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ABSTRACT Network deployment is one of the key research issues of Wireless Sensor Networks(WSNs),
and it has an essential impact on the performance of the network. Due to the geographical environ-
ment limitation, random deployment has become a critical deployment method. There are many random
deployment methods, and they focus on different network performance (network coverage, connectivity,
energy efficiency, lifetime, and so on). This paper proposes a nonuniform random deployment method to
minimize the network cost for homogeneous WSNs. Firstly, we define the problem to be solved and give
an optimization model. A new cost concept is defined that combines several measurements, such as covered
area, lifetime, and cost. Secondly, based on the theoretical analysis of energy consumption, node density, and
network cost, a new deployment method and corresponding routing strategy are proposed. To ensure energy
efficiency and minimize cost, a multi-sink and corona structure is adopted. Finally, simulation experiments
verify the effectiveness of the method by comparing it with the other four random deployment methods.
Compared with the other four methods at the two densities, the cost is reduced by at least 40% (density is
0.04) and 24.1% (density is 0.025), respectively.

INDEX TERMS Wireless sensor networks, random deployment, minimize cost, energy consumption.

I. INTRODUCTION
Wireless Sensor Networks (WSNs) is composed of a large
number of wireless sensors equipped with sensing, compu-
tation, storage, and communication capabilities to monitor a
region. They can collect surrounding information and then
transmit data to the sink or base station. WSNs are utilized to
gather information about environmental and habitual moni-
toring, disaster managing, production control, trafficmanage-
ment, and so on. As the sensors have limited energy, trans-
mission and sensing range, there exist many open research
challenges.

The sensors’ location can affect the fulfillment of the appli-
cations’ requirements and multiple network performance
metrics, such as connectivity, coverage, lifetime, and cost.
Network deployment is a fundamental design issue inWSNs.
The two major types of deployments are deterministic and
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non-deterministic placement. In the former, the position of
sensors is pre-computed prior. The non-deterministic deploy-
ment is also called random deployment that sensors are
randomly scattered in an interesting region. The selection
of a suitable approach depends on many factors, such as
the application needs and nature of the monitor region. The
deterministic deployment is impractical sometimes due to
the large-scale of networks, or the inaccessibility of the ter-
rain(battlefield, disaster region). In this case, random deploy-
ment becomes the only option.Whatever type of deployment,
the sensors in the networks can be homogeneous or hetero-
geneous. The first uses the same sensors, and the second
contains the sensors with different features (e.g., sensing
range, energy). Much research has been done in the field that
focuses on different network performance, such as connectiv-
ity, coverage, energy efficiency, network cost, and so on.

A sensor can collect information within its sensing range
and transmit to another sensor(or the sink node) within
its communication range. The energy of sensors has been
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consumed while sensing, sending, and receiving data. The
battery energy of sensors is limited and not be replenished
once it gets exhausted. Reducing energy consumption and
increasing energy efficiency can extend network lifetime.
In large-scale networks, the multi-hop model is adopted. The
sensors near the sink have a higher load than the remote sen-
sors form the sink in a uniformly deployed WSNs. It causes
the ’Energy Hole Problem’ that there are still significant
amounts of residual energy in the sensors while the network
becomes invalid. That energy is wasted to make the network
cost increase significantly. Researchers have proposed vari-
ous schemes for deployment to avoid the problem [1], such
as nonuniform node distribution schemes, multi-sink deploy-
ment, mobile sink deployment, cluster-based deployment,
and so on.

In this work, we focus on homogeneous WSNs, and
non-uniformly deploy sensors in large-scale filed to mini-
mize the network cost under satisfying various performance
requirements. To sum up, the main contributions are pre-
sented as follows.

1) We introduce an optimization model that minimizes
cost per area and time, and give the relevant theo-
rems through the analysis of node density and energy
consumption.

2) We propose a nonuniform random deployment method,
corresponding network topology, and data routing
strategy.

3) We simulate the proposed deployment algorithm and
compared it with four other random deployment meth-
ods to verify its effectiveness.

In the remainder of the paper, we review the literature on
the deployment of WSNs in Section II. The related knowl-
edge and concepts are introduced in Section III. We give the
problem formulation and a programmingmodel in Section IV.
A nonuniform random deployment strategy has been pre-
sented in Section V. Some numerical analysis and simulation
results are in Section VI. The paper will be summarized in
Section VII. Finally, Section VIII gives the acknowledgment.

II. RELATED WORK
The deployment of WSNs affects almost all its performance
metrics. The coverage, connectivity, energy efficiency, life-
time, and cost are the several most essential metrics. In the
large-scale field or the inaccessibility/harshness field, ran-
dom deployment becomes only one option, and the sensors
can be deployed from a plane or other aerial vehicle. In this
section, we review the literature related to random deploy-
ment and energy efficiency.

Random deployment is the most practical way of plac-
ing sensors. The position of sensors is defined by a
probability density function. There are two classes ran-
dom deployment strategies, simple strategies and compound
strategies [2]. The simple strategies contain Simple diffu-
sion [3], Continuous diffusion [4] and Discontinues diffu-
sion [5]. In [3], this deployment process was modeled by

a linear diffusion equation; the sensor’s position follows a
two-dimensional normal distribution. The paper [4] presented
continuous diffusion that the sensors are thrown off an aircraft
that flies over the middle of the field. The x and y of the
sensor’s position follow the uniform distribution and normal
distribution, respectively. Discontinuous diffusion proposed
in [5] was defined as follows: sensors are thrown discontin-
uously in a single flying-over. Some sensors can be dropped
in each throw and multiple throws were carried out. A com-
pound random strategy is realizable by repeated simple diffu-
sions. The constant diffusion [6], [7] means that the sensors’
density is constant in the field. The R-random diffusion was
proposed in [3], where the nodes are uniformly scattered with
respect to the radial and angular directions from the sink.
It simulates the effect of an exploded shell that the density
of sensors is higher near the sink. In the exponential law
model [8], the probability density of sensor-positions follows
an exponential law. The Power law strategy in [9] means the
degree of the sensors follows a power law. Its features are
similar to those of the R-random. In [10], a partition-based
random node placement algorithm was proposed. A rectan-
gular area is classified into small cells and up to one sensor
in one cell. In [11], the hybrid diffusion mode are proposed.
Some nodes follow the simple diffusion strategy and others
follow the constant diffusion.

The theoretical analysis of random deployment strategies
is complicated. In paper [12], [13], the WSNs were typically
modeled as random graphs based on its characteristics of
topology. To detect the distance between sensors, the Ran-
dom Geometric Graphs(RGG) [14] are used to depict WSNs.
The paper [6], [15] gave the relation between the transmis-
sion range of sensors and the connectivity of RGG. The
paper [16] gave an analytical expression for estimating the
average minimum number of nodes for getting full connec-
tion of networks, and study several graph metric properties
of the networks such as mean shortest path, mean clustering
coefficient, etc.

The percolation theory is used to analyze coverage and/or
connectivity. The [17] proposed a probabilistic approach to
compute the covered area fraction at critical percolation for
both of the SCPT andNCPT problems. In [18], a novel frame-
work was proposed for solving optimal deployment problems
for randomly deployed and clustered WSNs. The percolation
theory is adopted to analyze the degree of connectivity when
the targeted degree of partial coverage is achieved.

Many researcher focus on the relocation of Mobile sensors
after random deployment. In these schemes, sensors were
initially deployed by dropping from the flying machine (heli-
copter, airplane, etc.) over the interesting region. In order
to optimize the deployment, sensors mounted on a mobile
device can change their position during the relocation phase.
Virtual Force Method was used to change the position of
sensor [19]–[21]. Each sensor exerts a force on other sen-
sors. The force can be attractive or repulsive, depending
on the distance of the sensors. The sensors move to a new
position with the resultant force, come close to uniformly
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spread in the candidate region, and increase the coverage.
In [22], a distributed scheme for the homogeneous deploy-
ment of MSNs was presented for complete coverage. The
entire scheme is divided into four basic activities, namely,
Snap, Push, Pull, and Tiling merge. It does not require prior
knowledge of the working scenario nor any manual tuning of
key parameters. The sensors makemovement decisions based
on locally available information. Authors of [23] proposed
a distributed deployment scheme for homogeneous distribu-
tion of randomly deployed mobile sensor nodes in WSNs.
The deployment area is divided into a number of concentric
regions centered at Base Station. These regions are separated
by half of the communication range, and further deployment
area is divided into numbers of regular hexagons. The mobile
sensors will set themselves at the center of the hexagon on the
instruction provided by the BS to achieve maximum coverage
and better connectivity.

In order to balance the node’s energy consumption
and extend the lifetime under energy-constrained WSNs,
the energy efficient clustering schemes have been used. The
authors of [18] proposed a novel framework to solve optimal
deployment problems for randomly deployed and clustered
WSNs. They introduced cluster size formulations. The clus-
ter size concept serves as a useful tool to estimate partial
coverage, and this estimated value is the primary constraint
in Optimal Deployment(OD) problems. The framework pro-
vides a designer with the opportunity to introduce any com-
bination of various constraints to OD problems in addition
to partial connected coverage and to solve these optimiza-
tion problems accordingly. In order to solve such defects
as uneven distribution of cluster heads and fast energy con-
sumption. The paper [24] put forward an energy-efficient
cluster routing protocol that the energy of each node and its
distance to the sending node are fully considered for clus-
ter head selection and cluster formation. Each cluster head
determines its set of relay nodes according to the minimum
hop-count algorithm and the residual energy of each node.
In paper [25],A clustering Algorithm for Energy-Efficient
Adaptive(EEA) was proposed for reducing the data commu-
nication distance in WSNs. The routing protocols can be
implemented for homogeneous and heterogeneous networks.
The results show that the proposed scheme is more efficient
than other protocols. In paper [26], an enhanced low-energy
adaptive clustering hierarchy (LEACH) protocol was pro-
posed to prolong the network lifetime and reduce the packet
loss for mobile sensor networks. The fuzzy inference systems
were adopted to the cluster head selection. The paper [27]
gave a survey about clustering and cluster-based multi-hop
routing protocols. Some parameters are given to evaluate
the properties of the different methods. The studied meth-
ods are classified into four categories: classical approaches,
fuzzy-based approaches, metaheuristic-based approaches and
hybrid metaheuristic- and fuzzy-based approaches. In each
category of the classification, criteria and parameters are
presented according to the type of methodology.

When the WSNs are composed of a large number of sen-
sors, their monitoring ranges overlap. Therefore, not all the
sensors have to be active all the time. In order to maximize
network lifetime, sensors activity schemes that guarantee
satisfying coverage and connectivity have been developed in
much research. The author of [28] proposed a mixed inte-
ger programming formulation, i.e., SPSRC, that combines
all design issues in a single model. The SPSRC finds the
sensors’ and sinks’ optimal locations, active/standby periods
of the sensors, and the data transmission routes from each
active sensor to its assigned sink. In [29], centralized activity
strategies have been given. The set of sensors is divided into
subsets, which can be disjoint or non-disjoint so that every
subset completely covers the sensing field. Each subset is
activated successively one at a time for different periods. In
paper [30], a subtraction deployment strategy (SDS) com-
bined with the unequal node duty cycle in the network was
presented. This strategy improves the duty cycle of nodes in
non-hotspots area when reduces the number, thereby mini-
mizing the deployment cost under the premise of meeting
the detecting quality requirements. In [31], the optimization
problem of the network energy efficiency without loss of
its communication reliability was transformed into Integer
Linear Programming. A solution, called Sense-Sleep Tree,
is a group of sensors that are connected to each other. For
maximizing WSNs lifetime, authors of [32] presented three
heuristic algorithms for sensors activity scheduling: a random
and fine-tuning approach, an approach inspired by cellular
automata, and a hypergraph model approach. Then a local
search strategy has been employed to improve the solutions
obtained. In paper [33], an enhanced clustering hierarchy
approach(ECH) has been proposed for WSNs. The ECH
uses sleeping-waking mechanism for the neighboring and
overlapping nodes to minimize data redundancy. The main
objective of our approach is to maximize lifetime by min-
imizing data redundancy in WSNs. In paper [34], a packet
routing scheme was proposed to reduce channel competition
conflicts and energy consumption, increase network through-
put, and then reduce end-to-end delay in data transmission for
WuR-enabled WSNs. The scheme combines the selection of
the relay node with the consecutive packet routing scheme,
which greatly improves the performance of the network.

For balancing energy consumption of sensors, the mixed/
hybrid transmission schemes appeared in many paper [35].
Each sensor can adjust its transmission power level and
alternates between direct transmission mode (sending data
directly to sink without using any relay node) and hop-
by-hop transmission mode (forwarding data to next-hop
neighbors). Efthymiou et al. [36] proposed a solution in
which the probability of next-hop transmission depends on
the distance of a node from the sink and the number of
ring sectors in the network. Zhang et al. in [37] computed
the probability of next-hop transmission based on the dis-
tance and the number of sensors in a slice. They assume
a uniform deployment of the nodes in the network area.
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Boukerche et al. in [38], Boukerche and Efstathiou [39]
considered heterogeneous/non-uniform networks and use a
mixed-hop transmission scheme to balance energy consump-
tion. The relative densities of the nodes in the neighborhood
are considered while making the decision. In addition to hop-
by-hop transmission and direct transmission, by-pass trans-
missions are used. Erdun et al. in [40] proposed a solution for
calculating the probability values depending on the distance
of the nodes from the sink and the number of sensors in
adjacent slices for clustered wireless sensor networks. Wang
and Tan in [41] presented a DistributedAdaptive Probabilistic
Routing algorithm (DAPR). The sensors can self adjust their
routing probability values locally to their next hop forwarder
based on their neighborhood information and converge to an
optimal value.

In this article, we propose a nonuniform random deploy-
ment strategy to minimize the cost of large scale homoge-
neous WSNs. The approach comprehensively considers vital
metrics such as regional coverage, network connection, and
network lifetime, and designs a corresponding data routing
strategy.

III. PRELIMINARIES
This section gives the related concepts and models.

A. RANDOM NODE DEPLOYMENT
In random node deployment, sensor positions are defined
by a Probability Density Function (PDF). Depending on the
deployment strategy, the coordinates of the sensor positions
may follow a particular distribution [11]. A sample way is
that the node’s density is constant and the node distribution
is uniform in the area. The PDF of the sensor positions is
given by the following equation:f (x) = 1

|A| , x ∈ R2, where
|A| is the area of the Region of Interest(RoI). The number
of sensors n in area follows the Poisson distribution with
parameter (mean)λ > 0. The probability Pr(n = k) = e−λλk

k! .
When λ is not a constant, we have an inhomogeneous Poisson
point process [42]. The mean number of sensors in area
n(A) =

∫
A λ(u)du.

B. ENERGY MODEL
The sensor has a fixed sensing range, transmission radius,
and energy. During the network work, a sensor’s energy
consumed can be divided into two categories: the consump-
tion related to the amount of data and other consumption.
The former includes the energy consumption of generating
data, transmitting data, and receiving data. The latter includes
the energy consumption of other network operations, e.g.,
the establishment of routing, time synchronization, and idle
listening. The first type of energy is our concern. The energy
consumed per unit time by a sensor e = es×x+er×y+et×
z+ e0, where eg, er , et , e0 stand for the energy consumption
of generating unit data, receiving unit data, transmitting unit
data, and no relation to the amount of data respectively. The
et is related to transmission distance. et = e1+ e2dk , there d
is transmission distance, k is path loss exponent(2 ≤ n ≤ 4).

In the uniformly deployed and multi-hop WSNs, the sen-
sors near the sink need to relay more packets from other
sensors to the next node, and their energy depletion is faster
than other sensors. The uneven energy depletion triggers
the ‘‘Energy Hole Problem’’ and reduces energy efficiency.
A considerable amount of energy is wasted so as to make the
network cost increase significantly.

C. NETWORK LIFETIME
The Network Lifetime(NL) is the total amount of time during
which the network can maintain the operational or desired
performance. The NL is one of the most critical design fac-
tors in WSNs. The NL’s definition depends on the network
application and the network structure. So there are various
NL definitions. They can be classified into four categories:
the node-lifetime based NL, coverage and connectivity based
NL, transmission based NL, and parameterized NL [43]. The
node-lifetime based NL definitions depend on the lifetime
of nodes, for example, the earliest time instant at which any
of the sensor nodes in the network fully depletes its bat-
tery [44]. The coverage and connectivity basedNL definitions
are based on the quality of network coverage or/and network
connection. In [45], it was defined as the time duration up
to the moment when the coverage is lost. The transmission
based NL definitions rely on data delivery, for instance,
on data reception failure at the sink, on event detection ratio.
In paper [46], the parameterized NL was defined to incor-
porate different aspects for different application scenarios.
The definition comprises metrics that have been used in the
definitions mentioned above, such as node availability, sensor
coverage, and connectivity.

D. COST OF WSNs
Generally, network cost refers to the cost of hardware needed
to deploy the network, mainly the cost of sensors and sinks.
We call it an absolute cost. In the network design stage,
the cost (budget) of the network is closely related to the net-
work lifetime and the size of the detection area. The network
costs for different areas and different design lifetime are not
comparable. So in this paper, we define the relative network
cost(Cost Per Area and Time ) associated with the area of
RoI and network lifetime. Let c be the cost of a sensor and c∗

be the cost of a sink. The Cost Per Area and Time(CPAT) is
defined as

CPAT =
cn+ c∗m

AT
(1)

where n and m are the number of sensors and sinks, respec-
tively, A denotes the area of sensing region, and T denotes the
network design lifetime(or the ideal value of actual network
lifetime).

E. COVERAGE AND CONNECTIVITY OF WSNs
The sensing range and data transmission distance of each
sensor are limited. It has caused some problems about cov-
erage and connectivity of the network. As the measure of the
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Quality of Service(QoS) of sensing function for a sensor net-
work, network coverage is one of the most key research issues
inWSNs. The goal of coverage is to have each location in RoI
within the sensing range of at least one sensor. Depended on
the coverage objectives and applications, they can be roughly
classified into three categories: area coverage, point coverage,
and path coverage. The area coverage means that every single
point in the region is monitored by at least one sensor. The
main aim of point coverage is to cover a set of points with
the known location that needs to be monitored. It can be a
particular case of area coverage. Barrier coverage refers to
the detection of movement across a barrier of sensors. The
network coverage determines the network’s ability to access
information within the RoI.

A sensor can send signals to any other node within its
transmission range. The two sensors are connected if they
can communicate with each other by one-hop or multi-hop.
The network connectivity is a fundamental concern to ensure
that sensing data is transferred to the destination node. The
network connectivity problem is closely related to the sensing
coverage problem. When the transmission distance is at least
twice the sensing range, the set of nodes is connected while
their sensing range covers the whole area. Both sensing cov-
erage and network connectivity are necessary to ensure that
the area is detected and data can reach the sink.

For random sensor deployment, the requirement for
full-coverage (or connectivity) theoretically requires infinitely
many (or a massive number of) sensor nodes and is chal-
lenging to reach. It will make excessive redundant sensors
and increase network costs. Achieving partial connectiv-
ity(or coverage) is more realistic and feasible. So the partial
connectivity and partial area coverage become the perfor-
mance measure for the random deployed WSNs. The partial
area coverage tolerates the field’s monitoring to some extent,
leaving the remaining areas uncovered. The partial network
connectivity means not all the sensor nodes are connected
with the sink.

F. THE PERCOLATION MODEL
Percolation processes were introduced by Broadbent and
Hammersley [47] to model the randomflow of a fluid through
a medium. It can describe the abrupt changes in behavior
as a parameter value crosses a threshold. The percolation
model is attractive in several areas. Numerous studies have
adopted the percolation theory to analyze coverage and/or
connectivity in the network domain. It deals with a phase
transition phenomenon, where the network exhibits funda-
mentally different behavior when the node density is below
and above some critical node densityλ0. It means that when
node density λ > λ0, an infinite cluster of overlapping disks
appears almost-surely. Glauche et al. [48] transformed the
problem of finding the critical transmission range of mobile
devices to that of determining the critical node neighborhood
degree above which an ad hoc network graph is almost-surely
connected. In [17], a continuum percolation model which
consists of homogeneous disks was adopted to consider the

covered area fraction at critical percolation. The Numerical
results show that percolation first occurs at covered area
fraction A(r) = 0.575. For infinite network area, when
the Boolean model is used to tackle the connectivity issue,
the probability that the network is fully connected is always
exactly zero. If the node density λ and the range r are such
that πλr2 > N ∗, for a special constant N ∗ ' 4.5, the partial
connectivity network is indeed formed by a huge connected
component, and the fraction of connected nodes is a determin-
istic function of the average node degree [49]. For a finite but
large area, the fraction of connected nodes is a deterministic
function [50].

In this paper, for a required percentage of node connectivity
(or area coverage), the sensor’s critical density will be deter-
mined by reference to the above results. When the density is
increased to slightly above it, the probability of meeting the
requirement will be very high.

IV. PROBLEM DEFINITION AND OPTIMIZATION MODEL
In this section, we describe the deployment scenario, under-
lying assumptions, and give the problem definition and con-
strained optimization model.

A. PROBLEM DEFINITION
The WSNs, considered in this paper, contain two types of
nodes: sensor and sink. The sensor is static and equipped
with finite energy and ID. It has the functions of sensing the
environment, receiving and sending information. The sensing
range rs and transmission radius rt are fixed. The sink has no
limit to energy. When we want to randomly deploy WSNs
in a large-scale interesting field, in addition to satisfying
some network performance, such as coverage, connection,
and lifetime, the network cost must be considered. In this
paper, the cost is the comprehensive metrics, defined as for
formula 1, which is related to the lifetime, the number of
nodes, and the detected area. It is assumed that sensors peri-
odically generate data and transmit data to another sensor or
sink.We focus onminimizing the CPAT. The general problem
is defined as below.
Definition 1 (MCPAT): There are two types of nodes: sen-

sor and sink. For a given RoI, the Minimum Cost Per Area
and Time problem is to find a random nodes deployment
strategy to minimize the Cost Per Area and Time under
satisfying the requirements of area coverage and network
connectivity.
In this problem, the number of sinks and the shape of RoI
are not constrained. For simplicity, we consider a particular
case in which the RoI is a circular region and a sink deployed
in the center of the region. It can be extended to the general
problem for large RoI.
Definition 2 (SMCPAT): For a given circular RoI, a sink

located in the center of RoI. The Special Minimum Cost Per
Area and Time problem is to find a random sensors deploy-
ment strategy to minimize the Cost Per Area and Time under
satisfying the requirements of area coverage and network
connectivity.
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B. OPTIMIZATION MODEL
The set S = {s1, s2 · · · sN } is the set of sensors deployed in the
RoI that area is A. Sa denotes the set of sensors that are active
and connected to sink, Sa ⊆ S. The sensors in Sa perform
environment detection and data transfer at the time. Based on
some policies, Sa can be updated until no sensors of S can
be selected. The network lifetime T is defined as the time of
work of all Sa. The Ac denotes the area in RoI covered by Sa.
For the MCPAT, we can get the optimization model as below.
CPAT = cn+c∗m

AT .

min CPAT (2)

s.t.
Ac
A
≥ α (3)

where α is a threshold value of covered area rate, 0 <

α ≤ 1, it depends on the application requirements. When
m = 1,A = πR2, the model corresponds to the SMCPAT
problem, where R is the radius of circular RoI.

For the CPAT is related to network lifetime, the model’s
solution should include the number and density(location) of
nodes and also provide the corresponding network topology
structure and routing strategy. In the next section, a random
deployment strategy to minimize CPAT will be given.

V. THE RANDOM SENSORS DEPLOYMENT STRATEGY
In this section, we provide a random sensors deployment
strategy for the above problem.

A. NETWORK STRUCTURE
We assume the RoI is a circle, and the sensed phenomenon
is uniformly distributed over time. To achieve increased net-
work lifetime and the same convention, the suitable position
for the sink is the center of the network [51]. The corona based
network architecture [52] is adopted. The area is divided into
a set of adjacent coronas or concentric circles of radii Ri, i =
1 · · · n. Ci denotes each corona. The width of coronas Cw

i =

Ri−Ri−1 is the transmission radius of sensor rt . The unequal
width coronas structure is not adopted. The reason is that
it will increase the hop number of data transmission, which
consumes more energy and increases the delay. We assume
that a sensor generates l bits of data per unit time to record
the environment, and the sensed data are sent to sink at a
certain rate by multi-hop transmission mode. Sensors in Ci
will forward data generated by themselves and sensors from
Cj((i + 1) ≤ j ≤ n) to Ci−1. Sensors in Cn only send
data generated by themselves to Cn−1. The sensors in C1 can
directly send data to the sink. In general, the closer the corona
is to the sink, the higher its transport load.

B. ANALYSIS OF DENSITY
For the above network structure, denser nodes should be
deployed in the inner coronas to avoid the energy hole prob-
lem. The density of each corona will be given in this section.
For random deployment networks, many works of litera-
ture used theory to discuss network coverage and network
connection. The papers [17], [53] give the critical covered

area fraction Ac(or critical densityλ0 ) at percolation. When
the covered area fraction is larger than Ac, almost surely,
a Huge Covered Component(HCC) will appear. The covered
area fraction is A = 1 − exp(−λπr2s ). However, whether
the HCC constitutes a network depends on its connectivity.
Percolation theory addresses that if πλr2t > N ∗, N ∗ ' 4.5,
then the network is indeed formed by a Huge cOnnected
Component(HOC). The fraction of connected nodes θ '
1 − exp(−πλr2t ), when πλr

2
t is large. The covered area of

HOC and HCC is different. When rt = 2rs, the HOC and
HCC have the same number of sensors, their covered area is
equal. When rt > 2rs, the number of sensors in HOC is larger
than that in HCC. When rt < 2rs, the number of sensors
in HCC is larger than that in HOC. Only the sensed data of
sensors in HOC can be sent to the sink. Do not include the
disconnected sensors in RoI; the density of sensors in HOC
is θλ. The covered area fraction is

Ar = 1− exp(−θλπr2s )

' 1− exp(−(1− exp(−πλr2t ))λπr
2
s ). (4)

Based on the (4), we can estimate the sensor density that
satisfes the requirement of the covered area given. It will be a
critical density λ0. The sensor density of the outermost corona
is set λ0. Next, we analyze the density of other coronas. Let
Ai denote the area of corona Ci, then

Ai = πr2t (i
2
− (i− 1)2) = πr2t (2i− 1). (5)

The sensed data size(expected value) of corona Di = λ0Ail
per unit time. The received data size of each sensor inCi from
outer coronas is

RDi =

∑n
k=i+1 Di
λ0Ai

=
l(n2 − i2)
2i− 1

, (6)

where we assume that the sensor density is λ0. The energy
consumption of each sensor in Ci per unit time is

Ei = leg + erRDi + et (RDi + l)+ e0. (7)

The lifetime of sensor in Ci

Ti =
E
Ei

(8)

where E is the initial energy of sensor. Then T ∗i = Ti, T ∗i
denotes the lifetime of Ci. In order to avoid the energy hole
problem and maximize energy utilization, we increase the
nodes density of Ci to extend its lifetime such that T ∗i = Tn.

λi = λ0
Tn
Ti
= λ0

Ei
En
= λ0(1+ w

n2 − i2

2i− 1
), (9)

where w = er+et
eg+et+e0/l

. It is noted that only the λ0Ai sensors
in Ci generate sensed data. According to the above analysis,
it is easy to prove the following theorem.
Theorem 1 (Sensor Density Theorem): It is assumed that

the sensed phenomenon is uniformly distributed over time
in the circle RoI. The network based on corona architecture
is employed. The λ0 denotes the base sensor density for
satisfying the requirement of coverage. The network lifetime
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is the maximum lifetime of sensor if and only if λi = λ0

(1+ w n2−i2
2i−1 ).

Proof: As the above analysis, the maximum lifetime
of a sensor is Tn. The lifetime of Cn is Tn. When λi =
λ0(1 + w n2−i2

2i−1 ), the lifetime of Ci, T ∗i = Tn by using the
corresponding wake-up strategy, i = 1 · · · n. So the lifetime
of the network is Tn.

C. ANALYSIS OF NETWORK COST
The number of sensors decides the network cost. Next,
we calculate the number of sensors deployed in RoI according
to the density of sensors. The area of Ci,

Ai = πr2t (2i− 1) (10)

The number of sensors in Ci

Ni = λiAi

= λ0(1+ w
n2 − i2

2i− 1
)πr2t (2i− 1)

= λ0πr2t ((2i− 1)+ w(n2 − i2)) (11)

Based on (11), the relation of the number of sensors between
two adjacent coronas can be given.

Ni+1 = λ0πr2t ((2(i+ 1)− 1)+ w(n2 − (i+ 1)2))

= λ0πr2t ((2i− 1)+ w(n2 − i2))

−λ0πr2t (w(2i+ 1)− 2)

= Ni − λ0πr2t (w(2i+ 1)− 2) (12)

It shows that the number of sensors is incremental from
outer corona to inner corona. The total number of sensors is:

N =
n∑
i=1

Ni

= λ0πr2t

n∑
i=1

((2i− 1)+ w(n2 − i2))

= λ0πr2t (
n∑
i=1

(2i− 1)+ w
n∑
i=1

(n2 − i2)

= λ0πr2t (n
2
+ w(n3 −

1
6
n(2n+ 1)(n+ 1))) (13)

For single sink networks, the CPAT is:

CPAT =
cN + c∗

πr2t n2Tn

=
cλ0πr2t (n

2
+ w(n3 − 1

6n(2n+ 1)(n+ 1)))+ c∗

πr2t n2Tn

=
c∗

πr2t n2Tn

+
cλ0(n2 + w(n3 − 1

6n(2n+ 1)(n+ 1))

n2Tn
(14)

The expression (14) includes two terms. The first term is
the cost about the sink, decreasing as the RoI(or n) increases.

The second term denotes the cost of sensors and monotonous
increase about n. From the expression, we can have a result
that there must be an optimal n to minimize the CPAT.
It means the optimal area of a single-sink network can
be found for minimizing the CPAT. Based on the result,
multi-sink networks can be deployed.

Next, we compare the lifetime of the network deployed at
the above density to the network deployed uniformly having
the same number of sensors. For a uniform network, the den-
sity of sensors is:

λ̃ =
N
A

=
λ0πr2t (n

2
+ w(n3 − 1

6n(2+ 1)(n+ 1)))

πr2t n2

=
λ0(n+ w(n2 − 1

6 (2n+ 1)(n+ 1)))

n
. (15)

Under the same wake-up strategy, the relationship between
two lifetimes of networks (non-uniform and uniform) is:

Tn
T̃
=
λ1

λ̃

=
λ0(1+ w(n2 − 1))

λ0(n+w(n2− 1
6 (2n+1)(n+1)))
n

=
n(1+ w(n2 − 1))

n+ w(n2 − 1
6 (2n+ 1)(n+ 1))

, (16)

where the T̃ is the lifetime of uniform networks.
From the definition of CPAT, the ratio of costs between two

networks(non-uniform and uniform)is:

CPAT

C̃PAT
=

T̃
Tn
=
n+ w(n2 − 1

6 (2n+ 1)(n+ 1))

n+ wn(n2 − 1)
. (17)

The expression (17) shows that the ratio is less than or equal
to 1 and decreases as n increases. Extending this result, we get
the following theorem.
Theorem 2 (Minimum Cost Theorem): It is assumed that

the sensed phenomenon is uniformly distributed over time
in the circle RoI. For the network based on corona archi-
tecture, if Ni (11) sensors are uniformly placed inside the Ci
corona(i = 1 · · · n, n > 1), the CPAT reaches a minimum.
Proof. Assuming that there is any other deployment scheme,
the number of sensors in Ci is N ′i , i = 1 · · · n, n > 1. The
total number of sensors N =

∑n
i=1 N

′
i =

∑n
i=1 Ni. There

must be a corona that N ′i < Ni. Then λ′i < λi. From Theo-
rem 1, the lifetime of Ci,T ′i < Tn. Since the network lifetime
T ′ ≤ T ′i , so T

′
≤ Tn. By definition, the CPAT of this scheme

is greater than that of the scheme proposed in the theorem.

D. SENSOR DEPLOYMENT ALGORITHM
In this section, two deployment algorithms are given,
single-sink and multi-sink networks. For the single-sink net-
works, if the radii of a circle RoI R 6= krt ,k is an integer, the
width of the outermost corona Cw

n < rt . Several formulas are
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adjusted as follows.

An = π (R2 − (n− 1)2r2t )

RDi =
l((n− 1+ β)2 − i2)

2i− 1

Ei = leg + letRi + (er + et )(
l((n− 1+ β)2 − i2)

2i− 1
)+ eo

λi = λ0(1+ w
((n− 1+ β)2 − i2)

2i− 1
) (18)

Algorithm 1 Deployment for Single-SINK Network
1 Ar ← α, solve the formula(9) to get base density(λ0)
2 n← d Rrt e
3 if R mod rt = 0
4 for i from 1 to n
5 λi← λ0(1+ n2−i2

2i−1 )
6 Ai← πr2t (i

2
− (i− 1)2)

7 Ni← λiAi
7 end for
8 else
9 for i from 1 to n− 1
10 λi← λ0(1+ w

((n−1+β)2−i2)
2i−1 )

11 Ai← πr2t (i
2
− (i− 1)2)

12 Ni← λiAi
13 end for
14 λn← λ0
15 An← π (R2 − (n− 1)2r2t )
16 Nn← λnAn
17 end if
18 for i from 1 to n
19 Scatter randomly Ni sensors over the corona Ci
20 end for

The deployment algorithm of single-sink networks is detailed
as follows. The pseudo code of the algorithm is presented in
Algorithm 1.

1) According to application requirements of covered area,
let Ar = α, the critical density(λ0) is calculated from
(4).

2) Divide the circle RoI into n coronas, the width of
coronas is {

Cw
i = rt , i = 1 · · · n− 1,

Cw
n ≤ rt ,

(19)

3) Calculate sensor density and the number of sensors in
each corona. When Cw

n = rt , the formula (9) is used,
otherwise,the (18) is used to calculate λi. Further, theNi
can be calculated.

4) Scatter randomly Ni sensors over the corona Ci.
Algorithm 1 is the deployment process for a single sink

network. First, the network parameters are calculated, and
then the nodes are deployed in each ring, respectively. Its
algorithm complexity is O(n). For a single-sink network,
the above algorithm can avoid the energy hole problem and

maximize energy utilization rate, but can not guarantee the
lowest cost. Minimize (14), we can get n∗. This means
that when the radii of the circle filed is n∗rt , the network
cost (CPAT) is the lowest. So in order to minimize cost,
the multi-sink networks should be deployed for a large RoI.
According to the size and shape of the region, it is divided
into several circles with an approximate radius n∗rt , and
then the single-sink network is deployed in each circle. The
deployment algorithm of multi-sink networks is detailed as
follows. The pseudo code of the algorithm is presented in
Algorithm 2.

Algorithm 2 Deployment for Multi-Sink Network
1 Ar ← α, solve the formula (9) to get base density(λ0)
2 En← l(eg + et ),Tn← E

En
3 Calculate n∗ by minimizing the (14).
4 Divide the RoI into k circle field with approximate

radius n∗rt
5 for i from 1 to k
6 deploy single-sink network in i circle field.
7 end for

1) According to application requirements of covered area,
let Ar = α, the critical density(λ0) is calculated from
(4).

2) Calculate the n∗ by minimizing CPAT (14).
3) Divide the RoI into k circle field with approximate

radius n∗rt .
4) Deploy single-sink network in each circle.
In step 3, the distance(d) between the center of two adja-

cent circles is theoretically
√
3n∗rt ≤ d ≤ 2n∗rt after

the region’s division. When d =
√
3n∗rt , the area of

overlap region in two adjacent circles is (π3 −
√
3
2 )(n∗rt )2.

When d = 2n∗rt , the area not covered between three
adjacent circles is (

√
3 − π

2 )(n
∗rt )2. The distance can be

a tradeoff between performance and cost based on applica-
tion requirements. Algorithm 2 is the deployment process
of a multi-sink network. Firstly, relevant network parame-
ters are calculated, and then nodes are deployed to the sin-
gle sink network, respectively. Its algorithm complexity is
O(kn). In practical application, because of the diversity and
irregularity of RoI shape, the division of regions is compli-
cated. The basic principle of division is that the sub-region
is as close as possible to the circle area of n∗rt radius.
Since not the focus of this article, it is not discussed in
detail.

E. NETWORK TOPOLOGY AND ROUTING STRATEGY
In the network deployed by the above method, the node
density and the data transmission load of the different
corona are different; the location of the sensors is random.
The network topology structure in the network operation is
updated continuously. The multi-sink network is composed
of multiple single-sink networks, and this section presents
the topology control and data routing strategies for the
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single-sink network. In order to ensure the relative stability
of the network topology and reduce the energy consumption
and bandwidth overhead caused by updating the topology,
all sensors are divided into four categories according to
their status: Sensing Nodes(SN), Relay Nodes(RN), sLeep-
ing nodes(LN), and Dead Nodes(DN). The sensing node
periodically generates environmental data and transmits it
to the relay node. The relay node receives and transmits
data to the sink in a multi-hop mode. A node without sens-
ing and relay task is regarded as a sleeping node. When
a node exhausts energy, it becomes a dead node. Data is
periodically transmitted to the sink. When the proportion
of data transferred to the sink in a period is below a cer-
tain threshold, the network fails. The data transmission is
assumed to be in an ideal state, and signal interference and
transmission conflict are not considered. The network topol-
ogy building and data routing strategy include the following
steps.

1) Initialize network. Each node has the positioning func-
tion to know its location. Sink broadcasts its location
and network parameters (density, number of coronas,
etc.). Each node receives this information and calcu-
lates the distance to sink and the corona number it is
located in. Each node sends its location to the neigh-
bor node and records all the neighbor nodes ID and
locations.

2) Select the SN. Select the sensors as SN in each corona
separately, so that the SN density in the network area
is the critical density λ0. The number of randomly
selected sensors in the ith corona is λ0πr2t (2i − 1),
and the proportion of the total number of sensors in the
corona is 2i−1

(2i−1)+w(n2−i2)
. Among them, all the nodes in

the outermost corona are selected. The selected sensor
marks itself as SN type and informs its neighbor nodes.
When two adjacent SNs are very close, one can be
adjusted to ensure that the two nodes’ overlapped area
is small.

3) Select the relay node to establish the data route. Each
SN selects the nearest non-SN sensor to sink from its
neighbor as the next hop node, and the selected sensor
is marked as RN. RN selects the next hop node in the
same way, and the next hop node of SN and RN in the
first corona is the sink.

4) The sensors that are not selected are marked as sleeping
node, waiting to be woken up.

5) Through the above steps, the network topology and data
routing path are established. Since SNs do not relay
data, their lifetime is approximately the same. In a data
collection cycle, the transmission data load of each RN
is different. In general, the closer the RN is to the sink,
the larger its data transmission load is, and the shorter
its lifetime is. When the remaining energy of RN is
lower than a certain threshold, it dies and informs the
neighbor. Then the previous hop node selects the next
hop RN from its neighbor nodes. If there are sleeping
neighbor nodes, the one closest to the sink is selected

as the next hop. If there is no LN, the RN closest to
the sink is selected. If there is no LN and RN, the SN
closest to the sink is selected.

6) In a data collection cycle, when the proportion of
the data received by the sink in the total sensing
data is lower than a threshold, the network function
fails.

The pseudo code of the network topology and routing algo-
rithm is presented in Algorithm 3.

Algorithm 3 Network Topology Building and Data Routing
Strategy
1 Sink broadcasts its own location and related network

parameters(λ0, n, rt etc).
2 Each sensor receives information from the sink

and calculates
the distance to the sink.

3 for i from 1 to n.
4 Randomly select λ0πr2t (2i− 1) sensors as SN.
5 if The distance between two adjacent SN is less

than the threshold.
6 then One of them will be reselected.
7 end if
8 end for
9 for Each SN
10 SN .next ← s, s is the neighbor sensor of SN

nearest to sink
11 s is labeled RN.
12 while RN 6= sink and RN .next = NULL
13 if RN is in first corona
14 then RN .next ← sink
15 end if
16 RN .next ← s,s is the nearest neighbor

sensor of SN to sink
17 RN ← s and s is labeled as RN.
18 end for
18 if RN.rp<p
17 then RN is labeled as DN, CRN←RN.pre
17 if there are LNs in the neighbors of CRN
17 thenCRN.next← s, s is the nearest LN neighbor

of CRN to sink.
18 else ifthere are RNs in the neighbors of CRN
19 thenCRN.next← s, s is the nearest RN neighbor

of CRN to sink.
18 else ifthere are SNs in the neighbors of CRN
19 thenCRN.next← s, s is the nearest SN neighbor

of CRN to sink.
20 else CRN is labeled as DN.
21 end if
22 end if

Algorithm 3 presents the construction and update process
of network structure and data routing. Its time complexity is
O(n3).
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VI. NUMERICAL ANALYSIS AND SIMULATION RESULTS
In this section, the numerical analysis and simulation results
for the proposed deployment strategy are presented by
Matlab.

A. SIMULATION ENVIRONMENT
We assumed that simulations are based on collision-free
MAC protocol without data loss, and the sink can send data
directly to the data receiving station.

B. STUDY OF BASE DENSITY
In the above section, we discuss the relationship between
the covered area fraction and sensor density, sensing range
and transmission distance, and get the (4). Next, based on
the application’s coverage requirements, the critical density
is studied through numerical simulation. The Fig. 1 shows a
uniform node deployment, where the sensing area is a circular
domainwith a radius of 100, the node density is 0.012, rs = 5,
rt = 10. Fig. 1a shows a random deployment. Fig. 1b gives
the connected component. Fig. 1c presents the covered area
of the HOC.

Fig. 2 shows the ratio of the covered area of the huge con-
nected component to RoI, while rs = 5, rt = 10. The red line
is the simulation value, and the black line is the theoretical
value from (4). From this figure, it can be seen that when
the ratio is greater than 0.8, the simulation value is almost
the same as the theoretical value, which is consistent with the
establishment of (4) whenπλr2t is large. So the expression (4)
can be used to calculate the critical density when the covered
area requirement is large. The green line is the ratio of the
number of nodes in the HOC to the total number of nodes.
Like the red line’s shape, there is a rapid growth in a particular
range, reflecting the penetration phenomenon. Based on these
connected nodes, the network will be formed.

C. DEPLOYMENT SIMULATION
Based on the critical density, the node density and number
in each corona can be calculated according to (9) and (11).
The assumption of energy consumption is the same as that
set in the following chapters. Fig. 3 shows the result when
λ0 = 0.04,R = 60, rt = 10. Fig. 3a shows that the
density increases rapidly from the outer corona to the inner,
and the first corona has the largest increase. This is because
the sensors in the first corona have to undertake all other
coronas data forwarding tasks and its area is the smallest.
From Fig. 3b, the number of sensors also gradually increases,
but the increase is getting smaller and smaller. Fig. 4 shows
the simulation deployment results.

The Fig. 5 compares the density at different numbers of
coronas(n). The Fig. 5a shows the density of each corona
when n is 2, 4, 6, 8, 10, respectively. The growth of the first
corona becomes larger as n increases. The Fig. 5b shows
the sensor average density at different n. As n increases,
the average density increases linearly. It implies that the cost
per unit area of the sensors is increasing. The reason is that the

FIGURE 1. A sample of uniform node deployment.

network’s total cost includes the sink’s cost, and the one sink’s
cost is much higher than a sensor’s cost. In order to study the
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FIGURE 2. The covered area ratio for HOC.

FIGURE 3. The density and number of sensors in each corona.

change of the total cost, we assume that the cost of a sensor
is 2, and the cost of a sink is 2000. Fig. 6 shows the change in
the total cost as the number of corona changes. There must be
a specific value of n that minimize the network cost. Under
the current assumption, n is 6. It should be noted that this
conclusion is drawn from the same theoretical design lifetime
of the networks. In general, the theoretical design lifetime and

FIGURE 4. Deployment.

FIGURE 5. Sensors density at different numbers of coronas.

the actual lifetime are in a positive linear relationship. So the
above conclusions can guide the design and deployment of
the network to minimize costs. That says, when the RoI is
large, a multi-sink network should be deployed to reduce the
network cost.

D. ROUTING SIMULATION
This section simulates the proposed routing strategy. The
nodes are generated randomly under the parameters set
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FIGURE 6. Cost per unit area.

previously (Fig. 7a). The sensing nodes are selected accord-
ing to the critical density, shown as the red circle in Fig. 7b.
Fig. 7c shows the initial routes from the sensing nodes to
the sink. In the network operation, when a node’s energy is
less than a certain threshold, it fails, and its previous hop
node re-establishes a route to the sink. In Fig. 7b, the green
lines represent the re-established routes, and the blue asterisks
indicate the failed node.

The simulation has made appropriate adjustments to the
routing strategy. When there are only SNs in the neighbors
of an SN, to establish a route to the sink, SN is allowed to
be next hop node, which makes almost all SNs can establish
a route. This adjustment is mainly beacause all nodes in the
outermost corona are SN, and the probability of non-SN in
the neighbors of these nodes near the outer edge is small.
If SN is not allowed as the next hop node, there will be some
nodes that no route to sink, resulting in unreasonable waste.
Such adjustment will also bring a problem. The lifetime of the
SN with dual tasks(sensing and relaying) will be shortened.
When it fails, the number of SN is reduced. After an SN fails,
its non-SN neighbor can be chosen as the SN to guarantee
the SN’s amount. Of course, other methods can be adopted
to reduce or avoid the SN as the next hop node. For example,
in the outermost corona deployment, the node position’s outer
boundary can be contracted inward by a certain distance,
which is less than rs. This will increase the probability of
non-SN nodes’ occurrence in the neighbors of the outermost
corona nodes. These adjustments will improve the proposed
strategy. Since these contents are not the focus and space of
this article is limited, they will not be discussed in detail.

E. PERFORMANCE COMPARISON
In this section, we compare the proposed method with exist-
ing random deployment methods, including uniform deploy-
ment, normal diffusion, R-random diffusion, and Exponential
diffusion [11]. The coverage area ratio and the number of
working rounds are simulated. For simplicity, three types
of energy consumption, sensing, receiving, and sending, are
considered, since other energy consumption has little effect
on the comparison results. Assuming that each sensor initially
has 50 energy units, the sensing node periodically generates
data, and each cycle counts as one round. The amount of

data generated by each sensing node per round is counted
as one data unit. The energy consumed by a unit of data is
0.1 for sensing, 0.2 for receiving, and 1.5 for sending. For
simplicity, the e0 is ignored. Since e0 is small and independent
of the amount of data transferred, this does not affect the
comparison results. The transmission distance of the sensor
is 10m, the sensing distance is 5m, and the RoI is a circular
area with a radius of Rm. To be comparable, all deployment
schemes use the topology and routing strategies proposed in
this paper.

Each method is simulated 30 times randomly. Each net-
work is simulated to run 30 rounds, and the covered area ratio
of each round is recorded. Figure 8 gives the average results
of the five different deployment methods when R is 60m. The
horizontal axis represents the number of working rounds, and
the vertical axis represents the covered area ratio, which is
the ratio of the covered area of the sensing nodes whose data
are received by the sink to RoI. All networks are single sink
networks and contain the same numbe of sensors.

The Fig. 8a is the result when λ0 = 0.025, and the Fig. 8b
is the result when λ0 = 0.04. The changes in the curves in
the two figures are similar. The curve of uniform deployment
drops sharply after a few rounds, indicating an energy hole
problem. The other four non-uniform deployments alleviate
this problem. With the increase of working rounds, the ratio
decreases gradually. The maximum ratio of normal deploy-
ment is less than the R-random method and the proposed
method. In the first few rounds, the R-random method’s ratio
is similar to that of the proposed method. The ratios of two
methods drop sharply after several rounds, which indicates
that a large number of sensors in the inner corona fail. The
proposed method is better than other methods in the covered
area ratio.

Fig. 9 shows the Cumulative Covered Area Ratio(CCAR)
of 30 rounds for five methods. The CCAR is the sum of the
covered area ratio of each round. It is difficult to maintain
a constant covered area ratio due to the multi-hop and ran-
domness of the network. The ratio will decrease with the
increase in the number of working rounds. The CCAR can
be used as a comprehensive index to measure the network’s
coverage and working life. It largely reflects the AT value of
CPAT in the design stage. We replace the AT in CPAT with
CCAR to get CPAT’, which does not affect the comparison
results of the various methods. CPAT ′ = cn+c∗m

A∗CCAR . Fig. 10
shows the CPAT’ of each method. For a large area of detec-
tion, the method proposed in this paper will perform better
by deploying a multi-sink network. Based on the parameter
values previously set, Figure 5 shows that when the number
of cycles is 6, the cost is the lowest. When R=104, different
methods are simulated. The method proposed in this paper
deploy the 3-sink network. The covered area ratio is similar
to Figure 9. Fig. 11 shows the CPAT’ of different methods.
Compared with the other four methods at the two densities,
the cost was reduced by 40%, 43.8%, 70.5%, 92.9% (density
is 0.04), and 24.1%, 30.6%, 61.6%, 90.6% (density is 0.025),
respectively. The simulation reflects the cost under the same
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FIGURE 7. Networks routing simulation.

FIGURE 8. The number of rounds and corresponding ratio of covered area.

detection area without considering the shape and division of
the area. For real applications, region shapes are essential to

the performance of all aspects of the network. As can be seen
from Fig. 10 and 11, with the increase of the detection area,
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FIGURE 9. Cumulative covered area ratio of 30 rounds.

FIGURE 10. Cost comparison when R=60.

FIGURE 11. Cost comparison when R=104.

the cost of other methods (CPAT) will increase while the cost
advantage of the proposed method is distinct.

F. DISCUSSION
The proposed strategy includes three algorithms, the first two
are about the deployment process, and the third is construc-
tion and update process of the network and data routing.
The computation in the first two algorithms determines the
deployment parameters, calculated by the given formula. The
computation in the third algorithm is mainly to establish and
update data routing. It is distributed. Each SN node selects the
next hop node from neighbor nodes, which will take some
time and consume some energy. Due to the randomness of
node location andmulti-hop routing, some nodeswill fail dur-
ing network operation, and the network topology will change.
It makes it challenging tomaintain constant area coverage(α).
As a result, the covered area ratio generally decreases unless
a large number of redundant nodes are deployed regardless

of cost. This paper takes minimizing cost as the network
design goal, so it is more practical and feasible to use the
cumulative covered area ratio as the measurement index of
network coverage. A duty cycling strategy in node-dense
areas is required. It is inevitable that more control packets are
needed in the network structure and routing update process.
Clock synchronization is a common problem faced by many
networks, and there are many solutions. Because not our
focus, it is not covered in this article.

The proposed method has the following shortcomings. For
a large detection area, area division should be carried out
before establishing a multi-sink network. The method only
gives the scale of a single sink network and the principle
of area division, and there is no exact method of division.
Area division is another critical issue, and it is closely related
to the shape of the area and the actual application. This
method needs to throw nodes of different densities in dif-
ferent coronas, which may be difficult in actual operation.
The data routing method has a significant impact on energy
consumption and network lifetime. The routing scheme pro-
posed in this paper is designed to minimize the number
of hops, and reduce the number of route updates and the
traffic between neighboring nodes. Its purpose is to decrease
energy consumption. Because the node’s remaining energy
and the current load information are not considered when
selecting the next hop node, some relay nodes fail too quickly.
In the application, the routing strategy can be adjusted and
optimized according to actual needs. In network operation,
the construction and update of network structure and data
routing need to consume additional energy, which has an
impact on the lifetime of nodes. This article does not analyze
the impact of this consumption in detail.

VII. CONCLUSION
For some performance requirements, a randomly deployed
network often requires many redundant nodes, increasing
the network’s cost. In this paper, a random deployment
strategy is proposed to minimize cost, considering fac-
tors such as network coverage, connectivity, and longevity.
The problem (MCPAT, SMCPAT)is defined, and relevant
parameters(λ0, λi,Ni) are determined through theoretical
analysis, and deployment method and corresponding topol-
ogy control and routing strategy are given. Simulation exper-
iments verify the effectiveness of the method. This paper
puts forward a new concept of relative comprehensive cost.
Based on theoretical analysis, a random deployment strategy
is designed. This strategy includes multiple algorithms from
network design to operation. It can be used to deployWSN in
a large detection area. First, calculate the network deployment
parameters according to the perceptron and sink’s attributes
and application performance requirements. Then the regional
division and node deployment are carried out according to
the parameters. In the stage of network construction and data
transmission, tasks are carried out in a distributed manner,
that is, each node performs network update and data trans-
mission based on local information. To the shortcomings
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mentioned above, we will further study the following ques-
tions in the future: (1) the division of regions, (2) optimizing
data routing strategies, (3) establishing WSNs for a practical
application using this strategy.
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