchronization of
the Blockchain network nodes, which could cause delays
both in the propagation of the transaction that registers the
challenge and in the propagation of the transaction that reg-
isters the response. Therefore, we defined that the acceptable
maximum propagation delay time could not be greater than
24 hours in each direction. Furthermore, based on results pre-
sented in the previous work [8], that uses a similar response
generation process and after having run stress tests to be
sure of the proposed solution behavior, we initially defined

that 24 hours would be enough time for the CSS to process
a challenge, even when considering a potential overload of
challenges.

Based on the above, we concluded that 72 hours was
enough time for a well-intentioned CSS to respond to a
challenge, even when experiencing temporary technical diffi-
culties. A delay greater than this would be a strong indication
that the CSSwas trying to hide that the file is corrupted or lost.
Even if the stored file were still healthy, the lack of a proper
response would indicate that the CSS is experiencing more
severe problems, which would compromise the stored file
availability, being a reason to penalize the CSS.

For each pending challenge, the ICS runs the CFSMC
‘‘verifyChallenge’’ method. When executing this method,

VOLUME 8, 2020 198557



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

LISTING 2. Pseudo-code to generate and submit challenges to each CSS.

the CFMSC instance records the request in the BN and cal-
culates how long the challenge has been pending (P2.3.1 and
P2.3.2 of Figure 3). If the period is greater than 72 hours,
it changes the challenge status from ‘‘PENDING’’ to ‘‘FAIL’’
(P2.3.3 of Figure 3), indicating that the challenge has
failed. Next, the CFSMC instance automatically executes
the SSTMC ‘‘decrementTrustValue’’ method, which reduces
the trust level assigned to the CSS (P5.2 in Figure 3).
We described the calculation of the trust level
in Section III-C4.
After processing the pending challenge verification trans-

actions, the ICS executes the CFSMC ‘‘getTotalFailedChal-
lenges’’ method, which returns the total number of challenges
submitted to the CFSMC instance whose registered status
is ‘‘FAIL’’ (P2. 2 of Figure 3). If the returned value is
greater than zero, this means that one or more challenges
have failed, and it is not possible to warrant that the file
stored by the Client in the CSS remains unadulterated. Then,
the ICS immediately sends an electronic message (e-mail) to
the Client informing the identified flaw (P2.4.2 of Figure 3)
and sets the integrity verification contract status to ‘‘frozen’’
(P2.4.1 of Figure 3). The ICS will maintain the referred
contract in a ‘‘frozen’’ state until the Client expresses itself
about the reactivation or the definitive cancellation of the
contract.

The Client, when informed about an identified fault, must
download the file and check its integrity by comparing the
file identification hash with the hash of file content recovered
from the CSS (P2.4.3 of Figure 3). When it is confirmed that
the file content remains intact in the CSS and that the identi-
fied fault is a false positive, the Client will request the ICS to
reactivate the verification contract. Otherwise, the Client will
request the definitive cancellation of the respective verifica-
tion contract regarding that file to the ICS.

3) CHALLENGE RESPONSE GENERATION, SUBMISSION
AND VERIFICATION PROCESS
Every CSS that holds active file storage contracts for the
Client periodically checks for pending challenges by exe-
cuting the ‘‘getPendingChallenges’’ method of the CFSMC
instance of each stored file. This method returns a list of
the pending challenge identifiers, whose number is equal to
the key that identifies the data block that originated the list.
For each CFSMC instance with pending challenges, the CSS
executes both the CFSMC ‘‘getFileId’ and ‘‘getChunkSize’’
methods to obtain, respectively, the file identification hash
and the file fraction size. Next, the CSS processes each pend-
ing challenge. This process starts with the CSS obtaining the
FAS of the data block that will be verified by executing the
CFSMC ‘‘getChallenge’’ method, which receives the chal-
lenge identifier as parameter (P4.1 of Figure 3).
After locating the file with its hash identifier, the CSS reads

the content of each file fraction indicated by the addresses

198558 VOLUME 8, 2020



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

contained in the FAS. To do this, the CSS calculates each
file fraction’s initial position by multiplying its address by
the file fraction’s size. Next, the CSS generates a data block
by concatenating the read fraction content and generates the
response hash from this data block (P4.3 of Figure 3). Finally,
the CSS responds to the challenge by executing the CFSMC’
‘‘replyChallenge’’ method, using both the response hash and
the challenge identifier as parameters (P4.4 of Figure 3).
When processing the transaction containing the response to

the challenge, the CFSMC instance stores the response hash
and reads the ‘‘verification hash’’ from its database recorded
by the Client when it sent the file for storage in the cloud,
and the ‘‘challenge password’’ registered by the ICSwhen the
challenge was submitted. In sequence, the CFSMC instance
generates a ‘‘new hash’’ from the concatenation of the read
‘‘challenge password’’ and the received ‘‘response hash’’.
To end this round, the CFSMC compares the generated ‘‘new
hash’’ with the read ‘‘verification hash’’ (P4.5.1 of Figure 3).

A match between the compared hashes confirms the
integrity of the file fractions used in the challenge and, in this
case, the CFSMC instance changes the challenge status to ‘‘
SUCCESS ’’ (P4.5.2 in Figure 2 3). It also checks whether the
received response refers to the last challenge in a cycle, whose
other challenges also confirmed the integrity of the fractions
they verified. As a challenge cycle covers all file fractions,
when the CSS successfully answers all challenges in the same
cycle, it is possible to state that the verified file is unbroken.
Whenever it finishes a challenge cycle without finding a
failure, the CFSMC asks the SSTMC instance to increase
the trust level assigned to the CSS by executing the SSTMC
‘‘incrementTrustValue’’ method. Section III-C4 describes the
performed calculation (P5.1 of Figure 3). Likewise, if the
integrity of the fractions verified by the challenge is not
confirmed, the CFSMC instance changes the challenge status
to ‘‘FAIL’’ (P4.5.2 of Figure 3) and asks the SSTMC instance
to reduce the trust level assigned to the CSS by executing the
SSTMC ‘‘decrementTrustValue’’ method (P5.2 of Figure 3).

4) CALCULATION OF THE TRUST VALUE
We adapted both the SSTMC ‘‘incrementTrustValue’’ and
‘‘decrementTrustValue’’ method implementation in the trust
calculation model proposed in the previous study [8] to allow
its utilization in a SC. Due to the limitation of the Solidity
programming language [20] used to implement SC, the trust
level calculation used only integer numbers. However, for the
sake of clarity, some values will be presented in scientific
notation format according to their magnitude.

The trust value assigned to the CSS (TV/CSS) is an integer
value, belonging to the interval between −1 × 1020 and
1 × 1020. The CFSMC instance updates the TV/CSS by
executing either the SSTMC ‘‘incrementTrustValue’’ or the
‘‘decrementTrustValue’’ method according to the file
integrity checking result. The CFSMC instance must ask
the SSTMC instance to increase the TV/CSS whenever it
concludes a file verification cycle without finding a failure.
However, whenever an integrity failure is found in a file

stored by the CSS, the CFSMC instance must request the
SSTMC instance to reduce the TV/CSS.

The ‘‘decrementTrustValue’’method implements the equa-
tion z = x − y, where the z is the new and updated TV/CSS,
the x represents the TV/CSS stored in the SSTMC instance,
and the y represents the decrement value computed according
to Equation 1:

(x > 0→ y = x)

∧ (x = 0→ y = 1.5× 1019)

∧ (0 > x ≥ −5× 1019→ y = (x ×−0.15))

∧ (x < −5× 1019→ y = ((−1× 1020 − x)×−0.025)).

(1)

Likewise, the ‘‘incrementTrustValue’’ method implements
equation z = x + y, where the z represents the new and
updated TV/CSS, the x represents the TV/CSS stored in the
SSTMC, and the y represents the increment value computed
according to Equation 2:

(x < 0→ y = ((−1× 1020 − x)×−0.025)

∧ (x = 0→ y = 1.5× 1019)

∧ (0 > x ≥ 5× 1019→ y = (x × 0.025))

∧ (x > 5× 1019→ y = ((1× 1020 − x)× 0.005)). (2)

After performing the calculation according to the respec-
tive equations, the resulting new TV/CSS, the z value in the
equations, is stored in the SSTMC instance (P5.3 of Figure 3).
The constants we defined in Equations 1 and 2 repre-

sent the percentages that will be applied on the calcula-
tion basis to determine the decrease/increase value for each
case. These equations use different percentages according
to the current TV/CSS, so that the needed ‘‘number of
failures’’ or the ‘‘number of cycles correctly verified’’ to
progress to the ‘‘Medium’’ level of either distrust (TV/CSS≤
−5 × 1019) or trust (TV/CSS > 5 × 1019), according to
Table 1, are proportionally much smaller than those needed
to reach the ‘‘High’’ and ‘‘Very High’’ levels. Furthermore,
in these last levels, the decrement/increment calculation,
instead of using the current TV/CSS as the calculation basis,
uses the difference between the maximum or minimum
scale value and the current TV/CSS. Thus, the closer the
TV/CSS is to the scale limits, the smaller the calculation basis
and, consequently, the smaller the impact of the resulting
decrease/increase in the distrust/trust level progression.

We obtained the adopted percentages in Equations 1 and 2
from the results of the simulations presented in the previous
study [8]. However, in this new version, we calibrated them
through preliminary tests, with the intention of improving
the calculations to accelerate the penalizing of services that
presented recurrent failures. This penalty is the rapid progres-
sion of their classification through the different distrust levels.
In return, we ensure that service providers who maintain
good behavior, i.e., that have no flaws detected over time,
are gradually reclassified from the lowest to the highest trust
level. Listing 3 presents Equation 1 in a pseudo-code that

VOLUME 8, 2020 198559



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

LISTING 3. Trust value computing after a failure has been identified.

LISTING 4. Implementation of ‘‘incrementTrustValue’’ method.

demonstrates the trust value computation after a CFSMC
instance to identify a failure. The ‘‘incrementTrustValue’’
method implementation shown in Listing 4 demonstrates use
of the Equation 2.

D. PROTOCOL SECURITY ANALYSIS
1) CLIENT SECURITY
The proposed protocol promotes Client security by making
it possible to monitor file integrity without exposing any part
of the original file’s content to any third parties involved in
the protocol execution (ICS, CSS, and BN). So, both the
cryptographic algorithm strength and the Client password
secrecy preservation used ensure confidentiality. In addi-
tion, the CSS publicly records in the BN the acceptance of
the CFSMC instance linked to the stored file, through the
SSTMC instance chosen by the Client. This process gives
non-repudiation assurance to the Client concerning the file

received by the CSS, and the CSS concordance regarding the
contracted service requirements defined in the SCs CFSMC
and SSTMC.

The protocol also assures the Client that none of the parties
involved (ICS, CSS, BN) need to keep enough information
to forge the ‘‘hash response’’ in their records. Moreover,
the anticipated generation of all possible answers using the
brute force method would have a high computational cost.
Due to the ‘‘challenge password’’ size (2256 bits ≈ 1.15×1077

possibilities) and the number of possible arrangements for the
FAS assembly (A4096,16 ≈ 6.09×1057), it became necessary
to test an average of ≈ 3.5 × 10134 hashes to identify a
FAS and a ‘‘challenge password’’. For this reason, the CSS
needs to access a complete copy of the file to produce the
correct responses to the challenges, even if there is collusion
involving the CSS and ICS, or a recurrent leak from the ICS
of information used to generate challenges, since in each
integrity verification contract renewal the Client submits only
the necessary information to generate challenges during the
contracted period to the ICS.

The BN immutability ensures that rules implemented in
a SC, once inserted in the BN, cannot be changed. The
proposed protocol determines that the challenges generated
by the ICS, as well as the respective responses generated by
the CSS, must be registered at the BN through an instance
of the SC CFSMC. These characteristics ensure to the Client
the possibility of performing an audit, at any time, of every
action performed by both the ICS and CSS. This audit pro-
cess provides the Client the guarantee of the integrity of its
files, without the need of the other parties involved. Besides,
the fractionated challenge generation information sent to the
ICS allows the Client to replace the ICS at any time, without
compromising the security of the integrity verification pro-
cess. In turn, the CFSMC implementation ensures that only
the authorized ICS can submit challenges and that only the
Client that has inserted the CFSMC instance in the BN can
replace the authorized ICS.

2) CSS SECURITY
The use of the SC SSTMC to compute the trust value in the
CSS and its storage prevents the influence or interference of
the other roles (Client, ICS, and CSS) in the obtained results
and, consequently, in the trust level assigned to each CSS.
In addition, only the CFSMC instances previously approved
by the CSS can ask to SSTMC instance to execute this
calculation. This approach gives veracity and reliability to the
computed trust value for each CSS managed by the SSTMC
instance. Smart contracts guarantee calculation security due
to code immutability. Furthermore, any BN participant can
read and audit their codes. This architecture allows the safe
sharing of the CSS trust level between all the ICSs that
monitor files stored in the same CSS which have adopted the
same SSTMC instance for trust management.

The protocol promotes CSS security by allowing it to
previously check the rules implemented in the trust man-
agement contract options, that is, in the available SSTMC

198560 VOLUME 8, 2020



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

instances, allowing the CSS to only offer its services when it
agrees to the implemented rules. Another proposed protocol
security mechanism that we designed to protect the CSS is
the audit of the data generated by the Client to verify file
integrity. The CSS performs this audit before it registers the
final acceptance of the CFSMC instance linked to the file
submitted by the Client for storage. In this audit process,
the CSS randomly chooses certain challenges registered by
the Client in the CFSMC instance and tests their compatibility
with the submitted file content. This approach minimizes the
possibility of a malicious Client generating invalid verifica-
tion information, which, if not identified at the time of file
storage contract acceptance, will compromise the reputation
of the CSS. Another security mechanism provided for in the
protocol is the verification carried out by the CSS, before a
Client file is definitely accepted for file storage, which tests
whether the smart contract linked to the file is a reliable
CFSMC instance (without changes).

IV. IMPLEMENTATION OF THE PROTOCOL
We organized the protocol implementation to provide a
phased validation. In Section IV-A, we present the choice
of programming languages and other technologies required
to implement both the SCs and the applications intended
for the Client, the ICS, and the CSS roles. Section IV-B
describes the implementation of the SCs, the SSTMC and
the CFSMC. Then, in Section IV-C1, we show the imple-
mentation of the application responsible for the processes
assigned to the Client, and their integration with the SCs.
Next, in Section IV-C2, we present the implementation of the
functionalities assigned to the CSS and their interaction with
the Client and the SCs. Finally, in Section IV-C3, we show
the implementation of functionalities assigned to the ICS and
their interaction with the Client and the SCs.

A. TECHNOLOGY CHOICES
The programming languages available for the implementa-
tion of the SCs are not generic; that is, they aremostly specific
to the technology adopted in the BN implementation [21].
Although the proposed protocol is generic and applicable to
any BN, before starting the implementation of the proposed
SCs, we chose a Blockchain technology and a compatible SC
programming language.

We selected the ‘‘Ethereum’’ platform [22] guided by the
following criteria: the availability of documentation, the ease
of creating a network to perform tests inside a laboratory,
and the number of available tools to support the use and
the testing execution. The programming language chosen for
the development of the SCs was Solidity [20], due to its
popularity, the ample documentation, and tools available that
allow the smooth interaction between the implemented SCs
and the applications responsible for the actions assigned to
the Client, the ICS, and the CSS.

For the development of the applications that implement the
processes assigned to the Client, CSS, and ICS, we chose the
JAVA EE language and its components, such as JPA, EJB,

CDI, and JAX-WS [23]. Since each of the roles involved in
the proposed protocol has different functions, we decided to
develop three applications, each of which will be responsible
for implementing the responsibilities of a single role. For the
Client, we opted for a local desktop-type application, while
for the CSS and the ICS, we decided on web service-type
applications. For these two applications, we chose the Glass-
fish Application Server [24] as the application server, and
the PostgreSQL [25] software as the Database Management
System (DBMS) for all applications.

We chose the platform adopted for the implementation of
the CSS and ICS applications taking into account the need
to provide asynchronous interaction between them and the
Client. Based on this premise, the availability of resources
for implementing web services, asynchronous communica-
tions, scheduling tasks, andmonitoring events determined the
choice of JAVA EE [23]. We selected Glassfish and Post-
greSQL because they are both open-source and fully meet the
needs required by the applications.

B. IMPLEMENTATION OF SMART CONTRACTS
When implementing SCs, we took into account that every
transaction carried out in the BN has a cost, which serves
to remunerate the network nodes that mine the blocks to
insert into the BN, blocks where the transactions submitted
to the BN by other nodes will be embedded. Some BNs,
such as Ethereum [22], use a unit called ‘‘gas’’ to compute
the transaction cost, and the amount is directly related to the
number of bytes that will be processed/stored in the BN and
the complexity of the performed calculations. At the end of
the execution of a transaction, the BN converts the amount of
‘‘gas’’ consumed in the transaction execution to the adopted
cryptocurrency and charges it to the node that submitted the
transaction. At the transaction submission time, its node of
origin offers the amount of cryptocurrency to pay for each
unit of ‘‘gas’’. The node must have a sufficient balance in
cryptocurrency to cover the referred transaction, or the BN
will decline it.

The BN also limits the maximum amount of ‘‘gas’’ that a
transaction can consume, and this amount varies according to
the settings of each BN. At the time of submission, the node
of origin also defines the maximum amount of ‘‘gas’’ it is
willing to pay for the transaction. If the submitted transaction
exceeds the ‘‘gas’’ consumption stipulated in any of the max-
imum limits mentioned, the BN will refuse it. Because of the
above issues, we carried out a series of tests to determine the
best strategy to be adopted in the SC implementation, so that
the transactions result in the lowest possible consumption of
‘‘gas’’, grouping them when possible to reduce the number of
individual transactions executed, but without surpassing the
limits of the BN.

Section IV-B1 presents the description of the features
implemented by the SC SSTMC, responsible for managing
the trust level attributed to the CSS. Section IV-B2 introduces
the SC CFSMC, responsible for managing storage and for

VOLUME 8, 2020 198561



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

monitoring files in the cloud. Figure 4 shows a class diagram
of the implemented SCs.

The language Solidity [20] has a limitation since it does
not allow iterating over the records of a mapping, i.e., over
the elements of an array that maps keys to values using
‘‘mapping’’ type, but allows access to the stored value with
the use of the respective key. Due to this limitation, to allow
the storage and processing of information composed of key
and value, we created the auxiliary classes (RequestMap,
StakeHolerMap, BlockMap, and ChallengeMap) that imple-
ment the ‘‘iterateStart’’, ‘‘iterateNext’’, and ‘‘iterateValid’’,
and ‘‘iterateGet’’ methods described in the abstract class
‘‘IterateMap’’ shown in Figure 4. These methods make it
possible to read the values sequentially in the stored order.
The attribute ‘‘keyIndex’’ passed as a parameter indicates the
element’s position, according to the order of its insertion in
the matrix. The ‘‘contains’’, ‘‘insert’’, ‘‘remove’’ and ‘‘get’’
methods (Figure 4) receive the real ‘‘key’’ as a parameter.
Each of these methods has the function of respectively con-
firming the existence of the key, inserting an element with
the value informed in the attribute ‘‘data’’ linked to the key,
deleting the element with the key, and reading the content
stored in the attribute ‘‘data’’.

1) SMART CONTRACT SSTMC
The Storage Service Trust Management Contract (SSTMC)
is a SC defined by the proposed protocol which has the
following functions: to calculate, store and share the trust
level assigned to the CSS; to record the acceptance by the
CSS of the storage contracts (CFSMC instances) submitted
by the Clients; and to publish the CSS and ICS providers
willing to provide their services under the rules implemented
in a SSTMC instance. The SSTMC implements the methods
described in the abstract class ‘‘SSTMCAbstractContract’’ as
can be seen in Figure 4.
In order to calculate the trust value, the SSTMC class

implements the ‘‘incrementTrustValue’’ and ‘‘decrement-
TrustValue’’ (Figure 4) methods. Both methods receive the
credential address that identifies in the BN the CSS as a
parameter, whose assigned trust value must be updated. Only
CFSMC instances previously authorized by the CSS can
execute these methods. According to the process described
in Section III-C, a CFSMC instance will respectively invoke
one of these methods whenever it identifies the need to
increase or decrease the trust value assigned to the CSS
linked to it. We presented the calculations implemented in
these methods in Section III-C4. These methods store the
obtained result as an element of the ’trust’ attribute (Figure 4),
a mapping whose key is the CSS credential address at the
BN. Listing 4 presents the SSTMC ‘‘incrementTrustValue’’
method implementation.

Aiming to share the trust attributed to a CSS, we imple-
mented the ‘‘getTrustLevel’’ and ‘‘getTrustValue’’ meth-
ods (Figure 4), both of which receive the CSS credential
address as a parameter. The ICS performs the first method
(Section III-C) daily, which returns the trust level assigned to

the CSS. The ICS obtains the trust level by converting the trust
value stored in the attribute ’trust’ into one of the trust levels,
according to the limits defined in Table 1. The secondmethod,
which returns the trust value stored in the ’trust’ attribute,
is used by the Client application to classify all available CSS
trust values in decreasing order (Section III-B).

After the CSS validates a received file for storage, it autho-
rizes the SSTMC instance, chosen by the Client, to accept
requests from the CFSMC instance linked to that file using
the ‘‘authorizeContract’’ method. The authorization also con-
firms the CSS acceptance of the Client storage request. The
‘‘authorizeContract’’ method receives the CFSMC access
address at the BN as parameter. Only CSSs that have been
previously self-registered in the SSTMC instance can execute
this method. When performing this method, the SSTMC
instance stores a new element in the ’authorized’ attribute,
a mapping whose key is the received CFSMC access address
concatenated with the credential address of the CSS that
called the process, and the value is the number one. Once the
authorization is registered, it cannot be undone by any of the
roles, as the SSTMC does not implement this functionality
for security reasons.

The procedure for disclosing the CSSs and ICSs inter-
ested in providing their services begins with self-registration
using the ‘‘registerStakeholder’’ method. When executing
this method, the service provider informs as parameters a
name for its identification, the address of the ‘‘web service’’
throughwhich the Client will interact with its services, as well
as the type of service it wishes to provide, either ‘‘Storage’’
(CSS) or ‘‘Checking’’ (ICS), as defined in the enumeration
‘‘StakeholderService’’. The information received is stored in
a new element in the ‘‘stakeholders’’ attribute, a mapping
managed through an object of the ‘‘StakeholderMap’’ class,
whose key is the service provider’s credential address at
the BN.

The ‘‘getStakeholders’’ method publishes the registered
service providers returning a list with the credentials address
of the service providers according to the service type
informed as a parameter (‘‘Storage’’ or ‘‘ Checking’’).
To enable access to the name and the web service URL of
the service provider, the SSTMC implements respectively the
‘‘getStakeholderName’’ and ‘‘getStakeholderUrl’’ methods,
both of which receive the provider’s credential address at the
BN as a parameter. The ‘‘isStakeholderRegistered’’ method
(Figure 4) accepts a provider credential address and a type
of service (‘‘Storage’’ or ‘‘Checking’’) as parameters, and its
execution checks whether the provider to which the credential
address belongs is still registered at the SSTMC instance to
provide the specific service. If a provider no longer wishes
to advertise its services for one particular instance of the
SSTMC, the execution of the ‘‘removeStakeholder’’ method
excludes it from the list of registered providers.

2) SMART CONTRACT CFSMC
The Cloud File Storage and Monitoring Contract (CFSMC)
is a SC defined by the proposed protocol which has the

198562 VOLUME 8, 2020



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

FIGURE 4. Class diagram of the implemented smart contracts.

following duties: to store the information generated by the
Client to validate the integrity of the file; record the infor-
mation about the contract for monitoring the integrity of the
file stored in the cloud; register the challenges submitted
to the CSS by the ICS; receive, register and validate the
responses to the challenges provided by the CSS; request the
SSTMC instance to update the trust level assigned to the CSS
according to the results obtained by the monitoring.

The process of storing information on the file starts with
the insertion of the CFSMC instance containing the file
information stored in the ‘‘fileId’’, ‘‘chunkSize’’, ‘‘stor-
ageLimitDate’’, ‘‘totalBlocks’’, ‘‘storageServiceAddress’’,
‘‘integrityCheckServiceAddress’’, and ‘‘trustContractAd-
dress’’ attributes into the BN (Figure 4). These attributes
respectively represent the file hash identifier, the size of each
fraction of the data blocks, the total number of data blocks

VOLUME 8, 2020 198563



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

generated by the Client, the CSS credential address at the
BN, the credential address at the BN of the ICS chosen for
the first period of the integrity verification contract, and the
access address at the BN of the SSTMC instance chosen by
the Client to manage the trust assigned to the CSS.

Aiming to complete the storage of the set of information
necessary to validate the file’s integrity, we implemented the
‘‘insertBlock’’ (Figure 4) method whose responsibility is to
receive the ‘‘verification hashes’’ from the Client and save
them in the BN. The Client successively executes this method
according to the number of verification data blocks, which are
calculated by the Client, starting from the first to the last data
block, using as parameters the data block identifier of the first
‘‘verification hash’’ that will be inserted (parameter ‘‘_id’’),
and an array containing 64 ‘‘verification hashes’’ (parameter
‘‘_verifiers’’). The CFSMC inserts each received hash as a
new element into the ‘‘blocks’’ attribute, a mapping managed
through an object of the ‘‘BlockMap’’ class, whose value is
an element of the ‘‘_verifiers’’ array, and whose key is the
position of this element summed with the ‘‘_id’’ parameter.
The number of hashes inserted into the CFSMC instance per
method execution is limited to the maximum consumption of
‘‘gas’’ allowed by the BN per transaction.

The CFSMC instance blocks the execution of the ‘‘insert-
Block’’ method when the number of ’’verification hashes’’
stored is equal to the value registered at the ‘‘totalBlocks’’
attribute. In this situation, the ‘‘isReady’’ method (Figure 4)
returns the value ‘‘true’’, indicating that the Client has com-
pleted the CFSMC preparation, and is ready to be audited.
The ‘‘getTotalBlocks’’ and ‘‘getTotalStoredBlocks’’ methods
(Figure 4) respectively return the total number of blocks
registered at the ‘‘totalBlocks’’ attribute and the total number
of ‘‘verification hashes’’ already received and stored in the
‘‘blocks’’ instance. Listing 5 presents the CFSMC ‘‘insert-
Block’’ method implementation.

LISTING 5. Implementation of ‘‘insertBlock’’ method.

In order to record the deadline of the next integrity
verifying period, we implemented the ‘‘setIntegrityCheck-
AgreementDue’’ method (Figure 4), which receives the
deadline timestamp as a parameter and stores it into the
‘‘integrityCheckAgreementDue’’ attribute. The ‘‘changeIn-
tegrityCheckServiceAddress’’ method (Figure 4) allows the

Client to replace the contracted ICS by declaring the new ICS
credential address as a parameter. Only the Client that has
inserted the CFSMC instance in the BN may perform these
methods. The contracted ICS credential address and integrity
verifying contract deadline can be consulted respectively by
executing the ‘‘getIntegrityCheckServiceAddress’’ and ‘‘get-
IntegrityCheckAgreementDue’’ methods (Figure 4).

Only the registered ICS or Client who has inserted the
CFSMC instance in the BN can submit challenges. For
this, we implemented the ‘‘submitChallenge’’ method, which
receives the following parameters: i) the identifier of the
data block used by the challenge (‘‘_id’’); ii) the FAS whose
contents make up the data block to be checked (‘‘_address-
Codes’’); and, iii) the ‘‘challenge password’’ (‘‘_password’’).
The parameter ‘‘_addressCodes’’ is assembled from the con-
catenation of each fraction address in hexadecimal format
(from ‘‘000’’ to ‘‘FFF’’). The received challenge is stored
as a new element in the ‘‘challenges’’ attribute, a mapping
managed through a ‘‘ChallengeMap’’ class object, whose key
is the parameter ‘‘_id’’ and value is an object of the ‘‘Chal-
lenge’’ class. This ‘‘Challenge’’ object receives the FAS in
the ‘‘addressCodes’’ attribute, the ‘‘challenge password’’ in
the ‘‘password’’ attribute, and the moment timestamp of chal-
lenge receipt in the ‘‘datetime’’ attribute. Listing 6 presents
the CFSMC ‘‘submitChallenge’’ method implementation.

LISTING 6. Implementation of ‘‘submitChallenge’’ method.

The ‘‘getChallenge’’ and ‘‘getChallengeStatus’’ methods
(Figure 4) provide access to information on each challenge
registered at the CFSMC, and both receive the data block
identifier used in the challenge as a parameter. The ‘‘getChal-
lenge’’ method returns the FAS, and the ‘‘getChallengeS-
tatus’’ method returns the challenge status ‘‘PENDING’’ if
the answer is not registered; ‘‘SUCCESS’’ if the recorded
response is judged valid by the CFSMC instance; and ‘‘FAIL’’
if the answer is considered invalid or if the challenge’s
validity period has expired (Section III-C2). The CFSMC
also implements the ‘‘getPendingChallenge’’ and ‘‘getTotal-
FailedChallenges’’ (Figure 4) methods, which respectively
return a list with the data block identifiers of the pending
challenges registered at the CFSMC, and the number of chal-
lenges with invalid or expired answers.

198564 VOLUME 8, 2020



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

The more important duties of the SC CFSMC are to
receive, record, and validate the responses received from
the CSS. We implemented these duties through the ‘‘reply-
Challenge’’ method (Figure 4), which receives the data
block identifier (‘‘_id’’) and the ‘‘response hash’’ (‘‘_chal-
lengeResponse’’) as parameters. When executed, after it val-
idates the response hash, according to what is described in
Section III-C3, it updates the element of the ‘‘challenges’’
attribute whose key is equal to the data block identifier.
This attribute is a mapping managed by an object of the
‘‘ChallengeMap’’ class (Figure 4), whose value is an object
of the ‘‘Challenge’’ class. This object receives the response
hash in its‘‘response’’ attribute, the result of the validation in
its‘‘responseValid’’ attribute, and the moment timestamp of
response in its ‘‘responseDatetime’’ attribute. Only the CSS
registered at the CFSMC instance can execute this method.

According to the protocol (Section III-C3), to update the
trust level assigned to the CSS after both the validation and
registration of the response, the CFSMC instance calculates
the cycle to which the verified data block belongs using the
formula: x = TRUNC(y/256), where y is the data block
identifier, and x is the cycle number (current cycle). Next,
the CFSMC instance determines whether it has already final-
ized the referred cycle. For this, we implemented the ‘‘isCy-
cleFinalize‘‘ method (Figure 4), which receives the current
cycle as a parameter and, using it as a key, returns the value
registered at the mapping stored in the ‘‘cyclesFinalized’’
attribute. If the returned value is ‘‘true’’, the current cycle has
already been finalized, and the CFSMC instance may termi-
nate this validation process. Otherwise, the process proceeds
according to the result of validating the CSS response.

If the challenge’s response has been considered invalid,
the CFSMC executes the SSTMC ‘‘decrementTrustValue’’
method (Figure 4). Otherwise, the CFSMC executes the
SSTMC ‘‘incrementTrustValue’’ method (Figure 4) only if
all responses for the 256 challenges that belong to the same
cycle have been received and validated successfully. Both
these methods receive the CSS credential address registered
at the ‘‘storageServiceAddress’’ attribute as a parameter.
Whenever either of these methods is executed, the CFSMC
registers the conclusion of the verification of the current
cycle, so that there is no duplicate updating of the trust level
within the same cycle. For this, it inserts a new element with
value ‘‘true’’ in the ‘cyclesFinalized’’ attribute, a mapping
whose key is the current cycle number. Listing 7 presents the
CFSMC ‘‘replyChallenge’’ method implementation.

The CFSMC also implements other support features, such
as the ‘‘verifyChallenge’’ method (Figure 4), which induces
the CFSMC instance to check whether the validity of a pend-
ing challenge has expired. In this case, the CFSMC instance
records the failure and requests the SSTMC instance to update
the trust level assigned to the CSS. This method, which can
only be executed by the ICS and the Client, receives the data
block identifier as a parameter. When executed, the CFSMC
instance confirms the pending issue, executing the ‘‘getChal-
lengeStatus’’ method (Figure 4), using the received data block

LISTING 7. Implementation of ‘‘replyChallenge’’ method.

identifier as a parameter. If the returned result is differ-
ent from ‘‘PENDING’’, the process is terminated. Other-
wise, to test whether the challenge has expired, the CFSMC
instance executes the ‘‘get’’ method of the ‘‘ChallengeMap’’
class object stored in the ‘‘challenges’’ attribute, using the
data block identifier as a parameter, which returns an object
of the ‘‘Challenge’’ class with the challenge information.

Then, the CFSMC instance compares the timestamp stored
in the ‘‘datetime’’ attribute of the ‘‘Challenge’’ object with
the timestamp of the challenge verification transaction itself.
If the time difference exceeds the 72 hours granted in the
protocol (Section III-C2), the CFSMC instance sets a ‘‘false’’
value in the ‘‘responseValid’’ attribute and the timestamp
of this transaction in the ‘‘responseDatetime’’ attribute. The
CFSMC instance updates the challenge in the ‘‘challenges’’
attribute by executing the ‘‘Insert’’ method of the ‘‘Chal-
lengeMap’’ object, using the data block identifier as a param-
eter and the updated ‘‘Challenge’’ object (Figure 4). The
CFSMC instance then executes the ‘‘decrementTrustValue’’
method of the SSTMC, using the CSS credential address
registered at the attribute ‘‘storageServiceAddress’’ as a
parameter. Finally, it calculates the number of the cycle to
which the pending challenge data block identifier belongs
and records its conclusion in the ‘‘cyclesFinalized’’ attribute.
Listing 8 presents the CFSMC ‘‘verifyChallenge’’ method
implementation.

Another support feature is implemented by the
‘‘requestChallenge’’ method, which allows the CSS to choose
a list of data block identifiers and to request auditing chal-
lenges to the Client. Only the CSS can carry out this method,
and only while the acceptance of the respective CFSMC

VOLUME 8, 2020 198565



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

LISTING 8. Implementation of ‘‘verifyChallenge’’ method

instance is not registered at the SSTMC instance. When the
CSS executes the ‘‘requestChallenge’’ method, it passes an
array of integers containing the data block identifiers of the
requested challenges as a parameter. When processing the
transaction, the CFSMC stores each challenge requested as a
new element in the ‘‘requestedChallenges’’ attribute, which
is a mapping managed through an object of the ‘‘Request-
edMap’’ class, whose key is the data block identifier and
whose value is an object of the ‘‘RequestedData’’ class with
its ‘requested’’ attribute set to ‘‘true’’. The execution of
the ’’getRequestedChallenges’’ method (Figure 4) obtains
the registered challenge requests, which returns a vector of
integers with the list of the data block identifiers of the
challenges required by the CSS. Whenever a new challenge
is submitted by the Client to the CFSMC instance using the
‘‘submitChallenge’’ method (Figure 4), the CFSMC instance
excludes the challenge request with the same data block
identifier.

Finalizing the description of the implementation of the SC
CFSMC, we present the ‘‘getClientAddress’’, ‘‘getStorage-
ServiceAddress’’, ‘‘getFileId’’, ‘‘getChunkSize’’, and ‘‘get-
StorageLimitDate’’ (Figure 4) methods. These methods have
the following common characteristics: they do not generate
transactions in the BN, as their execution does not alter any
information in the CFSMC instance, and; they don’t receive
parameters. The reason for this is that they only return the
contents stored respectively in the attributes ‘‘clientAddress’’,
‘‘storageServiceAddress’’, ‘‘fileId’’, ‘‘chunkSize’’, ‘‘storage-
LimitDate’’. The methods ‘‘getTrustManagementContract’’
and ‘‘isAccepted’’ (Figure 4) have the same characteristics
mentioned above. However, the ‘‘getTrustManagementCon-
tract’’ method returns only the access address at the BN to the
object of the SSTMC instance stored in the ‘‘trustManage-
mentContract’’ attribute. Finally, the ‘‘isAccepted’’ method
returns the result of the execution of the ‘‘isAuthorized’’
method of the SSTMC instance stored in the ‘‘trustManage-
mentContract’’ attribute, which receives the CSS credential

address stored in the ‘‘storageServiceAddress’’ attribute as a
parameter.

C. IMPLEMENTATION OF THE CLIENT, CSS, AND
ICS APPLICATIONS
We implemented the Client, CSS, and ICS applications using
JAVA. To implement communication between the applica-
tions and the BN, we adopted the Web3J [26], a library for
application integration with the Ethereum BN [22]. In addi-
tion, to facilitate interaction with the BN, we used the Web3J
library to generate the ‘‘Java Wrappers’’ [26] of the SCs
SSTMC and CFSMC, both implemented using the Solid-
ity [20] language. These ‘‘wrappers’’ allow interaction with
the SCs through Java objects, eliminating the complexity of
communication between languages.

For the implementation of the Client, CSS, and ICS
applications, we adopted the use of threads to enable
the parallel execution of the various functionalities, such
as file uploads, file downloads, and the monitoring of
results. We also implemented routines to identify non-
executed transactions and to perform their automatic
re-submission. To monitor the BN, we adopted scheduling
mechanisms (java.util.concurrent.ScheduledExecutorService
and EJB @Schedules), which periodically trigger the meth-
ods responsible for interacting with the SCs to collect infor-
mation, identify issues, process them, and record the results
in the BN. The implementation of the ‘‘detectStorageSevices-
ToCheck’’ method of the class ‘‘CheckFilesHandler’’ of the
ICS application, responsible for triggering the verification
process of the files stored in the different CSS and which uses
the annotation EJB ‘‘@Schedules’’, is presented in Listing 9.

LISTING 9. Implementation of ‘‘detectStorageSevicesToCheck’’ method.

1) IMPLEMENTATION OF THE APPLICATION FOR THE Client
The Client application is a desktop application whose main
features are the following: it allows the Client to select the
file to be stored in the cloud, the trust management contract,
the ICS to check its integrity, and the CSS to which the file
copies will be submitted; it encrypts the file; calculates and
generates the challenges, the ‘‘challenge passwords’’, and the
‘‘verification hashes’’; it submits a CFSMC instance with
the file verification information for each chosen CSS to the
BN; it submits file copies to the selected CSS; it submits
information to generate challenges to the ICS; and, it manages
files stored in the cloud. Figure 5 shows the class diagram of
the application for the Client.

198566 VOLUME 8, 2020



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

FIGURE 5. Application class diagram for the client.

VOLUME 8, 2020 198567



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

For better visualization, we have purposely suppressed
the methods ‘‘get’’ and ‘‘set’’ of the attributes, the methods
and attributes related to the forms, the DAO classes (Data
Access Object) that implement the data access and persistence
in the DBMS, and the private methods of all classes from
the diagram shown in Figure 5. The classes ‘‘SSTMC’’ and
‘‘CFSMC’’ are classes generated through the library Web3J
that implement the ‘‘wrappers’’ respectively for all methods
implemented in the SCs SSTMC and CFSMC. To avoid
redundancy and to reduce the complexity of the diagram,
we do not represent the implementation of these classes
in Figure 5.
The ‘‘FileMonitor’’ class is responsible for initializing the

application and for the graphical interface through which it
makes its features available to the user. These features are the
submission of files to the cloud through the ‘‘Upload’’ option;
the recovery of the file stored in the cloud using the ‘‘Down-
load’’ option; the consultation of the file monitoring status
using the ‘‘Status’’ option; and the registration of available
trust management contracts through the ‘‘Trust Managers’’
option. Figure 6 shows the Client application interface during
the process of submitting a file to the cloud.

FIGURE 6. Client application interface.

During the Client application initialization, it automati-
cally instantiates the ‘‘SchedulerHandler’’ class as an inde-
pendent thread. This class schedules the execution of the
functionalities of the classes ‘‘RequestsHandler’’, ‘‘Transac-
tionsHandler’’, and ‘‘IntegrityCheckHandler’’ in the back-
ground. These classes are responsible respectively for:
i) monitoring the audit challenge requests from the CSS, gen-
erating the requested challenges and submitting them using
the ‘‘submitChallenge’’ method of the CFSMC instance of

LISTING 10. Implementation of the constructor of the class
SchedulerHandler.

origin of the request; ii) monitoring the transaction processing
in the BN; and, iii) executing the registration of the integrity
verification contract with the ICS when the Client identifies
the acceptance of the storage contract by the CSS, as well as
themonitoring of the validity of the existing integrity verifica-
tion contracts, with the respective renewal or contracting of a
new ICS, and, in both situations, submitting the information
to generate challenges for the contracted period. Listing 10
presents the implementation of the constructor method of the
‘‘SchedulerHandler’’ class.

Below, we present a brief description of the functions of
the main classes implemented in the Client application:
• the ‘‘FileMonitor’’ class loads the auxiliary classes and
provides the means of accessing all the Client applica-
tion functionalities;

• the ‘‘UploadForm’’ class presents the form for the select-
ing of the file and the other parameters (storage time,
the password for encryption, one or more CSSs, an ICS,
and the SSTMC instance to manage the trust), validates
these parameters, and initializes a thread with a ‘‘Man-
ager’’ class instance using the chosen parameters;

• the ‘‘Manager’’ class performs the chosen file encryp-
tion, calculates the number of verification cycles to be
generated, creates a CFSMC instance for each selected
CSS and submits it to the BN using the CfsmcCon-
tract class, initializes a thread with a ‘‘SenderFile’’ class
instance to send an encrypted file copy to each selected
CSS, loads an ‘‘InformationTable’’ class instance that
generates information to verify integrity, asks for the file
registration in the selected ICS using the ‘‘registerFile’’
method of the ‘‘IntegrityCheckHandler’’ class, stores the
information for checking and retrieving each file copy
sent for storage in the CSS in the local database, and
registers at the BN the information to check the file by
instantiating a thread of the ‘‘SenderBlockHash’’ class
for each CSS;

198568 VOLUME 8, 2020



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

• the ‘‘SenderFile’’ class sends the encrypted file to the
CSS through the ‘‘StorerWebService’’ class, using a new
instance (thread) for each chosen CSS;

• the ‘‘StorerWebService’’ class performs the commu-
nication between the Client application and the CSS
application, implementing the interfaces that exe-
cute the calls to the web service methods provided by
the CSS;

• the ‘‘InformationTable’’ class creates the ‘‘verification
hashes’’ and ‘‘challenge passwords’’ for each of the
chosen CSS through the ‘‘Cycle’’ class;

• the ‘‘Cycle’’ class draws each of the 16 fraction
addresses that form the FAS that will give rise to
the challenges, and stores each FAS in the ‘‘chunks’’
attribute of an object of the ‘‘DataBlock’’ class, repeat-
ing the process until it forms a cycle containing 256 FAS
and all 4096 file fraction addresses without repetition;

• the ‘‘SenderBlockHash’’ class registers the information
to verify integrity (verification hash and challenge pass-
word) of the file in its CFSMC instance stored in the BN,
using a new class instance (thread) for each chosen CSS;

• the ‘‘IntegrityCheckHandler’’ class performs the hir-
ing or renewal of the integrity check service with the
selected ICS for each file copy, as well as the monitoring
of these services, sending the necessary information to
generate the challenges through the ‘‘VerifierWebSer-
vice’’ class;

• the ‘‘VerifierWebService’’ class performs the commu-
nication between the Client application and the ICS
application, implementing the interfaces that execute the
calls of the web service methods provided by the ICS;

• the ‘‘RequestsHandler’’ class performs the monitoring
of the audit challenge requests generated by the CSS and
recorded in the CFSMC instance of each file submitted
for storage with the respective generation of challenges
for each registered request, which are processes per-
formed through the ‘‘CfsmcContract’’ class;

• the ‘‘TransactionsHandler’’ class monitors the transac-
tions recently submitted to the BN waiting for their
processing through the ‘‘CfsmcContract’’ class and,
for each successfully processed transaction, receives its
hash and stores it in the local database;

• the ‘‘DownloadForm’’ class presents the form for the
selecting of the destination of the file copy that will be
retrieved from the CSS, and initializes a thread with an
instance of the ‘‘DownloadFile’’ class;

• the ‘‘DownloadFile’’ class carries out the download of
a file stored in a CSS through the ‘‘StorerWebService’’
class.

2) APPLICATION IMPLEMENTATION FOR
CLOUD STORAGE SERVICES
We developed the CSS application as a web service, whose
main functionalities are the following: receive the file

submitted by the Client for storage; audit the information
stored in the BN through a CFSMC instance; confirm its
compatibility with the received file; answer the integrity ver-
ification challenges registered at the BN through the respec-
tive CFSMC instance; and, allow exclusive access to the file
content for the Client who submitted it. Figure 7 presents the
class diagram of the application developed for the CSS.

In the diagram shown in Figure 7, we purposely suppress
the ‘‘get’’ and ‘‘set’’ methods of the attributes and the pri-
vate methods of the class. The class diagram of the appli-
cation developed for the CSS presents the ‘‘CfsmcContract’’
and ‘‘SstmcContract’’ classes through which the application
interacts with the SC instances stored in the BN using the
‘‘wrappers’’ implemented in the SSTMC andCFSMC classes
described in Section IV-C1.
The CSS application implements only two features that

permanently remain available to be executed as web services
from the Client application. The ‘‘fileUpload’’ and ‘‘file-
Download’’ methods implement these features. The method
‘‘fileUpload’’ allows the Client application to submit a file
for storage in the CSS, informing the access address of
the CFSMC instance registered at the BN for this file as a
parameter. The method ‘‘fileDownload’’ allows the Client
application to request a copy of the file stored in the CSS,
informing only the CFSMC instance address linked to it.

The classes ‘‘StorerHandler’’, ‘‘CheckerHandler’’ and
‘‘AnswerHandler’’ are instantiated as independent threads at
the CSS application start, and are responsible for performing
the interactions between the CSS and the BN. The ‘‘Stor-
erHandler’’ class is responsible for auditing the verification
information stored in the CFSMC instances linked to files
received for storage. The ‘‘CheckerHandler’’ class imple-
ments the monitoring of the CFSMC instances related to
the stored files, recovering the stored challenges and trig-
gering the response generation processes. Finally, the class
‘‘AnswerHandler’’ is responsible for monitoring the com-
pletion of the response generation processes to the chal-
lenges received, and registers these responses in the CFSMC
instance of origin of the challenge.

Aiming to obtain better performance, we have paral-
lelized the execution of several processes. For this, all
requests for functions that require interaction with the BN
are carried out through event registration. The responsible
classes monitor and asynchronously execute each event. Any
problem or delay in a process execution does not inter-
fere with the operation of the other functionalities of the
application.

The methods ‘‘detectAwaitingAuditStart’’ and ‘‘detect-
AwaitingAuditChallenge’’, both of the class ‘‘StorerHan-
dler’’, are self-executed, every minute, through scheduling
using the annotation ‘‘@Schedule’’. The ‘‘detectAwaitingAu-
ditStart’’ method searches for records of files received from
the Client in the local database, for which the audit process
of the respective CFSMC instance has not yet started, starting
with the ‘‘RequestChallengeEvent’’ event record, which is

VOLUME 8, 2020 198569



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

FIGURE 7. Application Class Diagram for the CSS.

monitored by the ‘‘processRequestChallengeEvent’’ method
of the same class.

The ‘‘processRequestChallengeEvent’’ method is asyn-
chronously executed each time a ‘‘RequestChallengeEvent’’
event is registered. During its execution, challenges are
randomly drawn to audit the CFSMC instance linked to
the file received from the Client. Then, the CSS requests
these challenges to the Client by submitting them to the

CFSMC instance using the ‘‘requestChallenge’’ method.
Listing 11 shows the source code with the ‘‘processRe-
questChallengeEvent’’ method implementation.

The ‘‘detectAwaitingAuditChallenge’’ method processes
the received file records that await the processing of the
requested challenges for auditing purposes, checking if the
Clients have submitted the challenges before the request
expires. Also, it verifies whether the responses generated by

198570 VOLUME 8, 2020



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

LISTING 11. Implementation of ‘‘processRequestChallengeEvent’’
method.

the CSS have been considered valid by the CFSMC instance.
If all responses have been successful validated, the CSS
registers the file storage acceptance in the local database
and makes it public by executing the SSTMC’s ‘‘authorize
contract’’ method.

As with the ‘‘StorerHandler’’ class, the application server
automatically executes the methods ‘‘detectPendingChal-
lenges’’, ‘‘detectVerificationRequestsAwaitingProcess’’, and
‘‘detectVerificationRequestsProcessed’’ as independent thre-
ads using the annotation ‘‘@Schedule’’ for this scheduling.
These methods are responsible respectively for detecting the
pending challenges in the CFSMC instance linked to the files
which were stored through the CFSMC ‘‘getPendingChal-
lenges’’ method, registering them in the local database; for
detecting pending challenges in the local database, process-
ing them and generating the respective responses, and; for
detecting challenges already processed in the local database
and registering a ‘‘ResponseEvent’’ event.

The events of the type ‘‘ResponseEvent’’ are monitored
and processed using the ‘‘processEventResponse’’ method of
the ‘‘AnswerHandler’’ class, which is automatically executed
by the application server whenever an instance of that event is
registered. The ‘‘processEventResponse’’ method is respon-
sible for submitting the challenge responses employing the
‘‘replyChallenge’’ method of the CFSMC instance of origin
of the challenge.

3) APPLICATION IMPLEMENTATION FOR
INTEGRITY CHECK SERVICES
We developed the application for the ICS as a web service,
whose main duties are the following: to periodically receive
from the Client a set of file information for generating chal-
lenges; to daily generate challenges for the CSS according
to the trust level assigned by the BN; to regularly monitor
pending challenges triggering the BN to penalize the CSS
when the established maximum deadline for each submitted
challenge to receive an answer is not met. Figure 8 presents
the class diagram of the application developed for the ICS.

To enable the Client application to contract an ICS, the ICS
application implements the ‘‘registerClient’’, ‘‘registerFile’’
and ‘‘registerStorageContract’’ methods as web services. For
this, a class named ‘‘VerifierWebService’’ gathers all these
methods. In addition, this class implements the ‘‘isClientReg-
istered’’, ‘‘isFileRegistered’’, and ‘‘getStorageContractSta-
tus’’ information query methods. The Client application uses
the ‘‘isClientRegistered’’ method to check for the existence
of the record in the ICS. Before contracting a new service,
it uses the ‘‘isFileRegistered’’ method to check whether the
file stored in a CSS was previously registered at the ICS.
Finally, the ‘‘getStorageContractStatus’’ method allows the
Client application to consult the ICS for both the carried
out check results and the status of the integrity verification
contract linked to a CFSMC instance registered at the BN.

Through the ‘‘registerClient’’ method, the ICS application
allows the Client to self-register in the ICS, becoming able
to contract it. As the protocol allows submitting copies of
the same file for storage in different CSSs and the contract
acceptance process by the CSS occurs asynchronously, before
the Client application sends the file content to one or more
CSSs, it registers the file information in the chosen ICS using
the ‘‘regiterFile’’ method. As soon as the CSS accepts the
submitted file and its storage contract, the Client application
registers that contract in the chosen ICS through the ‘‘register-
StorageContract’’ method, using the file information set for
the generation of challenges during the pre-defined ICS con-
tracting period as a parameter. The Client application either
uses this method to renew the existing integrity verification
contract or contracts a new ICS, both of which submit a
new set of file information for generating challenges to the
hired ICS.

The ‘‘CheckFilesHandler’’, ‘‘CheckRequestsHandler’’,
and ‘‘RequestService’’ classes implement the process to
generate and monitor challenges, the main responsibili-
ties of the ICS application. When the application server
starts the ICS application, it automatically instantiates these
classes as independent threads. Through the annotation
‘‘@Scheduler’’, the ICS application schedules the daily exe-
cution of the ‘‘detectStorageServicesToCheck’’ method of
the ‘‘CheckFilesHandler’’ class, and the ‘‘checkRequests’’
method of the ‘‘CheckRequestsHandler’’ class. Simulta-
neously, the ICS application starts the monitoring of the
‘‘StorageServiceCheckEvent’’ event by the ‘‘checkStorage-
Service’’ method of the ‘‘RequestService’’ class.

The first task of the ‘‘detectStorageServicesToCheck’’
method is selecting, in the local database, all CSS that store
one or more files linked to active integrity verification con-
tracts. For each chosen CSS, the referred method registers an
event of the type ‘‘StorageServiceCheckEvent’’. This event
is individually captured and asynchronously executed by
the ‘‘checkStorageService’’ method of the ‘‘RequestService’’
class.

For each execution of the ‘‘checkStorageService’’ method,
it instantiates an object of the ‘‘SstmcContract’’ class, which

VOLUME 8, 2020 198571



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

FIGURE 8. Application class diagram for the ICS.

uses the SSTMC wrapper to interact with the SSTMC
instance stored in the BN loaded from the access address
registered at the integrity verification contract as the SC
responsible for managing the trust attributed to the CSS.
Using the SSTMC ‘‘getTrustLevel’’ method, the ICS Appli-
cation obtains the updated trust level assigned to the CSS and,
according to Table 1, calculates the number of files to verify
on that day and the number of challenges to submit per file.
Based on the results, the ICS application selects the files
to check from active contracts, gets their CFSMC instance
access addresses, generates the challenges, and submits them
using the CFSMC ‘‘submitChallenge’’ method through the
‘‘CfsmcContract’’ class and the CFSMC wrapper.

The ‘‘checkRequests’’ method, on the other hand,
is responsible for performing the verification of pending
challenges and recording the verification failures generated
by the lack of response by the CSS. The ‘‘checkRequests’’
method synchronously triggers the ‘‘checkExpiredRequests’’
method of the ‘‘RequestService’’ class at the scheduled time
during its daily self-running. The ‘‘RequestService’’ class
selects pending challenge submissions in the local database,
for which the maximum deadlines for the CSS to record
the corresponding responses have expired (24 hours). For
each expired challenge found, the ‘‘checkExpiredRequests’’
method performs a new submission of that challenge and
increases the number of attempts. After the third attempt,

198572 VOLUME 8, 2020



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

if there is still no answer, it triggers the CFSMC ‘‘verifyChal-
lenge’’ method that is responsible for registering the lacking
response in the BN, and asks the SSTMC instance to reduce
the trust level assigned to the CSS.

V. PROTOCOL VALIDATION
Aiming to validate the proposed protocol, we performed two
testing sessions using a controlled computational environ-
ment. Before this, we developed the software applications
to carry out the functionalities established by the proposed
protocol. The used computational environment is a laboratory
comprised of six virtual machines (VMs), where one plays
the role of Client, two the role of ICS, and three the role of
the CSS. We configured each VM with a ‘‘Intel(R) Xeon(R)
CPU E5-2660 v3 @ 2.60GHz’’ processor, 64 bits, one
core, 100 GB HD, Linux Operating System, kernel version
4.15.0-55-generic, distribution ‘‘Ubuntu 18.04.4 LTS’’, and
4 GB of RAM, except for the three VMs playing the role of
CSS which were configured with 12 GB of RAM each.

In the testing environment, we configured a private BN
Ethereum comprised of 6 nodes, with one node in each of the
VMs. We used the Docker tools ‘‘docker-ce’’ and ‘‘docker-
composer’’, and also the ‘‘puppeth’’ tool which belongs to the
packageEthereum for the installation and configuration of the
BN nodes in the VMs. In this BN configuration, we created an
account for each instance of the Client, ICS, and CSS roles.
Also, we created an independent account for each node of the
BN. When we created the Ethereum ‘‘Genesis’’ used to start
the BN, we defined the following parameters:
• The consensus algorithm: defined as the algorithm that
all network nodes use to reach an agreement on the trans-
actions that will comprise each block; considering the
available infrastructure limitation to carry out the tests,
we chose the ‘‘proof-of-authority’’ algorithm, which is
based on the node reputation and suitable for use in pri-
vate networks, where only previously authorized nodes
are allowed to participate in the validation process of
new blocks, since they present both better performance
and greater energy efficiency than the ‘‘proof-of-work’’
algorithm.

• The interval between blocks: defined as the time that
each network node will wait before trying to start
the generation of a new block to be inserted in the
Blockchain, which directly affects transaction process-
ing performance; after performing preliminary tests,
the results showed that time options less than 5 seconds
did not present a perceptible improvement in the pro-
cessing performance of the transactions tested, which is
why we chose 5 seconds as the standard time interval.

• The initial fund: defined as the amount of cryptocur-
rency created and distributed to one or more accounts
in the BN, with which financial transactions are carried
out within the network; despite not influencing per-
formance, as Ethereum BNs require payment in cryp-
tocurrency by the application or the SC that submits

a transaction to the node that processes the transac-
tion and inserts it into a new block in the Blockchain,
we chose to distribute 1 Ether (1×1018 Wei) for each of
the accounts created in the network, because this value
is sufficient to carry out the tests without the risk of
running out of funds.

• The gas floor (‘‘–miner.gastarget’’): defined as the ideal
number of transactions that should be processed and
inserted in a single block, according to the amount of
gas consumed in the execution of these transactions;
the value assigned to this parameter can influence the
performance according to the size and frequency of
the transactions; however, there are no previous results
that can support the best choice; therefore, we chose to
use the default value of 7, 500, 000 gas for all nodes,
suggested by ‘‘Puppeth’’, the tool used to configure new
nodes.

• The gas ceil (‘‘–miner-gaslimit’’): defined as the maxi-
mum amount of gas that can be consumed by the trans-
actions that will be processed and included in a single
block; as in the ‘‘gas floor’’ parameter and for the same
reason, we chose to use the default value of 10, 000, 000
gas suggested by the ‘‘Puppeth’’ tool for all nodes.

• The gas price (‘‘–miner.gasprice’’): defined as the min-
imum cryptocurrency value accepted as remuneration
for each unit of gas consumed in a transaction pro-
cessing for each node; this value can influence network
performance only if each of the received transactions
offers as payment a different gas price value when the
nodes prioritize those with highest prices, a situation
that will not occur in our tests; for this choice process
we considered the premise that all nodes will offer the
same gas price; since the chosen value does not directly
influence the result of the predicted tests, we chose the
price value of 100Wei for each gas unit.

For the Client, CSS, and ICS applications, the software
Postgresql, version 10.12, was used as theDBMS. For the ICS
and CSS applications, the software Glassfish Server Open
Source Edition, version 5.0.1, was used as the application
server. Additionally, these applications, whenever submitting
a new transaction to the BN, must inform the value in cryp-
tocurrency offered as payment for each unit of gas consumed
by the transaction to the node that processes it. As this gas
price must be greater or equal to the minimum gas price
defined by the nodes, and will not generate a failure risk due
to the lack of funds, we chose the value of 150 Wei as the
gas price for all applications. Figure 9 presents an overview
of transaction processing in the BN, whose origin was the
submission of a file to a CSS. We generated this view using
the Ethstats tool [27].

A. FIRST TEST SESSION
For the first test session, we submitted six files of different
sizes to each of the three available CSSs: 52MB, 196MB,

VOLUME 8, 2020 198573



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

FIGURE 9. View of the BN transaction processing.

FIGURE 10. Files submitted to the three CSSs in the first testing session.

243MB, 593MB, 750MB, and 1 GB. In addition, we assigned
the responsibility of verifying the integrity of all these files
to a single ICS. We defined one year as the estimated time
of storage of these files in the cloud, and we linked the
submission of all the files to the same SSTMC instance.
We exclusively inserted this SSTMC instance into the BN for
this test session. All CSS and ICS instances were configured
in this testing session to self-register in the referred SSTMC.
Figure 10 shows the Client application with the registration
of the files submitted in this test session.

The main objective of the testing session was to validate
the protocol’s ability to monitor and identify, in a set of files
stored in the cloud, those files whose original content had
undergone some change. Furthermore, also to determine the
average time required to identify them and to demonstrate the
variation in the trust assigned to the CSS while the protocol
spotted each of the corrupted files. Aiming at this goal,
we randomly selected an address, according to each file size,
for each of the six files stored in each of the three CSSs. Using
the chosen address as a starting point, we changed 1 byte of
content in each file.

We implemented an application called ‘‘Simulator’’ to
make the protocol validation process more agile, whose
responsibility is to simulate the passing of days, forcing
the ICS instance to execute its daily challenge generation
protocol at a specified interval of time. To this application,
we added a routine to consult the SSTMC at the end of each
simulated day, recording both the trust value and the level
of each CSS after processing the challenges. This routine
also consulted the CFSMC instance of each file stored in
each CSS, recording the existence of pending challenges and

FIGURE 11. The result captured by the ‘‘Simulator’’ application.

TABLE 2. Results of the first testing session.

TABLE 3. Summary of the results of the first testing session.

identified failures. We used 2 minutes as the interval during
which the Simulator remains waiting for challenges to be
processed, before capturing all results and simulating a new
day. Figure 11 shows the result captured by the Simulator
after processing the challenges of the 94th day of the first test
session.

After the completion of the first testing session, we classi-
fied and organized the obtained results to present the number
of days that the protocol spent to identify the flaws inserted
in each of the 18 files distributed in the three CSSs used.
Table 3 shows the complete results for each CSS. In Table 3,
we present a summary of the results of the first testing session,
and in Figure 12, we expose a comparative graph of the time
taken to identify the corrupted files in each CSS.

The initial trust level of the CSS we used in the tests was
the default value for a CSS recently enrolled in the SSTMC
instance, the ‘‘Low Trust’’ level, with the trust value equal to
zero. Table 4 shows the variation of the trust value for each
of the CSSs during the first testing session.

B. SECOND TEST SESSION
For the second testing session, we used the same six files
described in session V-A. In addition, we employed three

198574 VOLUME 8, 2020



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

FIGURE 12. Comparison of the periods taken to identify corrupted files in
each of the CSSs using a single ICS.

TABLE 4. Variation of the trust level in each of the CSSs in the first test
session.

different ICSs to perform the integrity check. Considering
that the testing environment, described in Section V, had only
two VMs for the role of ICS, the VM for the Client role was
also used to host an instance of the application for the ICS
role, sharing both services.

The main objective of this second testing session was to
validate the behavior of the proposed protocol when informa-
tion was shared about the CSS that stores files between the
ICS responsible for monitoring these files, with the assign-
ment of a shareable trust level to the CSS using the same
SC. For these tests, we inserted a new SSTMC instance in
the BN, and all ICS and CSS instances were configured
to self-register in this new SSTMC instance to offer their
services.

Using the Client application instance, together with the
new SSTMC instance as its trust manager, we submitted three
copies of each one of the six tested files to each CSS, and
for each submission, we linked the file copy to another ICS.
When the three copies of each file were stored in the CSS,
despite having the same source file, they had different content
because the Client application used a different set of keys to
encrypt each copy. Table 5 presents the characteristics of the
tests performed in this session.

Although the process performed was a test, we followed
all steps established by the proposed protocol for each file
submission, of which we highlight the validation by the CSS
of the integrity verification information stored in the CFSMC
instance linked to the file received for storage. Figure 13
shows the Client application screen while waiting for the

TABLE 5. Features of the second test session.

FIGURE 13. Files submitted to the three CSSs in the second testing
session.

CSS approval of the storage contract of the most recent file
submitted to the last CSS used.

During the phase file copies were submitted from the
Client for storage in a CSS, where we stored 54 files in
three CSSs, we recorded each time period consumed during
file preparation, challenge generation, and transaction pro-
cessing generated in the BN. Table 6 shows the analysis of
these records in each of the main processes of the proposed
protocol and the average time taken to submit the files to
the CSS.

For the preparation of the 54 files stored in the three CSSs
monitored and used in this testing session, we reused the
18 addresses chosen in the first testing session and randomly
selected another 36 according to file size. From these cho-
sen addresses, we changed one byte of content in each of
the 54 files. We used the ‘‘Simulator’’ application to force
the three ICSs to anticipate the respective daily verification
processes, executing that at two-minute intervals. In addition,
the ‘‘Simulator’’ interacted with the Client application to
perform the automatic renewal of the integrity verification
contract with the ICS, based on the simulated period, instead
of using the expiration date of the initial agreement registered
at the CFSMC instance of each file.

This testing took three months of execution time of the
proposed protocol tomonitor 54 files, where each one of three
ICSs simultaneously generated challenges to check 18 files
equally distributed in three CSSs. Table 7 presents the com-
plete results per CSS. In Table 8, we present the summary of
these results, and Figure 14 shows a comparative graph of the
periods needed to identify corrupted files in each CSS.

VOLUME 8, 2020 198575



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

TABLE 6. Results of the file submission process to the cloud.

TABLE 7. Results of the second testing session.

TABLE 8. Summary of the results of the second testing session.

FIGURE 14. Comparison of the periods taken to identify corrupted files in
each of the CSSs using three ICSs.

The initial trust value and trust level attributed to the three
CSS used in this second testing session were the same used
for a new CSS recently inserted in an SSTMC instance. This
is the trust value equal to zero and, consequently, the trust

TABLE 9. Variation in the trust value per CSS in the second test session.

level stated to ‘‘Low trust’’, according to Table 1. Table 9
shows the trust value changes over the protocol execution
time.

C. ANALYSIS AND COMPARISON OF THE RESULTS
As shown in Table 3, the first testing session (Section V-A)
confirmed the effectiveness of the proposed protocol imple-
mentation using a BN and SCs for the monitoring of files
stored in the cloud. In the 121 days of protocol execution,
it identified all 18 monitored files that contained a single
corrupted byte. The results obtained also demonstrated the
effectiveness of the SC SSTMC as trust management, as can
be seen in the independent variations in the trust levels
assigned to each CSS presented in Table 4.
From the results obtained in the second testing session

(Section V-B), presented in Table 8, it is possible to observe
that the sharing of monitoring results performed by differ-
ent ICSs accelerated the corrupted file identifying process.
Table 8 shows that the average identification time for six
corrupted files in each CSS analyzed dropped from approxi-
mately 112 days to 42 days, representing a reduction of 62.5%
in the average time consumed by the protocol to identify
the flaws. Even when considering all 54 files monitored
in the three CSS, the sharing of the three ICS results enabled
the identification of all corrupted files in the CSS in an
average time of 95 days, a reduction of approximately 15%,
in comparison with an average of 112 days obtained using a
single ICS.

As shown in the comparison between the variations in the
trust levels attributed to each CSS obtained in the first testing

198576 VOLUME 8, 2020



A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

session (Table 4) and the second testing session (Table 9),
the increase in the number ofmonitored files in addition to the
sharing of monitoring results reduced the average time con-
sumed for the debasing of the trust level assigned to the CSS
to the ‘‘Low-medium distrust’’ level. The time spent on this
debasement decreased from about 104 days to approximately
36 days, representing a reduction of 65%. Also, the sharing
of monitoring results allowed the debasing of trust level
assigned to the CSS to the ‘‘medium-high distrust’’ level to
drop to 66 days of protocol execution, on average.

VI. CONCLUSION AND FUTURE WORK
This research presented and validated a solution to monitor
the integrity of files stored in a CSS using Blockchain and
SC technologies. This solution, which is composed of a
protocol and an unabridged reference implementation, lever-
ages the results of a previous study [8], taking advantage
of its strengths such as the use of trust concepts and the
challenge-based integrity check mechanism using only sym-
metric cryptography.

Among the main contributions of this work we highlight
the following: i) the use of a storage infrastructure in a BN
which guaranteed transparency, security, and the possibil-
ity of performing audits; ii) the automation and decentral-
ization of the integrity check result analysis process which
prevented collusion between the ICS and the CSS; iii) the
decentralization and sharing of the trust level calculation
process through a SC preventing ICS attacks against the CSS
reputation; and, iv) the automation of the management of the
file integrity verification contracts allowing ICS replacement
without interfering in the process security.

The use of Blockchain and SC technologies was funda-
mental, as they allowed the development of a new protocol,
which introduced advances such as low processing costs
and reduced network traffic, while adding security, audit-
ing capacity, flexibility, and independence between roles.
Another important contribution was the secure sharing of
the results, which improved the capacity to react to the
observed events. The development of a complete reference
implementation, covering both the expected functionalities
performed within the scope of the BN, through the SCs, and
the responsibilities provided for each role (Client, CSS, and
ICS), allowed us to improve the previous protocol [8]. The
enhanced new version takes advantage of the characteristics
of the technologies adopted, and allows the execution of tests
to evaluate the effectiveness of the proposed solution.

The validation tests carried out using the reference imple-
mentation with a private BN in a controlled laboratory
demonstrated the feasibility of using the Blockchain and
SC technologies as a secure means for the recording and
auditable processing of information exchanged between the
Client, the CSS, and the ICS. Also, the tests confirmed the
effectiveness of the newly proposed protocol in detecting
corrupted files, as well as the efficiency generated by sharing
the monitoring results performed by more than one ICS.
The test with three ICSs showed, on average, a reduction of

approximately 65% in the time needed to identify the same
amount of corrupted files with just one ICS.

It is important to highlight the faultless functioning of the
auditing processes of the information to validate challenges,
stored in the CFSMC instances linked to files received for
storage, as carried out by the CSS before the acceptance of
the respective storage contracts. This function reduced the
possibility of an attack of an evil Client on the credibility of
the service provided by the CSS. Another process success-
fully performed during the tests was the hiring and renewal
of contracts with the ICS, through the respective submission
of information to generate challenges for the periods of these
contracts. This feature makes it possible to replace the ICS
during the storage period of the file in the cloud, without
compromising the confidentiality of the challenges.

As future work, we intend to implement an extension for
the case when a file owner chooses to store copies of the
file in more than one CSS, and the protocol identifies an
integrity failure in any of these copies, thus automatically
recovering the broken file copy by replacing the corrupted
content with information from its healthy copies. We also
intend to take advantage of the fact that the proposed pro-
tocol uses Blockchain technology, generally used to register
financial transactions, to offer a protocol that, with the use of
cryptocurrency, allows the Client to autonomously remuner-
ate the services provided by the CSS and the ICS, based on
the verified results and the assigned trust levels.

Also as future work, based on the solutions proposed in
[28]–[30], it would be interesting to carry out a study on the
feasibility of applying artificial intelligence techniques, such
as ‘‘Savitzky-Golay’’ filters, ‘‘augmented Dickey-Fuller’’
tests, and ‘‘Haar wavelet transforms’’ on SCs, in order to
predict the behavior of the CSS and the ICS. Also, based
on the analysis of requests to SCs (challenge and response
records, and storage authorizations), we see the possibil-
ity of allowing the SCs to adapt to environmental changes.
Among other advances, we have the intention of studying
the proactive identification of unexpected ICS behavior, and
the adapting of the trust level variation speed to consider not
only the number of correct answers, but also the workload
required from each CSS, thus improving the balance between
the monitored services.

ACKNOWLEDGMENT
The authors would like to thank the Science and Technology
Department of the Brazilian Army for providing all the labo-
ratory infrastructure employed in this study.

REFERENCES
[1] A. Negi and A. Goyal, ‘‘Optimizing fully homomorphic encryption algo-

rithm using RSA and Diffie-Hellman approach in cloud computing,’’ Int.
J. Comput. Sci. Eng., vol. 6, no. 5, pp. 215–220, May 2018, doi: 10.26438/
ijcse/v6i5.215220.

[2] J. Bi, H. Yuan, and M. Zhou, ‘‘Temporal prediction of multiapplication
consolidated workloads in distributed clouds,’’ IEEE Trans. Autom. Sci.
Eng., vol. 16, no. 4, pp. 1763–1773, Oct. 2019, doi: 10.1109/TASE.2019.
2895801.

VOLUME 8, 2020 198577

http://dx.doi.org/10.26438/ijcse/v6i5.215220
http://dx.doi.org/10.26438/ijcse/v6i5.215220
http://dx.doi.org/10.1109/TASE.2019.2895801
http://dx.doi.org/10.1109/TASE.2019.2895801


A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

[3] R. Chakarov. Cloud Computing Statistics 2019. Accessed: Sep. 9, 2019.
[Online]. Available: https://techjury.net/stats-about/cloud-computing

[4] H. Yuan, J. Bi, M. Zhou, Q. Liu, and A. C. Ammari, ‘‘Biobjective task
scheduling for distributed green data centers,’’ IEEE Trans. Autom. Sci.
Eng., early access, Jan. 7, 2020, doi: 10.1109/TASE.2019.2958979.

[5] A. Wilczyński and J. Kołodziej, ‘‘Modelling and simulation of security-
aware task scheduling in cloud computing based on blockchain technol-
ogy,’’ Simul. Model. Pract. Theory, vol. 99, Feb. 2020, Art. no. 102038,
doi: 10.1016/j.simpat.2019.102038.

[6] L. W. Cong and Z. He, ‘‘Blockchain disruption and smart con-
tracts,’’ Rev. Financial Stud., vol. 32, no. 5, pp. 1754–1797, May 2019,
doi: 10.1093/rfs/hhz007.

[7] M. Alharby and A. V. Moorsel, ‘‘Blockchain-based smart contracts: A sys-
tematic mapping study,’’ in Proc. Comput. Sci. Inf. Technol. (CS IT),
Aug. 2017, pp. 125–140, doi: 10.5121/csit.2017.71011.

[8] A. Pinheiro, E. Dias Canedo, R. de Sousa Junior,
R. de Oliveira Albuquerque, L. G. Villalba, and T.-H. Kim, ‘‘Security
architecture and protocol for trust verifications regarding the integrity of
files stored in cloud services,’’ Sensors, vol. 18, no. 3, p. 753, Mar. 2018,
doi: 10.3390/s18030753.

[9] J. Xue, C. Xu, J. Zhao, and J. Ma, ‘‘Identity-based public auditing for cloud
storage systems against malicious auditors via blockchain,’’ Sci. China Inf.
Sci., vol. 62, no. 3, p. 32104, Mar. 2019, doi: 10.1007/s11432-018-9462-0.

[10] H. Yu, Z. Yang, and R. O. Sinnott, ‘‘Decentralized big data auditing for
smart city environments leveraging blockchain technology,’’ IEEE Access,
vol. 7, pp. 6288–6296, 2019, doi: 10.1109/ACCESS.2018.2888940.

[11] S.Wang, X. Tang, Y. Zhang, and J. Chen, ‘‘Auditable protocols for fair pay-
ment and physical asset delivery based on smart contracts,’’ IEEE Access,
vol. 7, pp. 109439–109453, 2019, doi: 10.1109/ACCESS.2019.2933860.

[12] A. Ahmad, M. Saad, L. Njilla, C. Kamhoua, M. Bassiouni, and
A. Mohaisen, ‘‘Blocktrail: A scalable multichain solution for blockchain-
based audit trails,’’ in Proc. IEEE Int. Conf. Commun. (ICC), Shanghai,
China, Jun. 2019, pp. 1–6, doi: 10.1109/ICC.2019.8761448.

[13] R. de Oliveira Albuquerque, L. J. García Villalba, A. L. S. Orozco,
R. T. de Sousa Júnior, and T.-H. Kim, ‘‘Leveraging information security
and computational trust for cybersecurity,’’ J. Supercomput., vol. 72,
no. 10, pp. 3729–3763, Oct. 2016, doi: 10.1007/s11227-015-1543-4.

[14] A. M. Mohammed and F. A. Omara, ‘‘A trust-based ranking model
for cloud service providers in cloud computing,’’ in Internet Things–
Applications Future, A. Z. Ghalwash, N. El Khameesy, and D. A. Magdi,
A. Joshi, Eds. Singapore: Springer, 2020, pp. 325–346, doi: 10.1007/978-
981-15-3075-3_22.

[15] M. E. Ghazouani, M. A. E. Kiram, and L. Er-Rajy, ‘‘Blockchain & multi-
agent system: A new promising approach for cloud data integrity auditing
with deduplication,’’ Int. J. Commun. Netw. Inf. Secur., vol. 11, no. 1,
pp. 175–184, 2019.

[16] F. Coelho, ‘‘An (almost) constant-effort solution-verification proof-of-
work protocol based on Merkle trees,’’ in Progress in Cryptology—
AFRICACRYPT (Lecture Notes in Computer Science), vol. 5023,
S. Vaudenay, Ed. Berlin, Germany: Springer, 2008, pp. 80–93,
doi: 10.1007/978-3-540-68164-9_6.

[17] X. Tang, Y. Huang, C.-C. Chang, and L. Zhou, ‘‘Efficient real-time
integrity auditing with privacy-preserving arbitration for images in
cloud storage system,’’ IEEE Access, vol. 7, pp. 33009–33023, 2019,
doi: 10.1109/ACCESS.2019.2904040.

[18] P.Wei, D.Wang, Y. Zhao, S. K. S. Tyagi, and N. Kumar, ‘‘Blockchain data-
based cloud data integrity protection mechanism,’’ Future Gener. Comput.
Syst., vol. 102, pp. 902–911, Jan. 2020, doi: 10.1016/j.future.2019.09.028.

[19] S. Marsh, ‘‘Formalizing trust as a computational concept,’’ Ph.D. disser-
tation, Dept. Math. Comput. Sci., Univ. Stirling, Stirling, Scotland, U.K.,
1994.

[20] Ethereum Foundation. Solidity. Accessed: May 10, 2020. [Online]. Avail-
able: https://solidity.readthedocs.io

[21] M. Valenta and P. Sandner, ‘‘Comparison of ethereum, hyperledger fabric
and corda,’’ in Proc. Frankfurt School Blockchain Center Work. Paper,
Jun. 2017, pp. 1–8.

[22] V. Buterin. (2014). Ethereum White Paper: A Next Generation Smart
Contract & Decentralized Application Platform. Accessed: Apr. 2, 2020.
[Online]. Available: http://bitpaper.info/paper/5634472569470976

[23] D. R. Heffelfinger, Java EE 8 Application Development: Develop Enter-
prise Applications Using the Latest Versions of CDI, JAX-RS, JSON-B,
JPA, Security, and More. Birmingham, U.K.: Packt, 2017.

[24] J. Juneau, ‘‘Java EE containers,’’ in Java EE 8 Recipes: A Problem-
Solution Approach. Berkeley, CA, USA: Apress, 2018, pp. 523–557,
doi: 10.1007/978-1-4842-3594-2_12.

[25] The PostgreSQL Global Development Group. Postgresql:
The World’s Most Advanced Open Source Relational Database.
Accessed: May 14, 2020. [Online]. Available: https://www.postgresql.org

[26] C. Svensson. (2017). Blockchain: Using Cryptocurrency With Java.
[Online]. Available: https://www.janeiro/fevereiro

[27] C. Johnston. Ethereum Ethstats: Learning The Ethereum Blockchain
Through Its Metrics. Accessed: Jun. 4, 2020. [Online]. Available:
https://imti.co/ethereum-ethstats

[28] R. Gupta, S. Tanwar, F. Al-Turjman, P. Italiya, A. Nauman, and S. W. Kim,
‘‘Smart contract privacy protection using AI in cyber-physical systems:
Tools, techniques and challenges,’’ IEEE Access, vol. 8, pp. 24746–24772,
2020, doi: 10.1109/ACCESS.2020.2970576.

[29] J. Bi, H. Yuan, L. Zhang, and J. Zhang, ‘‘SGW-SCN: An inte-
grated machine learning approach for workload forecasting in geo-
distributed cloud data centers,’’ Inf. Sci., vol. 481, pp. 57–68, May 2019,
doi: 10.1016/j.ins.2018.12.027.

[30] S. Gao, M. Zhou, Y. Wang, J. Cheng, H. Yachi, and J. Wang, ‘‘Dendritic
neuron model with effective learning algorithms for classification, approx-
imation, and prediction,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 30,
no. 2, pp. 601–614, Feb. 2019, doi: 10.1109/TNNLS.2018.2846646.

ALEXANDRE PINHEIRO (Member, IEEE)
received the bachelor’s degree in information
systems from the Lutheran University of Brazil
(ULBRA), Canoas-RS, Brazil, in 2005, and the
master’s degree in electrical engineering from the
University of Brasília (UnB), Brasília-DF, Brazil,
in 2016, where he is currently pursuing the Ph.D.
degree with the Electrical Engineering Depart-
ment. He holds specialization in cryptography and
network security from the Fluminense Federal

University (UFF), Niterói-RJ, Brazil, in 2012, and a specialization in infor-
mation security management from UnB, in 2014, and a specialization in mil-
itary sciences from the Captains Career School of Brazilian Army (EsAO),
Rio de Janeiro, Brazil, in 2018. He is the Captain of the Complementary
Officers Corps of the Brazilian Army and is currently serving at the Science
and Technology Department, Brasília-DF, Brazil. His research interests
include cryptographic protocols, cloud, blockchain, network security, and
vehicular technologies, with an emphasis on cloud security.

EDNA DIAS CANEDO (Member, IEEE) received
the bachelor’s degree in systems analysis from the
University Salgado de Oliveira, in 1999, the mas-
ter’s degree in computer science from the Soft-
ware Engineering Group, Federal University of
Campina Grande, in 2002, and the Ph.D. degree
in electrical engineering from the Network Engi-
neering Group, University of Brasilia, in 2012.
She is currently a tenure track Professor with the
Department of Computer Science, University of

Brasilia, Brazil, where she works since April 2010. Her research interests
are mostly in software engineering, including requirements engineering,
database, software systems, cloud computing, as well as usability and empir-
ical methods.

198578 VOLUME 8, 2020

http://dx.doi.org/10.1109/TASE.2019.2958979
http://dx.doi.org/10.1016/j.simpat.2019.102038
http://dx.doi.org/10.1093/rfs/hhz007
http://dx.doi.org/10.5121/csit.2017.71011
http://dx.doi.org/10.3390/s18030753
http://dx.doi.org/10.1007/s11432-018-9462-0
http://dx.doi.org/10.1109/ACCESS.2018.2888940
http://dx.doi.org/10.1109/ACCESS.2019.2933860
http://dx.doi.org/10.1109/ICC.2019.8761448
http://dx.doi.org/10.1007/s11227-015-1543-4
http://dx.doi.org/10.1007/978-981-15-3075-3_22
http://dx.doi.org/10.1007/978-981-15-3075-3_22
http://dx.doi.org/10.1007/978-3-540-68164-9_6
http://dx.doi.org/10.1109/ACCESS.2019.2904040
http://dx.doi.org/10.1016/j.future.2019.09.028
http://dx.doi.org/10.1007/978-1-4842-3594-2_12
http://dx.doi.org/10.1109/ACCESS.2020.2970576
http://dx.doi.org/10.1016/j.ins.2018.12.027
http://dx.doi.org/10.1109/TNNLS.2018.2846646


A. Pinheiro et al.: Monitoring File Integrity Using Blockchain and Smart Contracts

RAFAEL TIMÓTEO DE SOUSA, JR. (Senior
Member, IEEE) received the bachelor’s degree in
electrical engineering from the Federal University
of Paraíba — UFPB, Campina Grande, Brazil,
in 1984, the master’s degree in computing and
information systems from the Ecole Supérieure
d’Electricité — Supélec, Rennes, France, in 1985,
and the Ph.D. degree in telecommunications and
signal processing from the University of Rennes
1, Rennes, France, in 1988. He was a Visiting

Researcher with the Group for Security of Information Systems and Net-
works (SSIR), Ecole Supérieure d’Electricité – Supélec, Rennes, France,
from 2006 to 2007. He worked in the private sector from 1988 to 1996. Since
1996, he has been a Network Engineering Associate Professor with the Elec-
trical Engineering Department, University of Brasília (UnB), Brazil, where
he is currently the Coordinator of the Professional Post-Graduate Program on
Electrical Engineering (PPEE) and supervises the Decision Technologies
Laboratory (LATITUDE). He is the Chair of the IEEE VTS Centro-Norte
Brasil Chapter (IEEE VTS Chapter of the Year 2019) and of the IEEE
Centro-Norte Brasil Blockchain Group. His professional experience includes
research projects with Dell Computers, HP, IBM, Cisco, and Siemens. He has
coordinated research, development, and technology transfer projects with the
Brazilian Ministries of Planning, Economy, and Justice, as well as with the
Institutional Security Office of the Presidency of Brazil, the Administrative
Council for Economic Defense, the General Attorney of the Union, and
the Brazilian Union Public Defender. He has received research grants from
the Brazilian research and innovation agencies, i.e., CNPq, CAPES, FINEP,
RNP, and FAPDF. He has developed research in cyber, information and
network security, distributed data services andmachine learning for intrusion
and fraud detection, as well as signal processing, energy harvesting and
security at the physical layer.

ROBSON DE OLIVEIRA ALBUQUERQUE
received the M.B.A. degree in computer net-
works from the Educational Union of Brasília,
Brazil, in 2001, graduated in computer science
from the Catholic University of Brasília, in 1999,
the DEA degree from the University Complutense
of Madrid, in 2007, the master’s degree in elec-
trical engineering from the University of Brasília,
in 2003, the Ph.D. degree in information sys-
tems from the University Complutense of Madrid,

Spain, in 2016, and the Ph.D. degree in electrical engineering from the
University of Brasília, in 2008. He is currently a Researcher with the
University of Brasília and a member of the GASS Research Group, Uni-
versity Complutense of Madrid. His fields of interest and research include
cyber, network and information security, as well as distributed systems and
computer networks.

VOLUME 8, 2020 198579


