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ABSTRACT Unconventional reservoir classification suffers low accuracy because of the complex geophys-
ical properties. With good performance and moderate cost, geophysical logging is considered to be of great
potential as the compromise solution between seismic and core. Since the ‘‘sweet-spot’’ depending on the
sands’ properties are implied not in the logging ‘‘point’’ but ‘‘segment’’, 1D-CNN is supposed to be a better
fit for reservoir classification: It doesn’t pay too much attention to the logging signal sequence itself like
LSTM, but focuses on feature extraction from the whole signals combination.Moreover, samples would have
various sizes because of different layer thickness. While 1D-CNN requires all samples must be converted to
a uniform size before input. 1D fully convolutional network (1D-FCN) can receive any size input of layer
thickness without manually aligning it to the same size. For the first time in this paper, structures of the
five networks including two fully connected networks (global mapping artificial neural network, GM-ANN
and point-to-point mapping artificial neural network, PPM-ANN), two fully convolutional networks (1D
fully convolutional network with decision-level fusion, 1D-FCN-DEF and 1D fully convolutional network
with data-level fusion, 1D-FCN-DAF) and the common 1D convolutional neural network (1D-CNN) are
compared and evaluated the suitability for processing logging data in detail. Results on tight gas in Ordos
basin of China illustrated by receiver operating characteristics (ROC) curves show that 1D-FCN-DEF
and 1D-FCN-DAF have achieved the higher area under the curve (AUC) with the values of 0.8889 and
0.9107 respectively in average comparing to 0.7515, 0.8006 and 0.8364 of GM-ANN, PPM-ANN and 1D-
CNN. Case study proves that 1D-FCNs are more accurate than other networks. This paper provides a suitable
new idea for logging interpretation and expands the application scope of DL in geophysical logging signals
processing.

INDEX TERMS Unconventional reservoir classification (URC), geophysical logging signals, 1D fully
convolutional network (1D-FCN), 1D convolutional neural network (1D-CNN).

I. INTRODUCTION
Reservoir classification (RC) and hydrocarbon detection
are the ultimate goal of geophysical exploration. Reservoir
classification often suffers low accuracy for unconventional
reservoirs (such as shale, coal-bed, tight sand etc.) due to
their complex lithology, ultra-low permeability and complex
fluid distribution. Seismic data has too large scales to describe
hydrocarbon distribution of unconventional reservoirs. Core
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data directly measured from experiments are considered to
provide the most accurate information of the reservoir. But
their small sizes seem to be powerless to completely char-
acterize reservoir with strong heterogeneity. Geophysical-
logging regarded as the compromise solution with high
accuracy and moderate cost is considered to be indispens-
able and of great potential in geological stratification and
reservoir evaluation especially when integrated with other
means [1]–[3].

Geophysical logs reflect the reservoir information near
wellbore. The logging instrument usually consists of one
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transmitter and two receivers. As shown in Figure 1, signal is
sent from the transmitter, reflected through the formation, and
received by the two receivers respectively. The measurement
will be carried out along the wellbore from the bottom to top
after drilling. Signal data will be acquired point by point at
an interval of 8 points/meter [4]. Repeating the measuring
process by different instruments would obtain different logs.
In addition to the four signals shown in Figure 1, there are
6 signals in total named gamma-ray (GR), acoustic wave
(AC), density (DEN), compensated neuron logging (CNL),
deep lateral logging (LLD), swallow lateral logging (LLS)
respectively, and they are usually called conventional logging
sequences (CLS) in general term. The CLS is considered to
contain all the information in reservoir including lithology,
physical property and fluids. Our goal is to determine reser-
voir grade and to make recommendations for perforation and
fracturing. If the reservoir is poor, there is no need to spend
too much for it; if the reservoir is very good, the investment
should be increased to obtain the maximum benefit. Conven-
tionally, reservoirs are classified through two steps: param-
eters fitting and expert evaluation. By fitting the logging
data to core data (rock components, porosity, permeability,
fluid saturation, etc.), experts can obtain empirical formulas
and then draw cross-plots for reservoir classification. For
instance, the resistivity vs. porosity cross-plot is often used
to evaluate clean sand reservoirs with little shale and good
physical properties. This approach suffers too much labor
cost and confusion when dealing with unconventional com-
plex reservoirs.

Machine learning (ML) with a level of automation has
been adopted in logging interpretation for a long time [5].
ML algorithms can be viewed as two types: feature extrac-
tion and classification. Feature extraction includes cluster-
ing, principal component analysis (PCA), correlation analy-
sis (CA), grey relational analysis (GRA), etc. Classification
methods include artificial neural network (ANN), support
vector machine (SVM), decision tree (DT), and random forest
(RF) etc. These two types of methods are sometimes used
in combination, and sometimes classification methods are
used directly without feature extraction. For examples, Cui
et al. [6] applied the principal component analysis (PCA)
method on multiple logging signals to classify four diage-
netic facies pre-defined by samples from a tight sandstone
reservoir in the Ordos Basin, Central China. Schlanser et al.
[7] tested a statistical clustering algorithm with geophysical
logs for lithofacies classification in the Marcellus Shale. Guo
et al. [8] proposed a combination model—-three ANNs to
predict porosity, permeability and shale content respectively
following a neuro-fuzzy inference machine—-for pay zones
recognition. Many other similar studies can be seen in [9]–
[12]. The main disadvantages of ML are as follow [13]:

(1) There are many methods can be used for feature extrac-
tion and classification. Different methods could produce dif-
ferent results on the same dataset. There is no standard and
unified approach currently, so it still requires manual inter-
vention to select ML method.

(2) Due to its own reasons, machine learning has limited
ability to extract features and the classification accuracy is
also limited. Even it may not work applied to complex reser-
voirs.

Requiring little manual effort and with good performance,
deep learning (DL) has been attracting more attention in
recent years. In earth science field, remote sensing images
processing [14]–[16] and seismic images feature extrac-
tion [17]–[19] have widely adopted DL approach especially
the convolutional neural network (CNN). For geophysical
logging interpretation, in 2017, Li and Misra [20] built a
variational auto-encoder (VAE) to predict NMR-log T2 dis-
tribution directly from several log signals. In 2018, they pro-
posed another way of integrating several DL methods com-
bination to generate NMR-log T2 distribution [21]. An and
Cao [22] established a simple network using multiple logging
signals to identify lithology. In 2020, Lin et al. [23] has
studied automatic lithology identification by applying long
short-term memory (LSTM) network to logging data. In light
of 1D geophysical-logging signal can be converted from time
domain to the frequency or time-frequency domain, then the
converted 2D data viewed as images can be processed by
CNN easily. So in 2018, Zhu et al. [24] combined wavelet
decomposition (WD) and CNN to convert the problem of log-
ging lithological interpretation to a supervised image recog-
nition task. In 2020, Chen et al. [25] proposed a methodology
combining short-time Fourier transform (STFT) and CNN for
complex formation lithology identification by using drilling
string vibration data. Until now, there are few literatures on
DL applying to logging data. We realize some drawbacks
applying DL to logging data as follow.

(1) Unlike seismic and remote sensing images, logging
data are in one dimension. There are two possible solutions:
¬Convert 1D to 2D form and then use 2D-CNN like [24] and
[25]. But the conversion method equivalent to feature extrac-
tion will increases labor cost and may lose information. It’s
kind of like a ML process.  Directly apply DL to deal with
1D data. Reference [23] used LSTM dealing with GR signal
to recognize the rock facies. The LSTM is good at processing
sequential signals, such as text, speech or rock sedimentary
facies especially inferring the next data from the current one
along the data sequence. While reservoir classification seems
to be more concerned with how to integrate the six signals
and extract hydrocarbon information from them.

(2) The main difference between 2D-CNN and 1D-CNN
is that 1D-CNN slides the convolution window in only one
dimension. Comparing to LSTM, 1D-CNN is supposed to
be a better fit for reservoir classification: It doesn’t pay too
much attention to the signal sequence itself, but focuses on
feature extraction from the whole signals combination. Nev-
ertheless, 1D-CNN also has inadaptability: ¬ For the input,
artificial operation is still required to divide the whole logging
sequence into segments and each segment will be treated
as one sample. Samples would have various sizes for their
different layer thickness.While 1D-CNN requires all samples
must be converted to a uniform size before input, which will
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FIGURE 1. Geophysical logging diagram for reservoir classification. (a) Signal propagation. (b) Instrument
components. (c) Measuring & logging curves.

bring errors or information loss. For the output, one sample
can contain multiple data points, but only has one label as
output. That’s inconsistent with the logging principle to some
extent and will affect the accuracy. According to logging
principles as shown in Figure 2, each logging point having
its own label seems more reasonable and helps improve
accuracy.

Fully convolutional network (FCN) was first proposed and
applied to 2D image segmentation in 2015 [26]. It provides
an approach for single point pixel classification. Based on
FCN, U-net [27] for medical image segmentation was pro-
posed. Then SegNet [28], Deeplab [29] and other algorithms
were proposed after improvements. FCN has been success-
fully applied to SAR [30], aerial images [31], hyper-spectral
images [32], seismic images [33] etc. Considering (1) and
(2) comprehensively, the authors propose a 1D fully convolu-
tional network (1D-FCN) to characterize reservoir properties.
The model can receive any size input of layer thickness
without manually aligning it to the same size. The result for
tight gas application from 1D-FCN is better than that from
other methods. For the first time in this paper, we make a
detailed and in-depth comparison study on five networks by
using general metrics. The contributions of this paper are
summarized as follow.

(1) Structures of the five networks including two fully con-
nected networks (global mapping neural network, GM-ANN
and point-to-point mapping neural network, PPM-ANN), two
fully convolutional networks (1D fully convolutional net-
work with decision-level fusion, 1D-FCN-DEF and 1D fully
convolutional network with data-level fusion, 1D-FCN-DAF)

and 1D convolutional neural network (1D-CNN). They are
evaluated the suitability for processing logging data in detail.

(2) The SMOTE (synthetic minority class sampling tech-
nology) method is used to augment data and address data
imbalance for the tight gas reservoir in Ordos Basin, China.

(3) The 5-fold cross validation and leave-only-one cross
validation (LOOCV) are implemented for the five networks
on the expanded dataset. The results are illustrated by receiver
operating characteristics (ROC) curves, and the areas under
the curve (AUC) are calculated to evaluate the networks
quantitatively.

To sum up, three ways to reservoir classification based
on logging data are shown in Figure 2. The remainder of
this paper is organized as follows. The fundamentals of
CNN or FCN are provided in Section II. Structures of GM-
ANN, PPM-ANN, 1D-CNN, 1D-FCN-DEF and 1D-FCN-
DAF are illustrated and data are augmented by SMOTE in
Section III. Application results and case study in Ordos Basin
of China are discussed in Section IV.We draw the conclusions
and the future work in Section V.

II. FUNDAMENTALS
Should the convolution in CNN be better suited to describe
reservoir characteristics than the fully connected operation in
ANN? Generally thinking, reservoir properties of a certain
depth d can be described by logging data at just the depth
point d . Actually, as shown in Figure 1(b), reservoir param-
eters at the point M in the middle of CD are calculated from
logging data between the two receivers as averages. In other
word, the ‘‘sweet-spots’’ depending on the sands’ properties
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FIGURE 2. Three ways from geophysical logging signals to reservoir classification.

are implied not in the logging ‘‘point’’ but ‘‘segment’’. It will
be more reasonable the reservoir properties at depth d are
implicated in an adjacent region of d expressed as [d − a,
d + a]. However this fact is largely ignored by the fully
connected ANNs.

Convolutional operation is considered be better to extract
the local features. The fully convolutional neural network is
a three-stage neural network without fully connected layer.
The stage of feature compression contains multiple convo-
lutional, activation and pooling layers. The stage of feature
recovery can reconstruct each feature map from stage-one to
original dimension through de-convolution operations. Each
point will be corresponded to probabilities vector predicted
from the softmax operation in the last classification stage.
The theory of 1D-FCN is briefly introduced in this section,
and the functions of each type of layer are described below.
More details on FCN can be found in [26].

A. CONVOLUTIONAL OPERATION
One-dimensional convolutional operation is used in this
paper. The convolution kernel will scan only along depth
axis of the logging signal. There can be several kernels in
one convolutional layer. These kernels will result in multiple
channels or features called the feature map. The convolution
process is described as follows:

hl,i = Xl−1 ∗Wl,i + bl (1)

where the notation ∗ denotes the dot product of the kernel and
the local regions,W k

i represents the weights matrix of the i-th
kernel in l-th convolutional layer. bl denotes the bias vector
of l-th convolutional layer.

B. ACTIVATION OPERATION
After the convolution operation, activation function enables
the network to acquire a nonlinear expression of the input sig-
nal to enhance the representation ability and make the learned
features more dividable. Rectified Linear Unit (ReLU) is
widely used as activation unit to accelerate the convergence
of the CNNs. It makes the weights in the shallow layer more

trainable when using back-propagation learning method to
adjust the parameters. The formula of ReLU is described as
follows.

f
(
hl,i
)
= max{0, hl,i} (2)

where hl,i is the output value of convolutional operation after
batch normalization(BN) and f is the activation of hl,i.

C. POOLING OPERATION
In order to reduce parameters number and prevent overfitting,
pooling operation is required following the convolution and
activation. Max pooling is one of the most commonly used
pooling methods.

Xl = max(hjl, h
j+1
l,i ) (3)

where hjl represent the j-th bunch of channels vector in l-th
layer. And Xl is the final output of l-th layer which has the
dimension as a half of Xl−1.

D. DECONVOLUTIONAL OPERATION
VGG-net [34] is used in this paper. In this model, the size of
feature map will be reduced by half after each convolution &
pooling layer. Up-sampling called de-convolutional operation
will be adopted in order to restore the same size of output
as the input. The principle of de-convolutional operation as
the one-dimensional linear interpolation method is shown
in Figure 4.

E. SOFTMAX OPERATION
Each depth point of the full CNN would output a probability
vector with the dimension the same as the number of reser-
voir categories. Each probability vector will be obtained by
Softmax formula below.

P (Y = k |XL,W, b) = softmaxk (W ∗ XL+b)

=
eWk∗XL+bk∑N
n=1 eWn∗XL+bn

(4)

where XL represents the input from some layer; k represents
reservoir category (GAS or NO-GAS for tight gas reservoir);
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FIGURE 3. Schematic diagram of different network structures. (a) Global mapping ANN (GM-ANN). (b) Point-to-point mapping
ANN (PPM-ANN). (c) 1D-CNN. (d) 1D-FCN.

Wis the weight matrix, and b is the bias;P (Y = k |XL ,W , b)
is the conditional probability that the output Y is class k when
the input is XL .

F. NEURONS DROPOUT
Dropout is a trick proposed by Srivastava et al. [35] to pre-
vent the network from overfitting. It is extremely simple but
effective. The main idea is to randomly deactivate neurons
along with their connections with neurons in the next layer
with some probability p (a hyperparameter), which proves to
be able to prevent units from co-adapting too much. In this
paper, p will be set 0.5 (each neuron has a 50% chance of not
working). It should be noted that dropout is only used in the
training stage. All neurons work normally in the prediction
stage.

III. PROPOSED MODELS
This section will describe the five network structures includ-
ing two fully-connected networks (GM-ANN& PPM-ANN),
two fully-convolutional networks (1D-FCN-DAF & 1D-
FCN-DEF) and the common 1D-CNN.

A. BASIC NETWORK STRUCTURES
Different network structures are used for specific scenarios.
As shown in Figure 3, hydrocarbon properties of the whole
reservoir are considered to be hidden in all logging data

FIGURE 4. Schematic of 1D de-convolution.

throughout the entire interval. So multiple points as a whole
would be taken as one sample by using a globally mapped
network as shown in Figure 3(a). Point-to-point networks are
often used to predict rock type, porosity, permeability or TOC
etc. (Figure 3(b)).

In light of the reservoir information at one certain depth
point is the average between the two receivers interval near
just this depth point (seen in Figure 1(b)), CNN is well
suited to this situation. The 1D-CNN shown in Figure 3(c)
provides the approach to extract local features. This kind of
model has been applied in biometric recognition based on
multiple sensors data [36], fault diagnosis of rotating machin-
ery from multi-signals [37], multivariate abnormal detec-
tion for industrial control systems [38], non-contact medical
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FIGURE 5. Two fusion approaches of 1D-FCN. (a) 1D-FCN with decision-level fusion (1D-FCN-DAF). (b) 1D-FCN with data-level
fusion (1D-FCN-DAF).

detection based on sensors data [39], and radar jamming
signal classification from one signal [40].

By integrating the advantages of CNN and point-to-point
ANN, 1D-FCN can not only extract local features, but also
predict the classification vector of each depth point. As shown
in Figure 3 (d), the de-convolution operation is used to restore
feature maps to the same size as the input. Then the softmax
layer gives the prediction for every point. So fully CNN
would accept any different sizes of input. These advantages
fits well with the principle of logging measurement and will
be introduced in detail below.

B. ARCHITECTURES OF 1D-FCN
VGG-net has been adopted as the basic network architecture.
The input is sub-sampled to feature map through convo-
lution & pooling operations layer by layer, and all layers
will be up-sampled to the same dimension as the original
input uniformly by de-convolutions. Furthermore, as shown
in Figure 4, two fusion approaches have been proposed and

discussed in this paper. Figure 5(a) has shown the decision-
level fusion. Each logging signal will be treated respectively
through conv-pooling operations to generate feature maps
which will be restored to original dimension as the input by
de-convolution operations. Then all the feature maps will be
merged into the size H×1 by convolution with the kernel
size of (kn1+kn2+kn3)×1 in which kn1, kn2, kn3 are the
kernel numbers. For another approach of data-level fusion
in Figure 5(b), all the six signals treated together as a 2D-
map at the beginning. The main differences between the two
fusion approaches are that kernel sizes are KS∗1 and KS∗6,
and the feature maps sizes are H×(kn1+kn2+kn3)×6 and
H×(Kn1+Kn2+Kn3) respectively.

During training, cross entropy loss is calculated to evalu-
ate the differences between predicted outputs from the built
model and true labels, denoted as

L (W , b) =
∑|D|

t=0
log(P(Y = y(t)|X (t),W , b)) (5)
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TABLE 1. Structures comparison of network.

where D represents log data set, and L(W, b) is the sum of
cross entropy loss functions. Based on training data, model
parameters are updated to minimize the loss function. The
optimization algorithm called adaptive moment estimation
(Adam) [41] is adopted in this paper. It is an alternative
method for classical stochastic gradient descent consider-
ing both the first and second moments of the gradients
which achieves fast convergence that gains efficiency in
computation.

C. DATA AUGUMENTATION
Data is the basis of implementing the model. The data used
in this paper are from typical unconventional gas reservoir
in Ordos Basin, which are characterized by complex rock
types, tight rock and very low porosity. The 399 samples
were obtained including logging data and corresponding gas-
testing data. According to the testing results, the labels of
samples include: oil layer, gas layer, oil-bearing layer, gas-
bearing layer, water-bearing layer, dry layer, etc. They are
re-classified into two categories of GAS and NO-GAS so
as to alleviate the sample shortage of each class. Another
advantage of doing this is to make it easier to compare the
algorithm performances for binary classification problem.

A number of samples are required to obtain better fitting
ability. U-net [27] only had 30 2D images as samples and
overlap-tile method was used for data enhancement. Actual
field samples with small population often have strong imbal-
ance also. There would be less GAS samples in the early
stage of exploration and less NO-GAS samples at the later
stage. Generally there are three ways to overcome imbalance:
sub-sampling, re-sampling, and data synthesis. Sub-sampling
method randomly selects samples from the larger class to
meet the sample population as the smaller class. Re-sampling
method repeats sample selection from the smaller class.
These two ways are more suitable for a large sample popula-
tion. Bymining the relationships between samples to generate
new data, synthesis method is considered to be the most
suitable way when the amount of logging data is small and

FIGURE 6. A two-dimensional example of SMOTE.

the distribution is sparse. SMOTE is one of the most popular
data synthesis method.

The idea of SMOTE is as follows: (1) K -nearest neighbor
(KNN) algorithm is used to calculate the K nearest neighbors
of each sample; (2) N samples are randomly selected from K
nearest neighbors for random linear interpolation to generate
new samples; (3) Newly synthesized samples are added to the
original set of the data. (4) Loop through the steps above until
the required amount is met. Since the synthetic sample is not
a direct copy of the instance, so the overfitting problem can be
alleviated by adding samples with a similar data distribution
to the original. The number of geophysical logging samples
was increased from 399 (300 labeled GAS & 99 labeled NO-
GAS) to 1200 (600 for each class). Figure 6 has shown a
two-dimensional example of SMOTE. The diagram on the
right is showing a schematic of synthesizing data from real
data where the dashed line circles represent the synthetic data
obtained by random linear interpolation between the real data
labeled by solid line circles. More details can be found in
literature [42].

IV. RESULTS & DISCUSSION
Results on the tight gas reservoir in Ordos Basin from the
five networks have been discussed in this section. The basic
structural parameters are shown in Table 1. Actually, due to
different reservoir thicknesses, the length of logging data is
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FIGURE 7. ROCs of the five networks. (a) 5-fold cross-validation. (b)
LOOCV.

a variable named h. So for the input size, PPM-ANN always
takes only one depth point (with 6 values) as a sample. GM-
ANN and 1D-CNN need to align variable h to a same fixed
value H by up- or sub-sampling operation. While 1D-FCN
models can directly deal with the variable h, which are the
same as the output sizes on the first dimension as shown
in the last column. The output sizes from GM-ANN, PPM-
ANN and 1D-CNN are all single values: reservoir categories.
Table 1 also shows the basic structure parameters in the
middle part. FC1: (1 × 6)×20 means that the dimension of
the first full connection layer is 6 and the output dimension
is 20. K1: 3× 6 (10) represents the first convolutional layer,
with kernel size of 3×6 and a total of 10 convolution kernels.
To ensure fairness, in the two ANNs, the hidden layers hold
the same dimensions, and convolution kernels with the same
sizes and numbers have been in the three CNNs. It should
be noted parameters in pooling, de-convolution and Softmax
layers not listed can all be inferred according to the basic
parameters in Table 1.

A. CROSS VALIDATION
Let P be the probability of Softmax layer output. As a clas-
sification problem, the final output should be a label of 1

TABLE 2. Confusion matrix for binary classification problem.

TABLE 3. AUCS from the five networks.

(GAS) or 0 (NO-GAS), so a rule will be established to convert
probabilities to categories as shown in formula (6). ypred
represents the class of the highest probability in prediction
results. Vthreshold is a value between 0 and 1.

ypred =

{
1(GAS) P ≥ Vthreshold
0 (NOGAS) P < Vthreshold

(6)

True positive rate (TPR) and false positive rate (FPR) are
two common indicators for binary labeling problem. TPR
denotes the percentage of samples predicted the label of 1
in all samples with a real label of 1. While FPR represents
the same percentage but in all samples with a real label
of 0 (see Table 2 for details). By plotting the TPR against
the FPR at different thresholds according to formula (2),
we will get a curve called Receiver operating characteristics
(ROC) as an aggregative indicator. We could also calculate
the area under ROC curve (AUC). The value range of AUC
is between 0.5 and 1. AUC = 1 means this method gives a
perfect prediction performance while AUC = 0.5 indicates
the performance of this method is same as random selection.

We exploited 5-fold CV and LOOCV to assess the gen-
eralization ability and robustness. In LOOCV (leave-one-
out cross-validation) evaluation, each reservoir is regard as
a test sample in turn while the rest reservoirs were treated
as training samples. While 5-fold cross-validation divides the
data set into 5 equal parts, and takes 1 part as test set in turn
and other 4 parts as training set. We repeated each procedure
100 times and averaging them to produce more stable results.

The ROCs of the five networks (GM-ANN, PPM-ANN,
1D-CNN, 1D-FCN-DEF and 1D-FCN-DAF) in 5-fold cross-
validation and LOOCV have been shown in Figure 7. Fig-
ure 7(a) & (b) have all shown the ROCs of GM-ANN and
PPM-ANN are lower than those of the other three CNN
models, which indicate it’s important of applying convo-
lutions. For 1D-FCN-DAF and 1D-FCN-DEF, the former
seems to have a smoother and higher ROC curve than the
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FIGURE 8. Typical cases of three reservoir types by using different methods. (a) Type-I. (b) Type-II. (c) Type III.

latter. It illustrates that features fusion at an earlier stage
would results in higher accuracy and stronger robustness.

The AUCs of the five networks have been listed in Table 3.
Apparently, 5-fold CV has achieved higher values than the
LOOCV for all the five networks. In addition, all the three
kinds of convolutional networks have achieved better results
than the other two kinds of ANNs, and 1D-FCN-DAF has the
best effect. This is consistent with the results from Figure 7.

B. CASE STUDY
Samples can be divided into three types according to the
difference of physical properties. Type-I can be easy to iden-

tify for their good permeability. Type II has the medium
permeability and porosity. So reservoir classification is also
moderately difficult. Type-III has extremely poor physical
properties, complex lithology leading to complex fluid prop-
erties, which are difficult to identity by common means.
In this paper, several typical cases are selected respectively
from each type for discussion.

As we can see in Figure 8, both layers of well #929 and
well #950 have good integrity, clean sand, high porosity, and
high resistivity. They are typical samples of Type-I. All the
5 nets have gotten correct predictions as TEST results. Layers
in well #916 and well #930-2 have medium porosity and
very low resistivity. They are partly interpreted as GAS layers
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by the GM-ANN and PPM-ANN. The three CNNs have
predicted them to beGASwhich is consistent well with TEST
results. Layers in well #28-1 and well #934 mainly compose
of thin interbeded sand-mud. Reservoir complexity leads to
the geophysical-logging information overlapping in a certain
neighborhood and would affect GAS judgment. GM-ANN,
PPM-ANN and 1D-CNN all judge it as a gas-bearing layer.
While 1D-FCNs identifies them to be very thin layers with
little gas and do not recommend well testing. And the final
TEST conclusion is a dry layer. For better display in Figure 8,
the gray color represents GAS.

V. CONCLUSION
Reservoir properties of depth point d are not only related
to the current depth point logging data. According to the
logging principle, the logging data at point d is actually the
average value within the neighborhood interval of d . In light
of this, we have introduced convolutions to neural network.
Five networks, GM-ANN, PPM-ANN, 1D-CNN, 1D-FCN-
DEF and 1D-FCN-DAF, have been studied. SMOTE has been
applied to expand data amount from 399 to 1,200. Results
of five networks with the results of 5-fold and LOOCV
have been compared in detail. Results on tight gas in Ordos
basin of China illustrated by receiver operating characteristics
(ROC) curves show that 1D-FCN-DEF and 1D-FCN-DAF
have achieved the higher area under the curve (AUC) with
the values of 0.8889 and 0.9107 respectively in average com-
paring to 0.7515, 0.8006 and 0.8364 of the two ANNs and
1D-CNN. Case study proves that 1D-FCNs is more accurate
than ANNs and 1D-CNN for complex reservoirs. This paper
provides a new idea for logging interpretation and expands
the application scope of DL in Geophysical-logging signals
processing.

There are still some points for improvement as follow.
(1) Adjacent samples from other different classes have not

taken into account by SMOTE. This would cause samples
overlapping in the same class and local noises aggravation.

(2) There is not enough logging data, but there is plenty
of seismic data at the early exploration stage even if they
are unlabeled. How can we integrate unlabeled seismic data
into labeled geophysical-logging data to further improve the
accuracy is a new research topic.

(3) In fact, VGG-net is just the one classic framework for
FCNs. New networks similar to the VGG-net but with better
performance have been reported in some literatures. More
experiments by using new networks for the problem in this
paper would be carried out in future work.
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